首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
I-TevI is a modular intron-encoded endonuclease, consisting of an N-terminal catalytic domain and a C-terminal DNA-binding domain, joined by a 75 amino acid linker. This linker can be divided into three regions, starting at the N terminus: the deletion-intolerant (DI) region; the deletion-tolerant (DT) region; and a zinc finger, which acts as a distance determinant for cleavage. To further explore linker function, we generated deletion and substitution mutants that were tested for their preference to cleave at a particular distance or at the correct sequence. Our results demonstrate that the I-TevI linker is multi-functional, a property that sets it apart from junction sequences in most other proteins. First, the linker DI region has a role in I-TevI cleavage activity. Second, the DT linker region participates in distance determination, as evident from DT mutants that display a phenotype similar to that of the zinc-finger mutants in their selection of a cleavage site. Finally, NMR analysis of a freestanding 56 residue linker segment showed an unstructured stretch corresponding to the DI region and a portion of the DT region, followed by a β-strand corresponding to the remainder of the DT region and containing a key distance-determining arginine, R129. Mutation of this arginine to alanine abolished distance determination and disrupted the β-strand, indicating that the structure of the DT linker region has a role in cleavage at a fixed distance.  相似文献   

3.
Endonuclease V, a N-glycosylase/lyase from T4 bacteriophage that initiates the repair of cyclobutane pyrimidine dimers in DNA, has been reported to form a monomer-dimer equilibrium in solution [Nickell and Lloyd (1991) Biochemistry 30, 8638], although the enzyme has only been crystallized in the absence of substrate as a monomer [Morikawa et al. (1992) Science 256, 523]. In this study, analytical gel filtration and sedimentation equilibrium techniques were used to rigorously characterize the association state of the enzyme in solution. In contrast to the previous report, at 100 mM KCl endonuclease V was found to exist predominantly as a monomer in solution by both of these techniques; no evidence for dimerization was seen. To characterize the oligomeric state of the enzyme at its target sites on DNA, the enzyme was bound to oligonucleotides containing a single site specific pyrimidine dimer or tetrahydrofuran residue. These complexes were analyzed by nondenaturing gel electrophoresis at various acrylamide concentrations in order to determine the molecular weights of the enzyme-DNA complexes. The results from these experiments demonstrate that endonuclease V binds to cyclobutane pyrimidine dimer and tetrahydrofuran site containing DNA as a monomer.  相似文献   

4.
Homing endonucleases are sequence-tolerant DNA endonucleases that act as mobile genetic elements. The ability of homing endonucleases to cleave substrates with multiple nucleotide substitutions suggests a high degree of adaptability in that changing or modulating cleavage preference would require relatively few amino acid substitutions. Here, using directed evolution experiments with the GIY-YIG homing endonuclease I-TevI that targets the thymidylate synthase gene of phage T4, we readily isolated variants that dramatically broadened I-TevI cleavage preference, as well as variants that fine-tuned cleavage preference. By combining substitutions, we observed an ∼10 000-fold improvement in cleavage on some substrates not cleaved by the wild-type enzyme, correlating with a decrease in readout of information content at the cleavage site. Strikingly, we were able to change the cleavage preference of I-TevI to that of the isoschizomer I-BmoI which targets a different cleavage site in the thymidylate synthase gene, recapitulating the evolution of cleavage preference in this family of homing endonucleases. Our results define a strategy to isolate GIY-YIG nuclease domains with distinct cleavage preferences, and provide insight into how homing endonucleases may escape a dead-end life cycle in a population of saturated target sites by promoting transposition to different target sites.  相似文献   

5.
The homing endonuclease I-PpoI severely bends its DNA target, resulting in significant deformations of the minor and major groove near the scissile phosphate groups. To study the role of conformational changes within the protein catalyst and the DNA substrate, we have determined the structure of the enzyme in the absence of bound DNA, performed gel retardation analyses of DNA binding and bending, and have mutagenized a leucine residue that contacts an adenine nucleotide at the site of cleavage. The structure of the L116A/DNA complex has been determined and the effects of the mutation on affinity and catalysis have been measured. The wild-type protein displays a rigid-body rotation of its individual subunits upon DNA binding. Homing site DNA is not detectably bent in the absence of protein, but is sharply bent in both the wild-type and L116A complexes. These results indicate that binding involves a large distortion of the DNA and a smaller change in protein conformation. Leucine 116 is critical for binding and catalysis: it appears to be important for forming a well-ordered protein-DNA complex at the cleavage site, for maximal deformation of the DNA, and for desolvation of the nucleotide bases that are partially unstacked in the enzyme complex.  相似文献   

6.
Mutations altering the cleavage specificity of a homing endonuclease   总被引:10,自引:9,他引:1       下载免费PDF全文
The homing endonuclease I-CreI recognizes and cleaves a particular 22 bp DNA sequence. The crystal structure of I-CreI bound to homing site DNA has previously been determined, leading to a number of predictions about specific protein–DNA contacts. We test these predictions by analyzing a set of endonuclease mutants and a complementary set of homing site mutants. We find evidence that all structurally predicted I-CreI/DNA contacts contribute to DNA recognition and show that these contacts differ greatly in terms of their relative importance. We also describe the isolation of a collection of altered specificity I-CreI derivatives. The in vitro DNA-binding and cleavage properties of two such endonucleases demonstrate that our genetic approach is effective in identifying homing endonucleases that recognize and cleave novel target sequences.  相似文献   

7.
I-TevI, a double-strand DNA endonuclease encoded by the mobile td intron of phage T4, has specificity for the intronless td allele. Genetic and physical studies indicate that the enzyme makes extensive contacts with its DNA substrate over at least three helical turns and around the circumference of the helix. Remarkably, no single nucleotide within a 48 bp region encompassing this interaction domain is essential for cleavage. Although two subdomains (DI and DII) contain preferred sequences, a third domain (DIII), a primary region of contact with the enzyme, displays much lower sequence preference. While DII and DIII suffice for recognition and binding of I-TevI, all three domains are important for formation of a cleavage-competent complex. Mutational, footprinting and interference studies indicate predominant interactions of I-TevI across the minor groove and phosphate backbone of the DNA. Contacts appear not to be at the single nucleotide level; rather, redundant interactions and/or structural recognition are implied. These unusual properties provide a basis for understanding how I-TevI recognizes T-even phage DNA, which is heavily modified in the major groove. These recognition characteristics may increase the range of natural substrates available to the endonuclease, thereby extending the invasive potential of the mobile intron.  相似文献   

8.
Using a recent version of the SICHO algorithm for in silico protein folding, we made a blind prediction of the tertiary structure of the N-terminal, independently folded, catalytic domain (CD) of the I-TevI homing endonuclease, a representative of the GIY-YIG superfamily of homing endonucleases. The secondary structure of the I-TevI CD has been determined using NMR spectroscopy, but computational sequence analysis failed to detect any protein of known tertiary structure related to the GIY-YIG nucleases (Kowalski et al., Nucleic Acids Res., 1999, 27, 2115-2125). To provide further insight into the structure-function relationships of all GIY-YIG superfamily members, including the recently described subfamily of type II restriction enzymes (Bujnicki et al., Trends Biochem. Sci., 2000, 26, 9-11), we incorporated the experimentally determined and predicted secondary and tertiary restraints in a reduced (side chain only) protein model, which was minimized by Monte Carlo dynamics and simulated annealing. The subsequently elaborated full atomic model of the I-TevI CD allows the available experimental data to be put into a structural context and suggests that the GIY-YIG domain may dimerize in order to bring together the conserved residues of the active site.  相似文献   

9.
The cleavage site of the restriction endonuclease Ava II.   总被引:7,自引:5,他引:2       下载免费PDF全文
We have determined that the type II restriction enzyme Ava II, isolated from Anabaena variabilis, recognizes and cuts the sequence (formula: see article). The eight Ava II sites of pBR322 have been mapped, as well as a unique site for Ava I.  相似文献   

10.
Knowledge about the conformational dynamics of a protein is key to understanding its biochemical and biophysical properties. In the present work we investigated the dynamic properties of the enzymatic domain of DNase colicins via time-resolved fluorescence and anisotropy decay analysis in combination with steady-state acrylamide quenching experiments. The dynamic properties of the apoenzyme were compared to those of the E9 DNase ligated to the transition metal ion Zn(2+) and the natural inhibitor Im9. We further investigated the contributions of each of the two tryptophans within the E9 DNase (Trp22 and Trp58) using two single-tryptophan mutants (E9 W22F and E9 W58F). Wild-type E9 DNase, E9 W22F, and E9 W58F, as well as Im9, showed multiple lifetime decays. The time-resolved and steady-state fluorescence results indicated that complexation of E9 DNase with Zn(2+) induces compaction of the E9 DNase structure, accompanied by immobilization of Trp22 along with a reduced solvent accessibility for both tryptophans. Im9 binding resulted in immobilization of Trp22 along with a decrease in the longest lifetime component. In contrast, Trp58 experienced less restriction on complexation of E9 DNase with Im9 and showed an increase in the longest lifetime component. Furthermore, the results point out that the Im9-induced changes in the conformational dynamics of E9 DNase are predominant and occur independently of the Zn(2+)-induced conformational effects.  相似文献   

11.
D Hu  M Crist  X Duan  F S Gimble 《Biochemistry》1999,38(39):12621-12628
The PI-SceI protein is a member of the LAGLIDADG family of homing endonucleases that is generated by a protein splicing reaction. PI-SceI has a bipartite domain structure, and the protein splicing and endonucleolytic reactions are catalyzed by residues in domains I and II, respectively. Structural and mutational evidence indicates that both domains mediate DNA binding. Treatment of the protein with trypsin breaks a peptide bond within a disordered region of the endonuclease domain situated between residues Val-270 and Leu-280 and interferes with the ability of this domain to bind DNA. To identify specific residues in this region that are involved in DNA binding and/or catalysis, alanine-scanning mutagenesis was used to create a set of PI-SceI mutant proteins that were assayed for activity. One of these mutants, N281A, was >300-fold less active than wild-type PI-SceI, and two other proteins, R277A and N284A, were completely inactive. These decreases in cleavage activity parallel similar decreases in substrate binding by the endonuclease domains of these mutant proteins. We mapped the approximate position of the disordered region to one of the ends of the 31 base pair PI-SceI recognition sequence using mutant proteins that were substituted with cysteine at residues Asn-274 and Glu-283 and tethered to the chemical nuclease FeBABE. These mutational and affinity cleavage data strongly support a model of PI-SceI docked to its DNA substrate that suggests that one or more residues identified here are responsible for contacting base pair A/T(-)(9), which is essential for substrate binding.  相似文献   

12.
The CstF polyadenylation factor is a multisubunit complex required for efficient cleavage and polyadenylation of pre-mRNAs. Using an RNase H-mediated mapping technique, we show that the 64-kDa subunit of CstF can be photo cross-linked to pre-mRNAs at U-rich regions located downstream of the cleavage site of the simian virus 40 late and adenovirus L3 pre-mRNAs. This positional specificity of cross-linking is a consequence of CstF interaction with the polyadenylation complex, since the 64-kDa protein by itself is cross-linked at multiple positions on a pre-mRNA template. During polyadenylation, four consecutive U residues can substitute for the native downstream U-rich sequence on the simian virus 40 pre-mRNA, mediating efficient 64-kDa protein cross-linking at the downstream position. Furthermore, the position of the U stretch not only enables the 64-kDa polypeptide to be cross-linked to the pre-mRNA but also influences the site of cleavage. A search of the GenBank database revealed that a substantial portion of mammalian polyadenylation sites carried four or more consecutive U residues positioned so that they should function as sites for interaction with the 64-kDa protein downstream of the cleavage site. Our results indicate that the polyadenylation machinery physically spans the cleavage site, directing cleavage factors to a position located between the upstream AAUAAA motif, where the cleavage and polyadenylation specificity factor is thought to interact, and the downstream U-rich binding site for the 64-kDa subunit of CstF.  相似文献   

13.
Oligodeoxynucleotides have been prepared which contain changes in the functional group pattern present in the EcoRV recognition site d(GATATC). These modifications involve the deletion of specific functional groups or the reversal of the relative positions of functional groups within the canonical six base pair recognition site. The duplex stability of these modified oligodeoxynucleotides has been assessed by determining the thermodynamic parameters characterizing helix formation. Steady-state kinetic parameters have been used to characterize the interaction of the modified oligodeoxynucleotides with the EcoRV endonuclease. The enzyme is very sensitive to the deletion of either of the adenine amino or thymine methyl groups, or the reversal of the relative positions of the adenine amino group and thymine carboxy group which form an interstrand hydrogen bond in the major groove of the B-DNA helix. Conversely, deletion of the guanine amino group had only minimal effects upon the measured kinetic parameters. Deletion of the exocyclic amino group from the "inner" dA-dT base pair resulted in the fragment which interacted with the enzyme on the basis of observed inhibition experiments but was not cleaved. The results suggest that the endonuclease interacts with its recognition sequence via contacts in the major groove of the B-DNA helix and that both hydrogen bonding to the adenine amino groups and also hydrophobic interactions with the thymine methyl groups are involved.  相似文献   

14.
Oligodeoxynucleotides have been prepared that contain changes in the functional group pattern present in the EcoRI recognition site. These changes involve "functional group deletions", "functional group reversals", and "displaced functional groups". Steady-state kinetic parameters have been used to characterize the interaction of these modified recognition sites with the EcoRI endonuclease. Changes in the functional group pattern have varying effects upon the cleavage reaction. Both the exocyclic amino groups of the two adenine residues and the methyl groups of the thymine residues appear to interact with the endonuclease quite differently. In both cases efficient catalysis was observed when these functional groups were present at the "outer" dA-dT base pair. Selectivity was decreased by over an order of magnitude largely via increases in Km when these functional groups were deleted. Similar modifications at the "inner" dA-dT base pair did not alter the kinetic parameters significantly from those observed with the native sequence. Addition of an amino group to the minor groove at the outer dA-dT base pair resulted in a modified recognition site that interacted with the enzyme, on the basis of observed competitive inhibition kinetics, but was not cleaved.  相似文献   

15.
Genomic DNA was isolated from leukocytes of a diabetic patient with a mutant insulin and digested with the restriction endonuclease MboII. Subsequent electrophoresis and hybridization with cloned human insulin cDNA probes revealed the loss of one MboII site consistent with the postulated replacement of a phenylalanine residue at position 24 of the insulin B chain by leucine.  相似文献   

16.
The Rep proteins of some plasmid replicons have two functions. Dimers bind to the operator sequences acting as auto-repressors, whereas monomers bind to the iterons to initiate replication of DNA. The ColE2 Rep proteins are present mostly in a dimeric form with some multimers larger than dimers in solution, while the form of Rep binding to Ori is not known. We used an EMSA-based method to determine the molecular weight of Rep in the Rep-Ori complex. The result suggested that Rep binds to Ori as a monomer. In addition, the result of EMSA using the Rep protein fused with the maltose binding protein and the His6-tag also supported this conclusion. We proposed that dimerization of Rep might probably be involved in keeping the copy number of the ColE2 plasmid at the normal low level by limiting the amount of active monomeric forms of Rep in the host cell.  相似文献   

17.
The binding of various ligand molecules to the binuclear Cu(I) site of deoxy-hemocyanin has been investigated through the changes produced in the aromatic region of the circular dichroism spectrum of the protein, where a cluster of tryptophan residues located in the vicinity of copper site undergo conformational reorientations in the presence of exogenous ligands coordinated to the metal. In agreement with expectations, the binuclear site of arthropod hemocyanin is severely hindered to the access of exogenous ligands except for very small molecules like CO, O2 or CN- while for mollusc proteins ligands such as thiourea and 2-mercaptoethanol bind easily to the Cu(I) sites. However, the access of the ligand becomes progressively hindered and eventually prevented as the size of substituents on the ligand increases.  相似文献   

18.
The capacity of the modification methylase (MHhaI) and restriction endonuclease (HhaI) form Haemophilus haemolyticus to methylate and cleave, respectively, recognition sites which are in right-handed B or left-handed Z structures was determined in vitro. Plasmids containing tracts of (dC-dG) as well as numerous individual d(GCGC) sites distributed around the vector were studied. Negative supercoiling was used to convert the (dC-dG) tracts (approximately 30 bp in length) from a right-handed to a left-handed conformation. (Methyl-3H)-SAM was used to localize and quantitate modified d(GCGC) recognition sites, whereas cleavage by HhaI was used to detect unmethylated sites. In the left-handed Z-form, the (dC-dG) blocks were not methylated by MHhaI and not cleaved by HhaI. A two-dimensional gel analysis of a family of 33 topoisomers treated with MHhaI revealed that the lack of methylation in the (dC-dG) blocks was directly correlated to the supercoil-induced B to Z transition in these segments. These results are significant with respect to enzyme-DNA interactions in general and provide the basis for using HhaI and MHhaI as probes for different DNA structures and conformational transitions under physiological conditions.  相似文献   

19.
In our previous attempt at in vitro selection of a trans - acting human hepatitis delta virus (HDV) ribozyme, we found that one of the variants, G10-68-725G, cleaved a 13 nt substrate, HDVS1, at two sites [Nishikawa,F., Kawakami,J., Chiba,A., Shirai,M., Kumar,P.K.R. and Nishikawa,S. (1996) Eur. J. Biochem., 237, 712-718]. One site was the normal cleavage site and the other site was shifted 1 nt toward the 3'-end. To clarify the interactions between nucleotides around the cleavage site of the trans -acting HDV ribozyme, we analyzed the efficiency of the reaction for every possible base pair between the substrate and the ribozyme at positions -1 (-1N:726N) and +1 (+1N:725N) relative to the cleavage site using the genomic HDV ribozyme, TdS4(Xho), and derivatives of the most active variant, G10-68. These mutagenesis analyses revealed that the +1 base of the substrate affects the structure of the catalytic core in the complex with G10-68-725G, substrate and divalent metal ions, and it shifts the cleavage site. In a comparison with other variants of the trans -acting HDV ribozyme, we found that this cleavage site shift occurred only with G10-68-725G.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号