首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bose S  Basu M  Banerjee AK 《Journal of virology》2004,78(15):8146-8158
Human parainfluenza virus type 3 (HPIV-3) is an airborne pathogen that infects human lung epithelial cells from the apical (luminal) plasma membrane domain. In the present study, we have identified cell surface-expressed nucleolin as a cellular cofactor required for the efficient cellular entry of HPIV-3 into human lung epithelial A549 cells. Nucleolin was enriched on the apical cell surface domain of A549 cells, and HPIV-3 interacted with nucleolin during entry. The importance of nucleolin during HPIV-3 replication was borne out by the observation that HPIV-3 replication was significantly inhibited following (i). pretreatment of cells with antinucleolin antibodies and (ii). preincubation of HPIV-3 with purified nucleolin prior to its addition to the cells. Moreover, HPIV-3 cellular internalization and attachment assays performed in the presence of antinucleolin antibodies and purified nucleolin revealed the requirement of nucleolin during HPIV-3 internalization but not during attachment. Thus, these results suggest that nucleolin expressed on the surfaces of human lung epithelial A549 cells plays an important role during HPIV-3 cellular entry.  相似文献   

2.
Herpes simplex virus type 1 (HSV-1) infection induces profound nucleolar modifications at the functional and organizational levels, including nucleolar invasion by several viral proteins. One of these proteins is US11, which exhibits several different functions and displays both cytoplasmic localization and clear nucleolar localization very similar to that of the major multifunctional nucleolar protein nucleolin. To determine whether US11 interacts with nucleolin, we purified US11 protein partners by coimmunoprecipitations using a tagged protein, Flag-US11. From extracts of cells expressing Flag-US11 protein, we copurified a protein of about 100 kDa that was further identified as nucleolin. In vitro studies have demonstrated that nucleolin interacts with US11 and that the C-terminal domain of US11, which is required for US11 nucleolar accumulation, is sufficient for interaction with nucleolin. This association was confirmed in HSV-1-infected cells. We found an increase in the nucleolar accumulation of US11 in nucleolin-depleted cells, thereby revealing that nucleolin could play a role in US11 nucleocytoplasmic trafficking through one-way directional transport out of the nucleolus. Since nucleolin is required for HSV-1 nuclear egress, the interaction of US11 with nucleolin may participate in the outcome of infection.  相似文献   

3.
4.
Lactoferrin (Lf), a multifunctional molecule present in mammalian secretions and blood, plays important roles in host defense and cancer. Indeed, Lf has been reported to inhibit the proliferation of cancerous mammary gland epithelial cells and manifest a potent antiviral activity against human immunodeficiency virus and human cytomegalovirus. The Lf-binding sites on the cell surface appear to be proteoglycans and other as yet undefined protein(s). Here, we isolated a Lf-binding 105 kDa molecular mass protein from cell extracts and identified it as human nucleolin. Medium-affinity interactions ( approximately 240 nm) between Lf and purified nucleolin were further illustrated by surface plasmon resonance assays. The interaction of Lf with the cell surface-expressed nucleolin was then demonstrated through competitive binding studies between Lf and the anti-human immunodeficiency virus pseudopeptide, HB-19, which binds specifically surface-expressed nucleolin independently of proteoglycans. Interestingly, binding competition studies between HB-19 and various Lf derivatives in proteoglycan-deficient hamster cells suggested that the nucleolin-binding site is located in both the N- and C-terminal lobes of Lf, whereas the basic N-terminal region is dispensable. On intact cells, Lf co-localizes with surface nucleolin and together they become internalized through vesicles of the recycling/degradation pathway by an active process. Morever, a small proportion of Lf appears to translocate in the nucleus of cells. Finally, the observations that endocytosis of Lf is inhibited by the HB-19 pseudopeptide, and the lack of Lf endocytosis in proteoglycan-deficient cells despite Lf binding, point out that both nucleolin and proteoglycans are implicated in the mechanism of Lf endocytosis.  相似文献   

5.
We examined the expression and cytolocalization of the protein phosphatase type 1 delta (PP1delta) isoform and nucleolin in human osteoblastic MG63 and Saos-2 cells. Cellular fractionation of MG63 cells was done and protein was prepared from each fraction. Anti-nucleolin antibody interacted with the 100- and 95-kD proteins present in the whole-cell lysate. The 100-kD protein was detected in nuclear and nucleolar fractions. The 95-kD protein was detected in cytosolic and nucleoplasmic fractions. PP1delta and nucleolin were co-localized in the nucleolus in MG63 and Saos-2 cells revealed by an immunofluorescence method. PP1delta and nucleolin were also co-immunoprecipitated with anti-nucleolin and anti-PP1delta antibodies. In the actinomycin D-treated cells, the subcellular localization of PP1delta and nucleolin was changed. Expression of PP1delta was upregulated with actinomycin D treatment. The level of 100-kD protein did not change in the actinomycin D-treated cells. However, the level of the 95-kD band increased with actinomycin D treatment. These results indicate that PP1delta was associated with nucleolin in the nucleolus of MG63 and Saos-2 cells and that nucleolin is a possible candidate substrate for PP1delta.  相似文献   

6.
Nucleolin associates with various DNA repair, recombination, and replication proteins, and possesses DNA helicase, strand annealing, and strand pairing activities. Examination of nuclear protein extracts from human somatic cells revealed that nucleolin and Rad51 co-immunoprecipitate. Furthermore, purified recombinant Rad51 associates with in vitro transcribed and translated nucleolin. Electroporation-mediated introduction of anti-nucleolin antibody resulted in a 10- to 20-fold reduction in intra-plasmid homologous recombination activity in human fibrosarcoma cells. Additionally, introduction of anti-nucleolin antibody sensitized cells to death induced by the topoisomerase II inhibitor, amsacrine. Introduction of anti-Rad51 antibody also reduced intra-plasmid homologous recombination activity and induced hypersensitivity to amsacrine-induced cell death. Co-introduction of anti-nucleolin and anti-Rad51 antibodies did not produce additive effects on homologous recombination or on cellular sensitivity to amsacrine. The association of the two proteins raises the intriguing possibility that nucleolin binding to Rad51 may function to regulate homologous recombinational repair of chromosomal DNA.  相似文献   

7.
We have previously shown that P-selectin binding to Colo-320 human colon carcinoma cells induces specific activation of the alpha(5)beta(1) integrin with a concomitant increase of cell adhesion and spreading on fibronectin substrates in a phosphatidylinositol 3-kinase (PI3-K) and p38 MAPK-dependent manner. Here, we identified by affinity chromatography and characterized nucleolin as a P-selectin receptor on Colo-320 cells. Nucleolin mAb D3 significantly decreases the Colo-320 cell adhesion to immobilized P-selectin-IgG-Fc. Moreover, nucleolin becomes clustered at the external side of the plasma membrane of living, intact cells when bound to cross-linked P-selectin-IgG-Fc chimeric protein. We have also found P-selectin binding to Colo-320 cells induces tyrosine phosphorylation specifically of cell-surface nucleolin and formation of a signaling complex containing cell-surface nucleolin, PI3-K and p38 MAPK. Using siRNA approaches, we have found that both P-selectin binding to Colo-320 cells and formation of the P-selectin-mediated p38 MAPK/PI3-K signaling complex require nucleolin expression. These results show that nucleolin (or a nucleolin-like protein) is a signaling receptor for P-selectin on Colo-320 cells and suggest a mechanism for linkage of nucleolin to P-selectin-induced signal transduction pathways that regulate the adhesion and the spreading of Colo-320 on fibronectin substrates.  相似文献   

8.
9.
Nucleolin is a pleiotropic protein involved in a variety of cellular processes. Although multipolar spindle formation has been observed after nucleolin depletion, the roles of nucleolin in centrosome regulation and functions have not been addressed. Here we report using immunofluorescence and biochemically purified centrosomes that nucleolin co-localized only with one of the centrioles during interphase which was further identified as the mature centriole. Upon nucleolin depletion, cells exhibited an amplification of immature centriole markers surrounded by irregular pericentrin staining; these structures were exempt from maturation markers and unable to nucleate microtubules. Furthermore, the microtubule network was disorganized in these cells, exhibiting frequent non-centrosomal microtubules. At the mature centriole a reduced kinetics in the centrosomal microtubule nucleation phase was observed in live silenced cells, as well as a perturbation of microtubule anchoring. Immunoprecipitation experiments showed that nucleolin belongs to protein complexes containing 2 key centrosomal proteins, γ-tubulin and ninein, involved in microtubule nucleation and anchoring steps. Altogether, our study uncovered a new role for nucleolin in restricting microtubule nucleation and anchoring at centrosomes in interphase cells.  相似文献   

10.
11.
12.
Intimin-gamma is an outer membrane protein of enterohemorrhagic Escherichia coli (EHEC) O157:H7 that is required for the organism to adhere tightly to HEp-2 cells and to colonize experimental animals. Another EHEC O157:H7 protein, the Transferred intimin receptor (Tir), is considered the primary receptor for intimin-gamma. Nevertheless, Tir-independent binding of intimin-gamma to HEp-2 cells has been reported. This observation suggests the existence of a eukaryotic receptor(s) for intimin-gamma. In this study, we sought to identify that receptor(s). First, we determined by equilibrium binding titration that the association of purified intimin-gamma with HEp-2 cells was specific and consistent with a single host cell receptor. Second, we isolated a protein from lysates of HEp-2 cells that bound intimin-gamma and subsequently identified this molecule as nucleolin, a protein involved in cell growth regulation that can be cell surface-expressed. Third, we established that purified intimin-gamma and nucleolin were co-localized on the surface of HEp-2 cells and that the site of EHEC O157:H7 attachment was associated with regions of nucleolin expression. Finally, we demonstrated that mouse anti-nucleolin sera significantly decreased the adherence of EHEC O157:H7 to HEp-2 cells. From this, we conclude that nucleolin is the HEp-2 cell receptor for intimin-gamma expressed by EHEC O157:H7.  相似文献   

13.
When fixed preparations of newt germinal vesicle (GV) contents are treated with RNase and are then probed with radiolabeled single-stranded DNA in 0.1–2.0 × SSC, the extrachromosomal nucleoli bind the probe non-specifically. DNA/protein blot analysis of proteins from newt GVs shows that gv95, an acidic protein (pI = 5.0) of Mr = 95 000, is the most prominent nonspecific DNA-binding protein. Immunocytochemical analysis with affinity purified antibody directed against gv95 shows that it is located in the multiple nucleoli. We used an antibody directed against rat nucleolin to show that newt gv95 and two similarXenopus GV proteins are the amphibian versions of nucleolin, a nucleolar ribonucleoprotein originally identified in mammalian cells. We show that mAb 3A10, directed against newt histones H1 and H5, labels gv95 on protein immunoblots and the multiple nucleoli in cytological preparations. These results suggest that histone H1 and nucleolin share a cross-reacting epitope.  相似文献   

14.
Barel M  Meibom K  Charbit A 《PloS one》2010,5(12):e14193

Background

Francisella tularensis is a highly virulent facultative intracellular bacterium, disseminating in vivo mainly within host mononuclear phagocytes. After entry into macrophages, F. tularensis initially resides in a phagosomal compartment, whose maturation is then arrested. Bacteria escape rapidly into the cytoplasm, where they replicate freely. We recently demonstrated that nucleolin, an eukaryotic protein able to traffic from the nucleus to the cell surface, acted as a surface receptor for F. tularensis LVS on human monocyte-like THP-1 cells.

Methodology/Principal Findings

Here, we followed the fate of nucleolin once F. tularensis has been endocytosed. We first confirmed by siRNA silencing experiments that expression of nucleolin protein was essential for binding of LVS on human macrophage-type THP-1 cells. We then showed that nucleolin co-localized with intracellular bacteria in the phagosomal compartment. Strikingly, in that compartment, nucleolin also co-localized with LAMP-1, a late endosomal marker. Co-immunoprecipation assays further demonstrated an interaction of nucleolin with LAMP-1. Co-localization of nucleolin with LVS was no longer detectable at 24 h when bacteria were multiplying in the cytoplasm. In contrast, with an iglC mutant of LVS, which remains trapped into the phagosomal compartment, or with inert particles, nucleolin/bacteria co-localization remained almost constant.

Conclusions/Significance

We herein confirm the importance of nucleolin expression for LVS binding and its specificity as nucleolin is not involved in binding of another intracellular pathogen as L. monocytogenes or an inert particle. Association of nucleolin with F. tularensis during infection continues intracellularly after endocytosis of the bacteria. The present work therefore unravels for the first time the presence of nucleolin in the phagosomal compartment of macrophages.  相似文献   

15.
16.
17.
Reversible tyrosine phosphorylation, catalyzed by receptor tyrosine kinases and receptor tyrosine phosphatases, plays an essential part in cell signaling during axonal development. Receptor protein tyrosine phosphatase-sigma has been implicated in the growth, guidance and repair of retinal axons. This phosphatase has also been implicated in motor axon growth and innervation. Insect orthologs of receptor protein tyrosine phosphatase-sigma are also implicated in the recognition of muscle target cells. A potential extracellular ligand for vertebrate receptor protein tyrosine phosphatase-sigma has been previously localized in developing skeletal muscle. The identity of this muscle ligand is currently unknown, but it appears to be unrelated to the heparan sulfate ligands of receptor protein tyrosine phosphatase-sigma. In this study, we have used affinity chromatography and tandem MS to identify nucleolin as a binding partner for receptor protein tyrosine phosphatase-sigma in skeletal muscle tissue. Nucleolin, both from tissue lysates and in purified form, binds to receptor protein tyrosine phosphatase-sigma ectodomains. Its expression pattern also overlaps with that of the receptor protein tyrosine phosphatase-sigma-binding partner previously localized in muscle, and nucleolin can also be found in retinal basement membranes. We demonstrate that a significant amount of muscle-associated nucleolin is present on the cell surface of developing myotubes, and that two nucleolin-binding components, lactoferrin and the HB-19 peptide, can block the interaction of receptor protein tyrosine phosphatase-sigma ectodomains with muscle and retinal basement membranes in tissue sections. These data suggest that muscle cell surface-associated nucleolin represents at least part of the muscle binding site for axonal receptor protein tyrosine phosphatase-sigma and that nucleolin may also be a necessary component of basement membrane binding sites of receptor protein tyrosine phosphatase-sigma.  相似文献   

18.
In the present study, we examined the expression and cytolocalization of protein phosphatase type 1 (PP1) isoforms and nucleolin in human osteoblastic cell line MG63 cells at two boundaries in the cell cycle. We treated MG63 cells with hydroxyurea and nocodazole to arrest the cells at the G(1)/S and G(2)/M boundaries, respectively. As judged from the results of Western blot analysis, PP1 isoforms were expressed differently at each boundary of the cell cycle. Nucleolin was also shown to have a different expression pattern at each boundary. In the hydroxyurea-treated cells, nucleolus-like bodies were bigger in size and decreased in number compared with those in asynchronized cells. However, the subcellular localization of PP1s and nucleolin was not changed. Anti-nucleolin antibody interacted with 110-kDa and 95-kDa proteins present in asynchronized cells and in the cells treated with hydroxyurea. Treatment of the cells with nocodazole decreased the level of the 95-kDa form of nucleolin. In the nocodazole-treated cells, it was impossible to distinguish the distribution of each protein. The phosphorylation status of nucleolin in the cell cycle arrested samples was examined by 2D-IEF-PAGE followed by Western blot analysis. In the case of asynchronized cells or hydroxyurea-treated ones, nucleolin was located at a basic isoelectric point (dephosphorylated status); whereas in the G(2)/M arrest cells, the isoelectric point of nucleolin shifted to an acidic status, indicating that nucleolin was phosphorylated. The present results indicate that PP1 and nucleolin were differently expressed at G(1)/S and G(2)/M boundaries of the cell cycle and acted in a different fashion during cell-cycle progression.  相似文献   

19.
The Ag-NOR proteins are defined as markers of "active" ribosomal genes. They correspond to a set of proteins specifically located in the nucleolar organizer regions (NORs), but have not yet been clearly identified. We adapted the specific detection method of the Ag-NOR proteins to Western blots in order to identify these proteins. Using a purified protein, Western blots, and immunological characterization, the present study brings the first direct evidence leading to the identity of one Ag-NOR protein. We found that nucleolin is specifically revealed by Ag-NOR staining. Using different nucleolin fragments generated by CNBr cleavage and by overexpression in Escherichia coli, we demonstrate that the amino-terminal domain of nucleolin and not the carboxy-part of the protein is involved in silver staining. Moreover, as the pattern of staining does not vary using casein kinase II- and cdc2-phosphorylated nucleolin or dephosphorylated nucleolin, we conclude that the reduction of the silver ions is not linked to the phosphorylation state of the molecule. We propose that the concentration of acidic amino acids in the amino-terminal domain of nucleolin is responsible for Ag-NOR staining. This hypothesis is also supported by the finding that poly L-glutamic acid peptides are silver stained. These results provide data that can be used to explain the specificity of Ag-NOR staining. Furthermore, we clearly establish that proteolysis of the amino-terminal Ag-NOR-sensitive part of nucleolin occurs in vitro, leading to the accumulation of the carboxy-terminal Ag-NOR-negative part of the protein. We argue that this cleavage occurs in vivo as already proposed, bearing in mind that nucleolin is present in the fibrillar and in the granular component of the nucleolus, whereas no Ag-NOR staining is observed in the latter nucleolar component.  相似文献   

20.
Mammalian telomeres end in a large duplex loop.   总被引:107,自引:0,他引:107  
Mammalian telomeres contain a duplex array of telomeric repeats bound to the telomeric repeat-binding factors TRF1 and TRF2. Inhibition of TRF2 results in immediate deprotection of chromosome ends, manifested by loss of the telomeric 3' overhang, activation of p53, and end-to-end chromosome fusions. Electron microscopy reported here demonstrated that TRF2 can remodel linear telomeric DNA into large duplex loops (t loops) in vitro. Electron microscopy analysis of psoralen cross-linked telomeric DNA purified from human and mouse cells revealed abundant large t loops with a size distribution consistent with their telomeric origin. Binding of TRF1 and single strand binding protein suggested that t loops are formed by invasion of the 3' telomeric overhang into the duplex telomeric repeat array. T loops may provide a general mechanism for the protection and replication of telomeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号