首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exhaustive extraction of the endosperm from the seed of Gleditsia triacanthos using water at room temperature and 50 degrees C left a residue, which was further extracted at 95 degrees C. Precipitation of this extract with 2-propanol yielded major amounts of galactomannan components, while the supernatant was mainly composed of arabinose-rich constituents. Two fractions were obtained by anion-exchange chromatography. The fraction that eluted with water is an arabinan with (1-->5) alpha-L linkages and branching mainly on C-2, accompanied with equal amounts of a low-galactose galactomannan oligosaccharide, and a small proportion of a beta-(1-->4)-galactan. The fraction eluted with an increased ionic strength consists mainly of a similar arabinan, and lower proportions of a high-galactose galactomannan, galactan, and protein. The arabinan moiety in both fractions was characterized by chemical analysis and 1D and 2D NMR spectroscopic techniques.  相似文献   

2.
Hemicellulose-type polysaccharides were isolated from the pericarp of seeds of Argania spinosa (L.) Skeels fruit by sequential alkaline extractions and fractionated by precipitation. Water soluble and water insoluble fractions were obtained, purified and characterized by sugar analysis and 1H and 13C NMR spectroscopy. The water soluble fractions were assumed to be (4-O-methyl-D-glucurono)-D-xylans, with 4-O-methyl-D-glucopyranosyluronic acid groups linked to C-2 of a (1-->4)-beta-D-xylan. The 1H NMR spectrum showed that the water soluble xylans have, on average, one non-reducing terminal residue of 4-O-methyl-D-glucuronic acid for every seven xylose units. The water insoluble fractions consisted of a neutral xylan with linear (1-->4)-beta-D-xylopyranosyl units.  相似文献   

3.
Joshi H  Kapoor VP 《Carbohydrate research》2003,338(18):1907-1912
Cassia grandis is a small or medium sized tree, found in abundance throughout India. The seeds contain about 50% endosperm gum and possess the characteristics of becoming a potential source of seed gum. The purified polysaccharide has been characterized as a pure galactomannan having a mannose-galactose ratio of 3.15; molecular weight (Mw) 80,200; polydispersity (Mw/Mn), 1.35 and intrinsic viscosity [eta], 848 mL/g. Methylation, periodate oxidation, Smith degradation and 13C NMR studies confirm that the polysaccharide has the basic structure of legume galactomannans consisting of a beta-(1-->4)-linked main mannan backbone to which galactose units are attached at O-6. The orthorhombic lattice constants of the hydrated gum are as follows: a=9.00, b=24.81, c=10.30 A. The crystallographic data establish that the probable space group symmetry of the unit cell is P2(1)2(1)2. The results are in contradiction to earlier reports (Indian J. Chem. 16B (1978) 966; J. Indian Chem. Soc. 55 (1978) 1216) in which a non-galactomannan polysaccharide structure has been assigned having a main chain of (1-->4)-linked galactose and mannose units in the molar ratio 6:3, where 50% of the galactose units branched with two galactose and one mannose through 1-->3 linkage.  相似文献   

4.
The marine fungus Aspergillus terreus produces an extracellular polysaccharide, YSS, when grown in potato dextrose-agar medium. YSS was isolated from the fermented liquids using ethanol precipitation, anion-exchange and size-exclusion chromatography. YSS was mainly composed of mannose and galactose in a molar ratio of 7.68:1.00, its average molecular weight was estimated to be about 18.6 kDa. On the basis of chemical and spectroscopic analyses, including one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) spectroscopy, structure of YSS may be represented, at an average, as a backbone of mannan with two types of branches. The mannan backbone is mainly composed of (1→2)-linked α-mannopyranose with small amounts of (1→6)-linked α-mannopyranose residues. The branches consist of terminal β-galactofuranose residues, and disaccharide units of (1→6)-linked α-mannopyranose. The branches are linked to C-6 of (1→2)-linked α-mannopyranose residues of backbone. The antioxidant activity of YSS was evaluated with the scavenging abilities on 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide and hydroxyl radicals in vitro, and the results indicated that YSS had good antioxidant activity, especially scavenging ability on DPPH radicals. The investigation demonstrated that YSS is a novel branched galactomannan with antioxidant activity, and differs from previously described extracellular polysaccharides.  相似文献   

5.
Synthases of cellulose, chitin, hyaluronan, and all other polymers containing (1-->4)beta-linked glucosyl, mannosyl and xylosyl units have overcome a substrate orientation problem in catalysis because the (1-->4)beta-linkage requires that each of these sugar units be inverted nearly 180 degrees with respect to its neighbors. We and others have proposed that this problem is solved by two modes of glycosyl transfer within a single catalytic subunit to generate disaccharide units, which, when linked processively, maintain the proper orientation without rotation or re-orientation of the synthetic machinery in 3-dimensional space. A variant of the strict (1-->4)beta-D-linkage structure is the mixed-linkage (1-->3),(1-->4)beta-D-glucan, a growth-specific cell wall polysaccharide found in grasses and cereals. beta-Glucan is composed primarily of cellotriosyl and cellotetraosyl units linked by single (1-->3)beta-D-linkages. In reactions in vitro at high substrate concentration, a polymer composed of almost entirely cellotriosyl and cellopentosyl units is made. These results support a model in which three modes of glycosyl transfer occur within the synthase complex instead of just two. The generation of odd numbered units demands that they are connected by (1-->3)beta-linkages and not (1-->4)beta-. In this short review of beta-glucan synthesis in maize, we show how such a model not only provides simple mechanisms of synthesis for all (1-->4)beta-D-glycans but also explains how the synthesis of callose, or strictly (1-->3)beta-D-glucans, occurs upon loss of the multiple modes of glycosyl transfer to a single one.  相似文献   

6.
A polysaccharide has been extracted from Cassia corymbosa seeds with cold, acidulated water, and purified to give a water-soluble product containing d-galactose and d-mannose in 4:7 molar ratio. Acid-catalyzed fragmentation, periodate oxidation, methylation, and enzymic hydrolysis showed that the seed gum has a branched structure consisting of a linear chain of β-d-(1→4)-linked mannopyranosyl units, some of which are substituted at O-6 by two α-d-(1→6) galactopyranosyl units mutually linked glycosidically. Methylation analysis of the galactomannan afforded 2,3,4-tri- and 2,3,4,6-tetra-O-methylgalactose, along with 2,3-di- and 2,3,6-tri-O-methylmannose, in the molar ratios of 2:2:2:5. Both the methylation and the periodate-oxidation studies showed ~36.4% of end groups. The significance of these results, together with the findings of partial hydrolysis with acid, are discussed, in relation to ascertaining the structure of the repeating unit of the polysaccharide.  相似文献   

7.
Guar gum, a beta-D-(1-->4)-linked D-mannan with alpha-D-galactopyranosyl units attached as side groups, was treated with alpha-galactosidase, an enzyme that splits off the alpha-D-galactosyl units to obtain a galactomannan with a low galactose content. The galactose-depleted polysaccharide was then selectively oxidized in C(6) position and epimerized using mannuronan C(5)-epimerases, namely AlgE1, AlgE4, AlgE6, and their mixtures, obtaining new pseudo-alginates. In this paper, we report a full high field 1D and 2D NMR study of guar gum as such and of the galactose-depleted, oxidized and epimerized compounds, respectively. From the 1H NMR spectra, the degree of epimerization, the distribution of mannuronic acid (M) and guluronic acid (G) residues and the average G-block length, N(G>1), were obtained. By means of NMR diffusion experiments, it was also shown that no significant degradation of the polysaccharide occurs as a consequence of the epimerization reactions.  相似文献   

8.
Carbohydrates containing galactopyranosyl and mannopyranosyl units with vicinal cis-diols were treated with NaVO(3) in D(2)O, and complexation was determined by (51)V NMR spectroscopy. Me alpha-Galp, Me beta-Galp (3,4-cis-diols), and Me alpha-Manp (2,3-cis-diol) complexed, but Me beta-Manp barely did so. This low degree of complexation also occurred with a beta-mannan containing alternate (1-->3)- and (1-->4)-linkages and an alginate having beta-ManpA blocks. In contrast, branched alpha-mannans complexed readily, although the (51)V resonances for one with side chains terminated with alpha-Manp-(1-->3)-alpha-Manp-(1--> differed from another with only alpha-Manp-(1-->2)-alpha-Manp-(1--> groups. The anomeric configuration of Me alpha-Galp and Me beta-Galp, each with 3,4-cis-diols remote from C-1, gave rise to three (51)V signals of complexes with similar shifts and proportions. The shifts of a galactomannan with terminal alpha-Galp-(1-->2)-alpha-Manp- were the same as those with alpha-Galp-(1-->6)-beta-Manp- groups, but fewer complexes were formed with the former structure, probably due to greater steric crowding of the vanadate esters. Most of the complexes gave rise to a signal in the delta515 region, consistent with the dimeric trigonal-bipyramidal structure.  相似文献   

9.
Two homogeneous galactomannan fractions were isolated from the lichen, Roccella decipiens, one (FP) containing Man and Gal in an 81:19 molar ratio and the other (RFS), having Man, Gal, and Glc in a 43:56:1 molar ratio. FP consisted of a main chain with (1-->4)-linked alpha-D-Manp units, most of which were substituted at O-2 with side chains consisting of nonreducing end-, 2-O- and 6-O-substituted alpha-Manp units. The latter appeared to be substituted by single-unit beta-D-Galf nonreducing ends. RFS contained a similar alpha-D-Manp core structure, but with side chains containing nonreducing end, 5-O-, 6-O-, and 5,6-di-O-substituted beta-D-Galf units. Such polysaccharide structures have not been previously reported.  相似文献   

10.
Seed galactomannans are vegetable, heterogeneous polysaccharides widely distributed in nature. Generally, they possess (1-->4)-linked D-mannopyranose (Man) main chains to which are attached (1-->6)-linked D-galactopyranosyl (Gal) units. The Man/Gal ratios differ from gum to gum, resulting in a change in structure, which, in turn, determines the various industrial applications of seed galactomannans. These materials are important in paper, textile, petroleum-drilling, pharmaceutics, food, cosmaceutics, and explosives industries. In this review, the biodiversified applicability of galactomannan gums is discussed, particularly with respect to structural aspects, properties, human consumption, and technical applications. Especially important is that the solution properties (rheological behaviour, viscosity, emulsifying tendency, etc.) of natural and chemically modified galactomannans can be tuned by interaction with other (carbohydrate-based) monomers or polymers.  相似文献   

11.
By the hot water extraction method, galactomannan was extracted (4.5% yield of the seed mass) from the seeds of Chinese honey locust (Gleditsia sinensis Lam). It had a molecular weight of 1230 kDa, and its solutions had a high viscosity [η] of 1064 ml/g and optical activity [α]D of +21.4°. The polysaccharide consists of mannose and galactose residues in the molar ratio 2.69: 1. In the galactomannan macromolecule the backbone is formed by 1,4-β-D-mannopyranose residues, 37% of which are substituted by α-D-galactopyranose at C6. By 13C-NMR-spectroscopy, fragments of differently galactose-substituted mannobiose units were found to be in the galactomannan being studied: Man-Man, (Gal)Man-Man, and Man-Man(Gal) in the ratio of 0.23: 0.47: 0.30.  相似文献   

12.
Common structural motifs of Haemophilus influenzae lipopolysaccharide (LPS) are globotetraose [beta-d-GalpNAc-(1-->3)-alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp] and its truncated versions globoside [alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp] and lactose [beta-d-Galp-(1-->4)-beta-d-Glcp] linked to the terminal heptose (HepIII) of the triheptosyl inner-core moiety l-alpha-d-Hepp-(1-->2)-[PEA-->6]-l-alpha-d-Hepp-(1-->3)-l-alpha-d-Hepp-(1-->5)-[PPEA-->4]-alpha-Kdo-(2-->6)-lipid A. We report here structural studies of LPS from nontypeable H. influenzae strain 1124 expressing these motifs linked to both the proximal heptose (HepI) and HepIII at the same time. This novel finding was obtained by structural studies of LPS using NMR techniques and electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS and core oligosaccharide material (OS) as well as ESI-MS(n)() on permethylated dephosphorylated OS. The use of defined mutants allowed us to confirm structures unambiguously and understand better the biosynthesis of each of the globotetraose units. We found that lgtC is involved in the expression of alpha-d-Galp-(1-->4)-beta-d-Galp in both extensions, whereas lic2A directs only the expression of beta-d-Galp-(1-->4)-beta-d-Glcp when linked to HepIII. The LPS of NTHi strain 1124 contained sialylated glycoforms that were identified by CE-ESI-MS/MS. A common sialylated structure in H. influenzae LPS is sialyllactose linked to HepIII. This structure exists in strain 1124. However, results for the lpsA mutant indicate that sialyllactose extends from HepI as well, a molecular environment for sialyllactose in H. influenzae that has not been reported previously. In addition, the LPS was found to carry phosphorylcholine, O-linked glycine, and a third PEA group which was linked to O3 of HepIII.  相似文献   

13.
A structural characterization of polysaccharides extracted from the aposymbiotically cultured photobiont of the lichen Ramalina gracilis was carried out in order to compare them with those previously found in the symbiotic thallus. The photobiont was isolated from thallus fragments, following the method of Yamamoto, and cultivated in a liquid nutrient medium. Freeze-dried cells were defatted, and the polysaccharides extracted successively with water and aq. 10% KOH, each at 100 degrees C. After purification, the soluble fractions provided a polysaccharide containing a (1-->5)-linked beta-galactofuranosyl backbone, substituted in a small proportion at O-6 by beta-Galf units. Amylose was also found, as insoluble material obtained on freeze-thawing of the alkaline extract. These polysaccharides have not been found in the symbiotic thallus of Ramalina gracilis, which contained only water-soluble (isolichenan) and insoluble glucans (nigeran and laminaran), and galactomannan. Surprisingly, the galactofuranan has similarities with those found in some fungal cell walls.  相似文献   

14.
Four novel oligosaccharide units were isolated from the acetolysis products of the acidic polysaccharide chain derived from the glycoproteins of Fusarium sp. M7-1. Their chemical structures were resolved mainly by 1H-NMR spectrometry in combination with methylation analysis and mass spectrometry. The results indicate that these oligosaccharide units originated from the side chains, GlcNAc alpha 1-->4GlcA alpha 1-->2(GlcNac alpha 1-->4)GlcA alpha 1-->2Gal, GlcNAc alpha 1-->4GlcA alpha 1-->2(GlcNAc alpha 1-->4)GlcA alpha 1-->2(GlcNac alpha 1-->4)GlcA alpha 1-->2Gal, ChN<--P--> 6Man beta 1-->4GlcA alpha 1-->2Gal, and Man beta 1-->2(ChN<--P-->6)Man beta 1-->4GlcA alpha 1-->2Gal linked together with the other units reported previously [Jikibara et al. (1992) J. Biochem. 111, 236-243] through beta 1-->6galactofuranoside linkages in the acidic polysaccharide chain.  相似文献   

15.
O-linked oligosaccharide groups ranging from di- to hexasaccharide were beta-eliminated by mild alkaline treatment under reducting conditions from the peptidogalactomannan of Aspergillus fumigatus mycelial cell wall. The resulting reduced oligosaccharides, which were the minor components of the peptidogalactomannan fraction, were fractionated to homogeneity by successive gel filtration and high-performance liquid chromatography. Their primary structures were determined based on a combination of techniques including gas chromatography, ESI-QTOF-MS, 1H COSY and TOCSY, and 1H-13C HMQC NMR spectroscopy and methylation analysis, to be: alpha-Glcp-(1 --> 6)-Man-ol, beta-Galf-(1 --> 6)-alpha-Manp-(1 --> 6)-Man-ol, beta-Galf-(1 --> 5)-beta-Galf-(1 --> 6)-alpha-Manp-(1 --> 6)-Man-ol and beta-Galf-(1 --> 5)-[beta-Galf-(1 --> 5]3-beta-Galf-(1 --> 6)-Man-ol. The beta-Galf containing oligosaccharides have not been previously described as fungal O-linked oligosaccharides. The peptidogalactomannan is antigenic and was recognized by human sera of patients with aspergillosis when probed by ELISA, but de-O-glycosylation rendered a 50% decrease in its reactivity. Furthermore, when tested in a hapten inhibition test, the isolated oligosaccharide alditols were able to block, on a dose-response basis, recognition between human sera and the intact peptidogalactomannan. The immunodominant epitopes were present in the tetra- and hexasaccharide, which contain a beta-Galf-(1 --> 5)-beta-Galf terminal group. These results suggest that the O-glycosidically linked oligosaccharide chains, despite being the less abundant carbohydrate component of the A. fumigatus peptidogalactomannan, may account for a significant part of its antigenicity, other than the known activity associated with the galactomannan component.  相似文献   

16.
An exopolysaccharide (EPS) reaching a maximum of 13 g/L was isolated from Micrococcus luteus by ethanol precipitation. The crude EPS was purified by chromatography on DEAE-cellulose and Sephacryl S-200, affording a polysaccharide active fraction (AEP) with a molecular weight of ∼137 kDa. AEP was investigated by a combination of chemical and chromatographic methods including FTIR, HPLC, periodate oxidation, methylation and GC–MS. Data obtained indicated that AEP was composed of mannose, arabinose, glucose and glucuronic acid in a molar ratio of 3.6:2.7:2.1:1.0, respectively. The main backbone consists of mannose units linked with (1→6)-glycosidic bonds and arabinose units linked with (1→5)-glycosidic bonds. There is a side chain consisting of mannose units linked with (1→6)-glycosidic bonds at C3, when all glucose and most of glucuronic acid are found in the side chain. The in vitro antioxidant assay showed that AEP possesses DPPH radical-scavenging activity, with an EC50 value of 180 μg/mL.  相似文献   

17.
The synthesis of three oligogalacturonates with an aldehyde spacer attached at the reducing end is described. Trigalacturonates alpha-d-GalpA-(1-->4)-alpha-d-GalpA-(1-->4)-alpha-d-GalpA-(1-->O(CH(2))(7)CHO and alpha-d-GalpA(Me)-(1-->4)-alpha-d-GalpA(Me)-(1-->4)-alpha-d-GalpA(Me)-(1-->O(CH(2))(7)CHO as well as hexagalacturonate alpha-d-GalpA-(1-->4)-[alpha-d-GalpA-(1-->4)](4)-alpha-d-GalpA-(1-->O(CH(2))(7)CHO are prepared by stepwise coupling of galactose units followed by oxidation of the 6-positions. The alpha-linkages are formed by employing n-pentenyl galactosides as glycosyl donors and N-iodosuccinimide/triethylsilyl triflate as the promoter. Deprotection furnishes the three target oligogalacturonates, which are subsequently linked to bovine serum albumin by reductive amination. These neoglycoproteins will serve as immunogens for generation of new antibodies that can be used for localization and characterization of pectin in plants.  相似文献   

18.
Xylans were isolated from the pericarp of prickly pear seeds of Opuntia ficus-indica (OFI) by alkaline extraction, fractionated by precipitation and purified. Six fractions were obtained and characterized by sugar analysis and NMR spectroscopy. They were assumed to be (4-O-methyl-D-glucurono)-D-xylans, with 4-O-alpha-D-glucopyranosyluronic acid groups linked at C-2 of a (1-->4)-beta-D-xylan. The sugar composition and the 1H and 13C NMR spectra showed that their chemical structures were very similar, but with different proportions of D-Xyl and 4-O-Me-D-GlcA. Our results showed that, on average, the water soluble xylans have one nonreducing terminal residue of 4-O-methyl-D-glucuronic acid for every 11 to 14 xylose units, whereas in the water non-soluble xylans, xylose units can varied from 18 to 65 residues for one nonreducing terminal residue of 4-O-methyl-D-glucuronic acid.  相似文献   

19.
The major cell wall polymer of Kineosporia aurantiaca VKM Ac-702T a representative of the suborder Frankineae, is a galactomannan with a repeating unit of the following structure: -->3)-beta-D-Galp-(1-->6)-beta-D-Manp-(1-->4)-beta-D-Manp-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Manp-(1-->4)-beta-D-Manp-(1--> that has not been reported so far. This was established using chemical degradation methods and NMR spectroscopy. The polysaccharide identified in the present study provides the second example of neutral galactomannans in actinomycete cell walls. The cell wall of K. aurantiaca VKM Ac-702T also contains a minor teichoic acid, viz., 1,3-poly(glycerol phosphate) partially substituted with alpha-glucosamine residues, only part of which are N-acetylated.  相似文献   

20.
Mature fruit of Chorisia speciosa yield an exudate (E-I) following mechanical injury. The polysaccharide contains rhamnose, arabinose, xylose, mannose, glucose, galactose and glucuronic acid in molar ratios of 20:11:1:3:2:40:23. The main chain of the structure is composed by beta-galactopyranosyl units linked (1 --> 3) and (1 --> 6) as indicated by NMR spectra and methylation data. Arabinosef and rhamnose are terminal residues. In order to compare E-I with the polysaccharides from the fruit mesocarp, the latter was submitted to different extractions. The water fraction contains rhamnose, arabinose, xylose, mannose, glucose, galactose and uronic acid in molar ratios of 18:4:1:2:3:44:28. It was treated with CTAB yielding a precipitate which was decomplexed with NaCl, giving four fractions. The fraction obtained using 0.15 M NaCl had a quantitative composition similar that of E-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号