首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A monoclonal antibody to neuronal microtubule-associated protein MAP-2 was produced. Immunoblotting of lysates of cultured cells revealed that the antibody, called MA-01, bound to a protein of Mr 210 kDa. Double immunofluorescence microscopy showed that the antibody stained microtubules. No fibrillar structures were observed in cells treated with Colcemid, but the antibody stained vinblastine paracrystals. In cytochalasin B-treated Leydig cells, MA-01 antibody stained star-like structures that codistributed with actin patches and with a star-like arrangement of vimentin. These observations indicate that the protein immunologically related to MAP-2 in Leydig cells could be involved in the interaction of microtubules with intermediate filaments or microfilaments.  相似文献   

2.
We purified an 84 kDa polypeptide from the MAP (microtubule-associated protein) fraction of tobacco BY-2 cultured cells. LC/MS/MS (liquid chromatography-tandem mass spectrometry) analysis revealed that this polypeptide is a tobacco homolog of AtDRP3 (Arabidopsis thaliana dynamin-related protein 3). Electron microscopy revealed that NtDRP3 (Nicotiana tabacum dynamin-related protein 3) assembles to form a filamentous structure. When GDP was added to the NtDRP3 fraction, the filaments disappeared and many particles appeared. Biochemical analysis revealed that NtDRP3 could bind to and bundle both microtubules and actin filaments in vitro.  相似文献   

3.
The classification of MAP 2 as a microtubule-associated protein is based on its affinity for microtubules in vitro and its filamentous distribution in cultured cells. We sought to determine whether MAP 2 is also able to bind in situ to organelles other than microtubules. For this purpose, primary cultures of rat brain cells were stained for immunofluorescence microscopy with a rabbit anti-MAP 2 antibody prepared in our laboratory, as well as with antibodies to vimentin, an intermediate filament protein, and to tubulin, the major subunit of microtubules. MAP 2 was present on cytoplasmic fibers in neurons and in a subpopulation of the flat cells present in the cultures. Our observations were concentrated on the flat cells because of their suitability for high-resolution immunofluorescence microscopy. Double antibody staining revealed co-localization of MAP 2 with both tubulin and vimentin in the flat cells. Pretreatment of the cultures with vinblastine resulted in the redistribution of MAP 2 into perinuclear cables that contained vimentin. Tubulin paracrystals were not stained by anti-MAP 2. In cells extracted with digitonin, the normal fibrillar distribution of MAP 2 was resistant to several treatments (PIPES buffer plus 10 mM Ca++, phosphate buffer at pH 7 or 9) that induced depolymerization of microtubules, but not intermediate filaments. Staining of the primary brain cells was not observed with preimmune serum nor with immune serum adsorbed prior to use with pure MAP 2. We detected MAP 2 on intermediate filaments not only with anti-MAP 2 serum, but also with affinity purified anti-MAP 2 and with a monoclonal anti-MAP 2 prepared in another laboratory. We conclude from these experiments that material recognized by anti-MAP 2 antibodies associates with both microtubules and intermediate filaments. We propose that one function of MAP 2 is to cross-link the two types of cellular filaments.  相似文献   

4.
To investigate the cellular localization of the 90-kilodalton heat shock protein (HSP90) and its interaction with the cytoskeleton, we performed single- and double-staining immunofluorescence microscopy of cytoskeletal proteins and HSP90 in the absence and presence of cytoskeletal inhibitors. As a model, we used a human endometrial adenocarcinoma cell line (Ishikawa cells), which expresses HSP90. We confirmed the recently reported colocalization of HSP90 with microtubules. However, Ishikawa cells treated with 10(-5) M of the antimicrotubule agents colchicine or triethyl lead showed residual filamentous structures stained with anti-HSP90 antibodies, while no microtubules were visualized with anti-tubulin antibodies. In the presence of 10(-5) M cytochalasin B, the microfilament staining of the cells disappeared, while residual filamentous structures were labeled with anti-HSP90 antibodies. Furthermore, Ishikawa cells treated with 10(-5) M triethyl lead and stained with anti-HSP90 antibodies demonstrated residual filamentous structures, clearly different from those of reorganized vimentin intermediate filaments. Conversely, similar reorganized morphology of filamentous structures stained with both anti-HSP90 and anti-cytokeratins antibodies were observed when Ishikawa cells were treated with 2 x 10(-5) M cytochalasin B and 2 x 10(-5) M colchicine. HSP90 was also present in Ishikawa cell preparations of the Triton X-100 insoluble cytoskeleton. In addition, Triton-insoluble cytoskeleton treated with 10(-5). M triethyl lead and double stained with anti-HSP90 and anti-vimentin antibodies demonstrated clearly different filamentous patterns, when exposed on the same photographic plaque.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In acentriolar higher plant cells, the surface of the nucleus acts as a microtubule-organizing center, substituting for the centrosome. However, the protein factors responsible for this microtubule organization are unknown. The nuclear surfaces of cultured tobacco BY-2 cells possess particles that generate microtubules. We attempted to isolate the proteins in these particles to determine their role in microtubule organization. When incubated with plant or mammalian tubulin, some, but not all, of the isolated nuclei generated abundant microtubules radially from their surfaces. The substance to induce the formation of radial microtubules was confirmed by SDS-PAGE to be a protein with apparent molecular mass of 38 kDa. Partial analysis of the amino acid sequences of the peptide fragments suggested it was a histone H1-related protein. Cloning and cDNA sequence analysis confirmed this and revealed that when the recombinant protein was incubated with tubulin, it could organize microtubules as well as the 38-kDa protein. Histone H1 and tubulin formed complexes immediately, even on ice, and then clusters of these structures were formed. These clusters generated radial microtubules. This microtubule-organizing property was confined to histone H1; all other core histones failed to act as organizers. On immunoblot analysis, rabbit antibodies raised against the 38-kDa protein cross-reacted with histone H1 proteins from tobacco BY-2 cells. These antibodies virtually abolished the ability of the nucleus to organize radial microtubules. Indirect immunofluorescence showed that the antigen was distributed at the nuclear plasm and particularly at nuclear periphery independently from DNA.  相似文献   

6.
Tobacco microtubule associated protein (MAP65) (NtMAP65s) constitute a family of microtubule-associated proteins with apparent molecular weight around 65 kDa that collectively induce microtubule bundling and promote microtubule assembly in vitro. They are associated with most of the tobacco microtubule arrays in situ. Recently, three NtMAP65s belonging to the NtMAP65-1 subfamily have been cloned. Here we investigated in vitro the biochemical properties of one member of this family, the tobacco NtMAP65-1b. We demonstrated that recombinant NtMAP65-1b is a microtubule-binding and a microtubule-bundling protein. NtMAP65-1b has no effect on microtubule polymerization rate and binds microtubules with an estimated equilibrium constant of dissociation (K(d)) of 0.57 micro m. Binding of NtMAP65-1b to microtubules occurs through the carboxy-terminus of tubulin, as NtMAP65-1b was no longer able to bind subtilisin-digested tubulin. In vitro, NtMAP65-1b stabilizes microtubules against depolymerization induced by cold, but not against katanin-induced destabilization. The biological implications of these results are discussed.  相似文献   

7.
A method for biochemically isolating microtubule-associated proteins (MAPs) from the detergent-extracted cytoskeletons of carrot suspension cells has been devised. The advantage of cytoskeletons is that filamentous proteins are enriched and separated from vacuolar contents. Depolymerization of cytoskeletal microtubules with calcium at 4°C releases MAPs which are then isolated by association with taxol stabilized neurotubules. Stripped from microtubules (MTs) by salt, then dialysed, the resulting fraction contains a limited number of high molecular weight proteins. Turbidimetric assays demonstrate that this MAP fraction stimulates polymerization of tubulin at concentrations at which it does not self-assemble. By adding it to rhodamine-conjugated tubulin, the fraction can be seen to form radiating arrays of long filaments, unlike MTs induced by taxol. In the electron microscope, these arrays are seen to be composed of mainly single microtubules. Blot-affinity purified antibodies confirm that two of the proteins decorate cellular microtubules and fulfil the criteria for MAPs. Antibodies to an antigenically related triplet of proteins about 60–68 kDa (MAP 65) stain interphase, preprophase band, spindle and phragmoplast microtubules. Antibodies to the 120 kDa MAP also stain all of the MT arrays but labelling of the cortical MTs is more punctate and, unlike anti-MAP 65, the nuclear periphery is also stained. Both the anti-65 kDa and the anti-120 kDa antibodies stain cortical MTs in detergent-extracted, substrate-attached plasma membrane disks ('footprints'). Since the 120 kDa protein is detected at two surfaces (nucleus and plasma membrane) known to support MT growth in plants, it is hypothesized that it may function there in the attachment or nucleation of MTs.  相似文献   

8.
A protein of 15 kDa (p15) was isolated from Trypanosoma brucei subpellicular microtubules by tubulin affinity chromatography. The protein bound tubulin specifically both in its native form and after SDS-PAGE in tubulin overlay experiments. p15 promoted both the in vitro polymerization of purified calf brain tubulin and the bundling of preformed mammalian microtubules. Immunolabeling identified p15 at multiple sites along microtubule polymers comprising calf brain tubulin and p15 as well as on the subpellicular microtubules of cryosectioned trypanosomes. Antibodies directed against p15 did not cross react with mammalian microtubules. It is suggested that p15 is a trypanosome-specific microtubule-associated protein (MAP) that contributes to the unique organization of the subpellicular microtubules.  相似文献   

9.
In higher plant cells, thus far only a few molecules have been inferred to be involved in microtubule organizing centers (MTOCs). Examination of a 49 kDa tobacco protein, homologous to a 51 kDa protein involved in sea urchin MTOCs, showed that it also accumulated at the putative MTOC sites in tobacco BY-2 cells. In this report, we show that the 49 kDa protein is likely to play a significant role in microtubule organization in vitro. We have established a system prepared from BY-2 cells, capable of organizing microtubules in vitro. The fraction, which was partially purified from homogenized miniprotoplasts (evacuolated protoplasts) by salt extraction and subsequent ion exchange chromatography, contained many particles of diameters about 1 micron after desalting by dialysis. When this fraction was incubated with purified porcine brain tubulin, microtubules were elongated radially from the particles and organized into structures similar to the asters observed in animal cells, and therefore also termed "asters" here. Since we could hardly detect BY-2 tubulin molecules in this fraction, the microtubules in "asters" seemed to be solely composed of the added porcine tubulin. Tubulin molecules were newly polymerized at the ends of the microtubules distal to the particles, and the elongation rate of microtubules was more similar to the reported rate of the plus-ends than that of the minus-ends in vitro. By fluorescence microscopy, the 49 kDa protein was shown to be located at the particles. Thus, its location at the centers of the "asters" suggests that the protein plays a role in microtubule organization in vitro.  相似文献   

10.
G Wiche  E Briones  H Hirt  R Krepler  U Artlieb    H Denk 《The EMBO journal》1983,2(11):1915-1920
To study the individual location of the microtubule proteins MAP-1 and MAP-2 in neuronal tissues and cells, antisera to electrophoretically purified MAP-1 and MAP-2 components were raised in rabbits. When frozen sections through rat brain were examined by immunofluorescence microscopy the antibodies to MAP-1 strongly stained a variety of nerve cells including dendrites and myelinated axons in the cerebrum and cerebellum. Antibodies to MAP-2 showed similar staining patterns, except that myelinated axons were unstained. These results were confirmed by immunoelectron microscopy of frozen sections through cerebellum using the peroxidase technique. Thereby, the association of MAP-1 with microtubules was also clearly demonstrated. When cultured mouse neuroblastoma N2A cells were examined by immunofluorescence microscopy the antiserum to MAP-1 brightly stained filamentous structures resembling microtubules, whereas relatively weak and diffuse staining of the cytoplasm was observed with the antiserum to MAP-2. In agreement with the immunolocalization, MAP-1, but not MAP-2, was found as a prominent component of microtubules proteins polymerized in vitro by taxol from soluble N2A cell extracts. Together these results indicate that neuronal microtubules are preferentially associated with distinct high mol. wt. polypeptides. Therefore, they support the concept that different complements of associated proteins determine distinct functions of microtubules.  相似文献   

11.
S. Hasezawa  T. Nagata 《Protoplasma》1993,176(1-2):64-74
Summary A 49 kDa protein in tobacco BY-2 cells has been found to be cross-reactive with antibodies raised against a 51 kDa protein that was isolated from sea urchin centrosomes and identified as a microtubule-organizing center (MTOC) in animal cells. Tracing the fate of the 49 kDa protein during progression of the cell cycle in highly synchronized tobacco BY-2 cells revealed that this protein was colocalized with plant microtubules (MTs): the location of the 49 kDa protein coincided with preprophase bands (PPBs), mitotic spindles and phragmoplasts. Furthermore, between the M and G1 phases, the 49 kDa protein was observed in the perinuclear regions, in which the initials of MTs are organizing to form cortical MTs. At the G1 phase the location of the 49 kDa protein in the cell cortex coincided with that of the cortical MTs. It appeared that the 49 kDa protein in the cell cortex was transported as granules from the perinuclear regions. Thus, it is highly probable that the 49 kDa protein, which reacts with antibodies against the 51 kDa protein in sea urchin centrosomes, plays the role of an MTOC in plant cells. Thus, the mechanisms for organizing MTs in higher organisms appear to share a common protein, even though the organization of MTs is superficially very different in plant and animal cells.Abbreviations DAPI 4,6-diamidino-2-phenyl indole - MT microtubule - MTOC microtubule-organizing center - PAGE polyacrylamide gel electrophoresis - PBS phosphate-buffered saline - PPB preprophase band - SDS sodium dodecylsulfate  相似文献   

12.
Monoclonal antibodies were prepared against a 46,000 mol wt major cytoplasmic protein from Drosophila melanogaster Kc cells. These antibodies reacted with the 46,000 and a 40,000 mol wt protein from Kc cells. Some antibodies showed cross-reaction with 55,000 (vimentin) and 52,000 mol wt (desmin) proteins from baby hamster kidney (BHK) cells that form intermediate sized filaments in vertebrate cells. In indirect immunofluorescence, the group of cross reacting antibodies stained a filamentous meshwork in the cytoplasm of vertebrate cells. In Kc cells the fluorescence seemed to be localized in a filamentous meshwork that became more obvious after the cells had flattened out on a surface. These cytoskeletal structures are heat-labile; the proteins in Kc or BHK cells rearrange after a brief heat shock, forming juxtanuclear cap structures.  相似文献   

13.
MAP3: characterization of a novel microtubule-associated protein   总被引:12,自引:7,他引:5       下载免费PDF全文
Using monoclonal antibodies we have characterized a brain protein that copurifies with microtubules. We identify it as a microtubule-associated protein (MAP) by the following criteria: it copolymerizes with tubulin through repeated cycles of microtubule assembly in vitro; it is not associated with any brain subcellular fraction other than microtubules; in double-label immunofluorescence experiments antibodies against this protein stain the same fibrous elements in cultured cells as are stained by antitubulin; and this fibrous staining pattern is dispersed when cytoplasmic microtubules are disrupted by colchicine. Because it is distinct from previously described MAPs we designate this novel species MAP3. The MAP3 protein consists of a closely spaced pair of polypeptides on SDS gels, Mr 180,000, which are present in both glial (glioma C6) and neuronal (neuroblastoma B104) cell lines. In brain the MAP3 antigen is present in both neurons and glia. In nerve cells its distribution is strikingly restricted: anti-MAP3 staining is detectable only in neurofilament-rich axons. It is not, however, a component of isolated brain intermediate filaments.  相似文献   

14.
The monoclonal antibody (anti-IFA) raised (Pruss et al., 1981, Cell 27:419-428) against an intermediate filament antigen, which is widespread throughout phylogeny, has been shown here to cross-react with higher plants. On immunoblotting, anti-IFA cross-reacted with proteins in homogenates of carrot suspension cells and of meristematic cells from onion root tips. A 50-kD cross-reactive protein was enriched in a fraction that consisted of detergent-insoluble bundles of 7-nm fibrils from carrot protoplasts (Powell et al., 1982, J. Cell Sci. 56:319-335). By use of indirect immunofluorescence, anti-IFA stained formaldehyde-fixed onion meristematic cells and carrot protoplasts in patterns approximating those obtained with monoclonal anti-tubulins. That anti-IFA was not recognizing plant tubulins was established by use of immunoblots of two-dimensional gels on which the proteins that comprised isolated fibrillar bundles and taxol-purified carrot tubulins had been separated. The two groups of proteins had different positional coordinates: anti-IFA recognized the fibrillar bundle proteins, and anti-tubulins recognized plant microtubule proteins with no cross-reaction to the heterologous proteins. Likewise, formaldehyde-fixed taxol microtubules from carrot cells could be stained with anti-tubulin but not with anti-IFA. It is concluded that an epitope common to intermediate filaments from animals co-distributes with microtubules in higher plant cells.  相似文献   

15.
In vitro polymerization of microtubules from HeLa cells   总被引:14,自引:6,他引:8       下载免费PDF全文
Although the purification of microtubules from brain by alternate cycles of polymerization and depolymerization in vitro has become routine, the application of this method to non-neural cultured cells has been less successful. Previous investigations have suggested that it was necessary to use substrate-grown cells and 4 M glycerol to obtain microtubules from cultured cells. We have developed a method for preparing microtubules from HeLa cells in spinner cultures without the use of glycerol. Microtubules can be readily carried through two complete cycles of polymerization at 37 degrees C and depolymerization at 4 degrees C in vitro. The microtubules obtained are morphologically similar to brain microtubules in electron micrographs, and the tubulin subunits have mobilities similar to those of brain tubulins on polyacrylamide gels. Typical yields in the second polymerization pellet are about 1 mg protein/ml of packed cells or 2.5-3.0% of the total protein in the soluble cell extract. The major nontubulin protein present after two cycles of polymerization and depolymerization has an apparent mol wt of 68,000 daltons. If glycerol is used during polymerization, this band is virtually absent.  相似文献   

16.
Using antibodies to desmin, the major component of the 100Å-filaments from smooth muscle cells, we studied by indirect immunofluorescence the distribution of this protein in primary cultures of embryonic chick cardiac cells. We show that desmin is a component of cytoplasmic filamentous structures which comprise a network distinct from actin filament bundles and microtubules. Exposure of these cells to colcemid results in a rapid disaggregation of microtubules, and a slow aggregation of the desmin-containing filaments towards the nuclear area with the ultimate formation of a perinuclear ring. In differentiated skeletal or cardiac muscle cells, in addition to its cytoplasmic filamentous distribution, desmin is found intimately associated with the Z lines of sarcomeres. We further show that approx. 50% of the cells in these primary cardiac cultures are unreactive with desmin antibodies. Similarly the majority of the cells in a number of established cell lines from various species grown in tissue culture, are unreactive to desmin antibodies in indirect immunofluorescence, despite the fact that these cells are known to contain cytoplasmic 100Å-filaments. These results indicate that desmin occurs in at least two distinct cytoplasmic distribution in cardiac cells. They also demonstrate the existence of immunological and biochemical differences in the major component of 100Å-filaments between muscle and non-muscle cells as evidenced by the failure of non-muscle cells to react with antibodies to chick smooth muscle desmin.  相似文献   

17.
Using antibodies to desmin, the major component of the 100Å-filaments from smooth muscle cells, we studied by indirect immunofluorescence the distribution of this protein in primary cultures of embryonic chick cardiac cells. We show that desmin is a component of cytoplasmic filamentous structures which comprise a network distinct from actin filament bundles and microtubules. Exposure of these cells to colcemid results in a rapid disaggregation of microtubules, and a slow aggregation of the desmin-containing filaments towards the nuclear area with the ultimate formation of a perinuclear ring. In differentiated skeletal or cardiac muscle cells, in addition to its cytoplasmic filamentous distribution, desmin is found intimately associated with the Z lines of sarcomeres. We further show that approx. 50% of the cells in these primary cardiac cultures are unreactive with desmin antibodies. Similarly the majority of the cells in a number of established cell lines from various species grown in tissue culture, are unreactive to desmin antibodies in indirect immunofluorescence, despite the fact that these cells are known to contain cytoplasmic 100Å-filaments. These results indicate that desmin occurs in at least two distinct cytoplasmic distribution in cardiac cells. They also demonstrate the existence of immunological and biochemical differences in the major component of 100Å-filaments between muscle and non-muscle cells as evidenced by the failure of non-muscle cells to react with antibodies to chick smooth muscle desmin.  相似文献   

18.
In eukaryotic cells, tubulin polymerization must be regulated precisely during cell division and differentiation. To identify new mechanisms involved in cellular microtubule formation, we isolated an activity that suppresses microtubule nucleation in vitro. The activity was due to a small acidic polypeptide of 4.7 kDa which we named MINUS (microtubule nucleation suppressor). MINUS inhibited tau- and taxol-mediated microtubule assembly in vitro and was inactivated by dephosphorylation. The protein was purified to homogeneity from cultured neural (PC12) cells and bovine brain. Microinjection of MINUS caused a transient loss of dynamic microtubules in Vero cells. The results suggest that MINUS acts with a novel mechanism on tubulin polymerization, thus regulating microtubule formation in living cells.  相似文献   

19.
We studied the possibility of using the spermatozoa of the loach Misgurnus fossilis L. for identification of centrosome proteins. It has been shown that the centrosome of the loach spermatozoa consists of a pair of centrioles of the standard structure and contains the marker protein gamma-tubulin, cytoplasmic microtubules branch out from it, and it does not contain any additional structures characteristic of the centrosomes of spermatozoa of many other fishes. A preparation enriched with intact centrosomes has been obtained from the loach spermatozoa. These centrosomes contained gamma-tubulin although they lost their ability to induce polymerization of microtubules. The preparation of loach centrosomes was successfully used to obtain a set of monoclonal antibodies against the mammalian centrosome. A new protein kinase LOSTEK was identified with the help of one of these monoclonal antibodies, SN2-3D2, which was localized in the centrosome and on then microtubules in both loach spermatozoa and cultured mammalian cells. Hence, the loach spermatozoa are a promising object for identification of new proteins of the mammalian centrosome.  相似文献   

20.
Cellular origin of fibronectin in interspecies hybrid kidneys   总被引:1,自引:1,他引:0       下载免费PDF全文
The cellular origin of fibronectin in the kidney was studied in three experimental models. Immunohistochemical techniques that use cross-reacting or species-specific antibodies against mouse or chicken fibronectin were employed. In the first model studied, initially avascular mouse kidneys cultured on avian chorioallantoic membranes differentiate into epithelial kidney tubules and become vascularized by chorioallantoic vessels. Subsequently, hybrid glomeruli composed of mouse podocytes and avian endothelial-mesangial cells form. In immunohistochemical studies, cross-reacting antibodies to fibronectin stained vascular walls, tubular basement membranes, interstitium, and glomeruli of mouse kidney grafts. The species-specific antibodies reacting only with mouse fibronectin stained interstitial areas and tubular basement membranes, but showed no reaction with hybrid glomeruli and avian vascular walls. In contrast, species-specific antibodies against chicken fibronectin stained both the interstitial areas and the vascular walls as well as the endothelial-mesangial areas of the hybrid glomeruli, but did not stain the mouse-derived epithelial structures of the kidneys. In the second model, embryonic kidneys cultured under avascular conditions in vitro develop glomerular tufts, which are devoid of endothelial cells. These explants showed fluorescence staining for fibronectin only in tubular basement membranes and in interstitium. The avascular, purely epithelial glomerular bodies remained unstained. Finally, in outgrowths of separated embryonic glomeruli, the cross-reacting fibronectin antibodies revealed two populations of cells: one devoid of fibronectin and another expressing fibronectin in strong fibrillar and granular patterns. These results favor the idea that the main endogenous cellular sources for fibronectin in the embryonic kidney are the interstitial and vascular cells. All experiments presented here suggest that fibronectin is not synthesized by glomerular epithelial cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号