首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taking continuous ethanol fermentation with the self‐flocculating yeast SPSC01 under very high concentration conditions as an example, the fermentation performance of the yeast flocs and their metabolic flux distribution were investigated by controlling their average sizes at 100, 200, and 300 µm using the focused beam reflectance online measurement system. In addition, the impact of zinc supplementation was evaluated for the yeast flocs at the size of 300 µm grown in presence or absence of 0.05 g L?1 zinc sulfate. Among the yeast flocs with different sizes, the group with the average size of 300 µm exhibited highest ethanol production (110.0 g L?1) and glucose uptake rate (286.69 C mmol L?1 h?1), which are in accordance with the increased flux from pyruvate to ethanol and decreased flux to glycerol. And in the meantime, zinc supplementation further increased ethanol production and cell viability comparing with the control. Zinc addition enhanced the carbon fluxes to the biosynthesis of ergosterol (28.6%) and trehalose (43.3%), whereas the fluxes towards glycerol, protein biosynthesis, and tricarboxylic acid cycle significantly decreased by 37.7%, 19.5%, and 27.8%, respectively. This work presents the first report on the regulation of metabolic flux by the size of yeast flocs and zinc supplementation, which provides the potential for developing engineering strategy to optimize the fermentation system. Biotechnol. Bioeng. 2010;105: 935–944. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
High ethanol tolerance is a desired property of industrial yeast strains for efficient ethanol fermentation. In this study, the impact of medium composition on ethanol tolerance of the self-flocculating yeast SPSC01 was investigated using a chemically defined medium. Single-factor experiments revealed that besides magnesium and calcium, zinc also exhibited significant protective effect against ethanol toxicity; addition of 0.02 g/l zinc sulfate significantly increased cell viability in the ethanol shock treatment. Metal ions of manganese, cobalt, and ferrous failed to promote ethanol tolerance, although addition of 0.02 g/l cobalt increased ethanol production without apparent influence on ethanol tolerance. Furthermore, Uniform Design method was employed to obtain the medium with high cell viability, and the key nutrient factors in the medium composition were revealed to be (NH4)2SO4, K2HPO4, vitamin mixtures, and the metal ions of magnesium, calcium and zinc. The optimized combination of metal ions addition was (g/l): MgSO4 0.4, CaCl2 0.2, ZnSO4 0.01. The highest cell viability (90.2%) of SPSC01 against ethanol shock treatment was observed in the optimized medium, which demonstrated significant improvement of ethanol tolerance of the self-flocculating yeast.  相似文献   

3.
【目的】利用转录组测序研究硫酸锌添加提高絮凝酿酒酵母SPSC01乙酸胁迫耐性的分子机理。【方法】在10.0 g/L乙酸胁迫条件下,添加0.03 g/L硫酸锌,取对数期酿酒酵母细胞,与不添加硫酸锌的对照组细胞进行比较转录组分析。【结果】添加硫酸锌的实验组与对照组相比较,50个基因转录水平上调,162个基因转录水平下调,这些转录水平变化明显的基因涉及糖代谢、甲硫氨酸合成、维生素合成等多条代谢途径,此外,转录水平变化的基因还包括抗氧化酶基因等关键胁迫响应基因。【结论】硫酸锌添加可改变酿酒酵母全局基因转录水平,提高抗氧化酶及其他胁迫耐性相关基因的表达,影响细胞氧化还原平衡和能量代谢,通过对多基因转录的调控提高酿酒酵母乙酸耐受性。  相似文献   

4.
目的:本研究是为了观察饮食补充锌减轻酒精性肝病损伤的作用及与HNF-4α的关系。方法:选用成年C57BL/6小鼠40只,按随机数字表分为4组(n=10):正常对照组、酒精中毒组、正常补锌组及酒精补锌组,用不同饮食喂养6个月处死,在正常补锌组和酒精补锌组小鼠饮用水中加入硫酸锌,使锌的含量达到75 mg/L。取各组小鼠肝组织进行病理切片及增殖细胞核抗原(PCNA)免疫组织化学染色,RT-PCR检测肝细胞核因子-4α(HNF-4α)含量,Western blot检测肝组织HNF-4α蛋白表达,检测"肝组织超氧化物歧化酶(SOD)活性及丙二醛(MDA)含量"。结果:酒精中毒组小鼠HNF-4α转录及表达均明显低于正常对照组,差异具有统计学意义(P<0.05),该组小鼠MDA含量增高,SOD活性下降与正常对照组相比差异有统计学意义(P<0.05);而酒精补锌组小鼠PCNA阳性肝细胞数目及HNF-4α蛋白表达水平明显高于酒精中毒组,差异有统计学意义(P<0.05),该组小鼠SOD活性增加,MDA下降,与酒精中毒组相比差异有统计学意义(P<0.05)。结论:长期酒精喂养导致小鼠氧化还原失衡,而补锌可逆转该状态。我们推测饮食补锌可能是通过增加HNF-4α的转录及表达而增强酒精喂养小鼠的肝再生,因此,饮食补锌可能对酒精性肝病有较好的影响。  相似文献   

5.
The effects of oral zinc supplementation on lipid peroxidation and the antioxidant defense system of alloxan (80-90 mg/kg)-induced diabetic rabbits were examined. Forty-five New Zealand male rabbits, 1 year old, weighing approximately 2.5 kg, were allocated randomly and equally as control, diabetic, and zinc-supplemented diabetic groups. After diabetes was induced, zinc-supplemented diabetic rabbits had 150 mg/L of zinc as zinc sulfate (ZnSO(4)) in their drinking tap water for 3 months. The feed and water consumption was higher in diabetic groups than (P<0.01) healthy rabbits. The body weight was lower in diabetic rabbits compared to control. The blood glucose levels were higher in diabetic groups than controls. The elevated plasma malondialdehyde (MDA) levels were determined in the diabetic group (P<0.01). The glutathione peroxidase (GSH-Px), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and ceruloplasmin levels in the diabetic group were decreased by the effect of diabetes but there was no difference between zinc-supplemented diabetic and control rabbits. Serum zinc concentrations were lower in diabetic rabbits but iron (Fe) and copper (Cu) levels in sera were not different among the groups. As a result, it was concluded that daily zinc supplementation could reduce the harmful effects of oxidative stress in diabetics.  相似文献   

6.
Hepatocyte apoptosis has been documented in both clinical and experimental alcoholic liver disease. This study was undertaken to examine the effect of dietary zinc supplementation on hepatic apoptosis in mice subjected to a long-term ethanol exposure. Male adult 129S6 mice fed an ethanol-containing liquid diet for 6 months developed hepatitis, as indicated by neutrophil infiltration and elevation of hepatic keratinocyte chemoattractant (KC) and monocyte chemoattractant protein-1 (MCP-1) levels. Apoptotic cell death was detected in ethanol-exposed mice by a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and was confirmed by the increased activities of caspase-3 and -8. Zinc supplementation attenuated alcoholic hepatitis and reduced the number of TUNEL-positive cells in association with inhibition of caspase activities. Ethanol exposure caused oxidative stress, as indicated by reactive oxygen species accumulation, mitochondrial glutathione depletion, and decreased metallothionein levels in the liver, which were suppressed by zinc supplementation. The mRNA levels of tumor necrosis factor (TNF)-alpha, TNF-R1, FasL, Fas, Fas-associated factor-1, and caspase-3 in the liver were upregulated by ethanol exposure, which were attenuated by zinc supplementation. Zinc supplementation also prevented ethanol-elevated serum and hepatic TNF-alpha levels and TNF-R1 and Fas proteins in the liver. In conclusion, zinc supplementation prevented hepatocyte apoptosis in mice subjected to long-term ethanol exposure, and the action of zinc is likely through suppression of oxidative stress and death receptor-mediated pathways.  相似文献   

7.
选育高乙醇耐性的酿酒酵母菌株对提高燃料乙醇的发酵效率具有重要意义.锌指蛋白广泛存在于多种生物中,对基因的转录和翻译起重要的调节作用.利用人工设计的锌指蛋白可定向设计锌指序列及其排列顺序,实现对细胞内多个基因的全局调控.由于与环境胁迫反应相关的基因很多,因此可利用人工锌指蛋白技术获得耐受性提高的微生物重组菌.文中将人工锌指文库转入到酿酒酵母模式菌株S288c,选育了具有高乙醇耐受性的重组菌株M01,并分离了与乙醇耐受性提高相关的人工锌指蛋白表达载体pRS316ZFP-M01,转入工业酿酒酵母Sc4126,在含有不同浓度乙醇的平板上,工业酵母Sc4126的重组菌株表现出显著的耐受性提高.在高糖培养基(250 g/L)条件下进行乙醇发酵,发现重组菌的乙醇发酵效率明显快于野生型,发酵时间提前24 h,且发酵终点乙醇浓度提高6.3%.结果表明人工锌指文库能够提高酵母的乙醇耐受性,为构建发酵性能优良的酵母菌种奠定了基础.  相似文献   

8.
At physiological levels, zinc and various hormones affect each other reciprocally. Reduction in zinc levels in pinealectomized rats suggests the relation between zinc and melatonin. The effect of both zinc deficiency and supplementation on plasma melatonin levels in rats were investigated in this study. The study was done in Sel?uk University, Experimental Medicine Research and Application Center. Twenty-four adult male Sprague Dawley rats were divided into 3 groups. Eight rats were fed with zinc-deficient diet. Zinc supplementation was administered intaperitoneally to 8 rats. The remaining 8 rats were used as controls. All rats sacrificed 3 weeks later. Plasma melatonin and zinc levels were determined. The plasma zinc levels of the zinc-supplemented group were higher than those of the other groups as expected (P<0.01). Similarly, the melatonin levels in the zinc-supplemented group were higher than those in the other groups. A significant decrease was observed in melatonin levels of the zinc-deficient group compared to the control and zinc-supplemented group (P<0.01). The results of this study suggest that zinc deficiency decreases the melatonin levels and zinc supplementation may increase the plasma melatonin levels in rats.  相似文献   

9.
10.
The influence of cell recycling of xylose-fermenting Saccharomyces cerevisiae TMB3001 was investigated during continuous cultivation on a xylose-glucose mixture. By using cell recycling at the dilution rate ( D) of 0.05 h(-1), the cell-mass concentration could be increased from 2.2 g l(-1) to 22 g l(-1). Consequently, the volumetric ethanol productivity increased ten-fold, from 0.5 g l(-1) h(-1) to 5.35 g l(-1) h(-1). By increasing the biomass concentration, the xylose consumption rate increased from 0.75 g xylose l(-1) h(-1) without recycling to 1.9 g l(-1) h(-1) with recycling. The specific ethanol productivity was in the range of 0.23-0.26 g g(-1) h(-1) with or without cell recycling, showing that an increased cell-mass concentration did not influence the efficiency of the yeast.  相似文献   

11.
Fuzzy reasoning was applied to control both ethanol and glucose concentrations in fed-batch cultures of baker's yeast. This fuzzy controller consisted of three membership functions (concentrations of dissolved oxygen (DO), ethanol and glucose) and 18 production rules. Fuzzy inference was carried out by IF {A is a and B is b,...#x007D;, THEN {C is c} from the on-line measured concentrations of DO, ethanol and glucose. When medium concentrations of ethanol and glucose in fed-batch culture of baker's yeast were set at 2 g/l and 0.2 g/l, both ethanol and glucose concentrations were controlled at 2.67±0.35 g/l and 0.27±0.25 g/l, respectively, ethanol production was reduced from 26 g/l to 34 g/l, cell yield increased from 0.38 to 0.53 g dry cell/g consumed glucose and ethanol yield decreased from 0.50 to 0.14 g ethanol/g consumed glucose, respectively, as compared with those of the glucose only control at 0.2 g/l.  相似文献   

12.
This study was designed to investigate the effects of oral zinc and magnesium supplementation on serum thyroid hormone and lipid levels in alloxan-induced diabetic rats. Thirty-two albino male rats, weighing 234±34 g, were divided into four experimental groups (control, diabetic, diabetic+zinc supplemented and diabetic+ magnesium supplemented). The experiment lasted for 60 d. The first 45 d of the experiment was the supplementation and last 15 d was the supplementation and diabetes-inducing period. Diabetic+zinc-supplemented and diabetic+magnesium-supplemented groups were given orally (by adding in their drinking water) 227 mg/L of zinc and 100 mg/kg body weight (bw) of magnesium, respectively throughout the experiment. Control and diabetic groups served as controls and did not receive zinc or magnesium supplementation. Diabetic, diabetic+zinc-supplemented, and diabetic+magnesium-supplemented groups were given a daily injection (ip) of 100 mg/kg bw of alloxan for 15 d starting on d 46 of the experiment. The control group was only injected with the same volume of isotonic NaCl as the diabetic group received. At the end of the of the experiment, rats in all four groups were fasted for 12 h and blood samples were taken from the heart under ether anesthesia for the determination of thyroid hormone, glucose, total cholesterol, and triglyceride concentrations. It was found that serum glucose, total cholesterol, and triglyceride concentrations were higher and serum T3 and T4 concentrations were lower in diabetic rats than those in the control group. Zinc supplementation did not change any parameter in diabetic rats. However, magnesium supplementation decreased the elevated total cholesterol and triglyceride concentrations of the diabetic rats to the control level. It was concluded that oral magnesium supplementation might decrease the diabetes-induced disturbances of lipid metabolism.  相似文献   

13.
In this study, we report the effect of zinc supplementation on the distribution of elements in kidney tissue of diabetic rats subjected to acute swimming exercise. Diabetes was induced by two subcutaneous injections of 40 mg/kg of streptozotocin within a 24-h period. Zinc was given intraperitoneally at a dose of 6 mg/kg per day for a period of 4 weeks. The rats (n = 80) were equally divided into eight study groups: controls, zinc-supplemented, swimming, diabetic, zinc-supplemented diabetic, zinc-supplemented swimming, diabetic swimming, and zinc-supplemented diabetic swimming. The levels of lead, cobalt, molybdenum, chromium, boron, magnesium, iron, copper, calcium, zinc, and selenium were determined in the kidney tissue samples by ICP-AES. Higher molybdenum, calcium, zinc, and selenium values were found in both swimming and nonswimming diabetic rats. Significantly higher iron values were found in swimming, diabetic, diabetic swimming, and zinc-supplemented diabetic swimming rats (p < 0.001). Diabetic, zinc-supplemented diabetic, diabetic swimming, and zinc-supplemented diabetic swimming rats had the highest copper values. These results show that zinc supplementation normalized the higher levels of molybdenum, calcium, selenium, and iron levels seen in diabetic rats, indicating that zinc may have a regulatory effect on element metabolism in kidney tissue.  相似文献   

14.
Ethanol and endopolygalacturonase (endoPG) are simultaneously produced by the yeast Kluyveromyces marxianus CCEBI 2011. The aim of this study was to determine the optimal combination of seven environmental and nutritional variables, as well as the influence of each one, with respect to the fermentation process in yeast cultures in which sugarcane juice was the substrate. Simplex sequential optimization showed that after 15 runs the optimal conditions were: pH, 4.6; temperature, 31 oC; total reducing sugars (TRS), 125 g/l; (NH(4))(2)SO(4), 2.48 g/l; (NH(4))(2)HPO(4), 2.73 g/l; CaCl(2), 0.33 g/l and MgSO(4)·7H(2)O, 0.54 g/l. Under these conditions, the ethanol concentration was 47.6 g/l and endoPG concentration was 9.8 U/ml, which represented increases of 22% and 10%, respectively, over the concentrations obtained under suboptimal conditions. Temperature and (NH(4))(2)SO(4) supplementation were the most significant factors influencing the co-production process.  相似文献   

15.
After a previous mass screening and enrichment programme for the isolation of thermotolerant yeasts, VS1, VS2, VS3 and VS4 strains isolated from soil samples, collected within the hot regions of Kothagudem Thermal Power Plant, AP, India, had a better thermotolerance, osmotolerance and ethanol tolerance than the other isolates. Among these isolates VS1 and VS3 were best performers. Efforts were made to further improve their osmotolerance, thermotolerance and ethanol tolerance by treating them with UV radiation. Mutants of VS1 and VS3 produced more biomass and ethanol than the parent strains at high temperature and glucose concentrations. The amount of biomass produced by VS1 and VS3 mutants was 0.25 and 0.20 g l(-1) more than the parent strains at 42 degrees C using 2% glucose. At high glucose concentrations VS1 and VS3 mutants produced biomass which was 0.70 and 0.30 g l(-1) at 30 degrees C and 0.10 and 0.20 g l(-1) at 40 degrees C more than the parent strains. The amount of ethanol produced by the mutants (VS1 and VS3) was 8.20 and 1.20 g l(-1) more than the parent strains at 42 degrees C using 150 g l(-1) glucose. More ethanol was produced by mutants (VS1 and VS3) than the parents at high glucose concentrations of 5.0 and 6.0 g l(-1) at 30 degrees C and 13.0 and 3.0 g l(-1) at 42 degrees C, respectively. These results indicated that UV mutagenesis can be used for improving thermotolerance, ethanol tolerance and osmotolerance in VS1 and VS3 yeast strains.  相似文献   

16.
The heterotrophic marine microalga Crypthecodinium cohnii produces docosahexaenoic acid (DHA), a polyunsaturated fatty acid with food and pharmaceutical applications. So far, DHA production has been studied with glucose and acetic acid as carbon sources. This study investigates the potential of ethanol as an alternative carbon source for DHA production by C. cohnii. In shake-flask cultures, the alga was able to grow on ethanol. The specific growth rate was optimal with 5 g l(-1) ethanol and growth did not occur at 0 g l(-1) and above 15 g l(-1). By contrast, in fed-batch cultivations with a controlled feed of pure ethanol, cumulative ethanol addition could be much higher than 15 g l(-1), thus enabling a high final cell density and DHA production. In a representative fed-batch cultivation of C. cohnii with pure ethanol as feed, 83 g dry biomass l(-1), 35 g total lipid l(-1) and 11.7 g DHA l(-1) were produced in 220 h. The overall volumetric productivity of DHA was 53 mg l(-1 )h(-1), which is the highest value reported so far for this alga.  相似文献   

17.
The influence of zinc, iron, cobalt, and manganese on submerged cultures of Fusarium moniliforme NRRL 13616 was assessed by measuring dry weight accumulation, fusarin C biosynthesis, and ammonia assimilation. Shake flask cultures were grown in a nitrogen-limited defined medium supplemented with various combinations of metal ions according to partial-factorial experimental designs. Zinc (26 to 3,200 ppb [26 to 3,200 ng/ml]) inhibited fusarin C biosynthesis, increased dry weight accumulation, and increased ammonia assimilation. Carbohydrate was found to be the principal component of the increased dry weight in zinc-supplemented cultures. Zinc-deficient cultures synthesized more lipid and lipidlike compounds, such as fusarin C, than did zinc-supplemented cultures. Microscopic examination showed that zinc-deficient hyphae contained numerous lipid globules which were not present in zinc-supplemented cultures. Addition of zinc (3,200 ppb) to 2- and 4-day-old cultures inhibited further fusarin C biosynthesis but did not stimulate additional dry weight accumulation. Iron (10.0 ppm) and cobalt (9.0 ppm) did not affect fusarin C biosynthesis or dry weight accumulation. Manganese (5.1 ppm) did not affect dry weight accumulation but did increase fusarin C biosynthesis in the absence of zinc. Maximum fusarin C levels, 32.3 micrograms/mg (dry weight), were produced when cultures were supplied manganese, whereas minimum fusarin C levels, 0.07 micrograms/mg (dry weight), were produced when zinc, iron, cobalt, and manganese were supplied. These results suggest a multifunctional role for zinc in affecting F. moniliforme metabolism.  相似文献   

18.
A total of 24 yeast strains were tested for their capacity to produce ethanol, and of these, 8 were characterized by the best ethanol yields (73.11-8 1.78%). The most active mutant Saccharomyce s cerevisiae ER-A, resistant to ethanol stress, was characterized by high resistance to acidic (pH 1.0 and 2.0), oxidative (1 and 2% of H2O2), and high temperature (45 and 52 degrees C) stresses. During cultivation under all stress conditions, the mutants showed a considerably increased viability ranging widely from about 1.04 to 3.94-fold in comparison with the parent strain S. cerevisiae ER. At an initial sucrose concentration of 150 g/l in basal medium A containing yeast extract and mineral salts, at 300C and within 72 h, the most active strain, S. cerevisiae ER-A, reached an ethanol concentration of 80 g/1, ethanol productivity of 1.1 g/Il/h, and an ethanol yield (% of theoretical) of 99.13. Those values were significantly higher in comparison with parent strain (ethanol concentration 71 g/1 and productivity of 0,99 g/l/h). The present study seems to confirm the high effectiveness of selection of ethanol-resistant yeast strains by adaptation to high ethanol concentrations, for increased ethanol production.  相似文献   

19.
The influence of zinc, iron, cobalt, and manganese on submerged cultures of Fusarium moniliforme NRRL 13616 was assessed by measuring dry weight accumulation, fusarin C biosynthesis, and ammonia assimilation. Shake flask cultures were grown in a nitrogen-limited defined medium supplemented with various combinations of metal ions according to partial-factorial experimental designs. Zinc (26 to 3,200 ppb [26 to 3,200 ng/ml]) inhibited fusarin C biosynthesis, increased dry weight accumulation, and increased ammonia assimilation. Carbohydrate was found to be the principal component of the increased dry weight in zinc-supplemented cultures. Zinc-deficient cultures synthesized more lipid and lipidlike compounds, such as fusarin C, than did zinc-supplemented cultures. Microscopic examination showed that zinc-deficient hyphae contained numerous lipid globules which were not present in zinc-supplemented cultures. Addition of zinc (3,200 ppb) to 2- and 4-day-old cultures inhibited further fusarin C biosynthesis but did not stimulate additional dry weight accumulation. Iron (10.0 ppm) and cobalt (9.0 ppm) did not affect fusarin C biosynthesis or dry weight accumulation. Manganese (5.1 ppm) did not affect dry weight accumulation but did increase fusarin C biosynthesis in the absence of zinc. Maximum fusarin C levels, 32.3 micrograms/mg (dry weight), were produced when cultures were supplied manganese, whereas minimum fusarin C levels, 0.07 micrograms/mg (dry weight), were produced when zinc, iron, cobalt, and manganese were supplied. These results suggest a multifunctional role for zinc in affecting F. moniliforme metabolism.  相似文献   

20.
The present study aims to examine the effect of supplementation of zinc on the distribution of various elements in the sera of diabetic rats subjected to an acute swimming exercise. A total of 80 Sprague–Dawley-type adult male rats were equally allocated to one of eight groups: Group 1, general; Group 2, zinc-supplemented; Group 3, zinc-supplemented diabetic; Group 4, swimming control; Group 5, zinc-supplemented swimming; Group 6, zinc-supplemented diabetic swimming; Group 7, diabetic swimming; and Group 8, diabetes. The rats were injected with 40 mg/kg/day subcutaneous streptozotocin (STZ) twice, with a 24-h interval between two injections. Zinc was supplemented at a dose of 6 mg/kg/day (ip) for 4 weeks. Blood samples were collected at the end of the 4-week study, and serum levels of lead, cobalt, molybdenum, chrome, sulfur, magnesium, manganese, sodium, potassium, phosphorus, copper, iron, calcium, zinc, and selenium (mg/L) were determined with atomic emission. The lowest molybdenum, chrome, copper, iron, potassium, magnesium, sodium, phosphorus, lead, selenium, and zinc values were obtained in Group 7 and 8. These same parameters were higher in the swimming exercise group (Group 4), relative to all other groups. The values in zinc-supplemented groups were found lower than the values in Group 4, but higher than those in Group 6 and 7. The results obtained from the study demonstrate that acute swimming exercise and diabetes affect the distribution of various elements in the serum, while zinc supplementation can prevent the negative conditions associated with both exercise and diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号