首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical models of prey behaviour predict that food‐limited prey engage in risk‐prone foraging and thereby succumb to increased mortality from predation. However, predation risk also may be influenced by factors including prey density and structural cover, such that the presumed role of prey hunger on predation risk may be obfuscated in many complex predator–prey systems. Using a tadpole (prey) – dragonfly larva (predator) system, we determined relative risk posed to hungry vs. sated prey when both density and structural cover were varied experimentally. Overall, prey response to perceived predation risk was primarily restricted to increased cover use, and hungry prey did not exhibit risk‐prone foraging. Surprisingly, hungry prey showed lower activity than sated prey when exposed to predation risk, perhaps indicating increased effort in search of refuge or spatial avoidance of predator cues among sated animals. An interaction between hunger level and predation risk treatments indicated that prey state affected sensitivity to perceived risk. We also examined the lethal implications of prey hunger by allowing predators to select directly between hungry and sated prey. Although predators qualitatively favoured hungry prey when density was elevated and structural cover was sparse, the overall low observed variation in mortality risk between hunger treatments suggests that preferential selection of hungry prey was weak. This implies that hunger effects on prey mortality risk may not be readily observed in complex landscapes with additional factors influencing risk. Thus, current starvation‐predation trade‐off theory may need to be broadened to account for other mechanisms through which undernourished prey may cope with predation risk.  相似文献   

2.
Ecoevolutionary feedbacks in predator–prey systems have been shown to qualitatively alter predator–prey dynamics. As a striking example, defense–offense coevolution can reverse predator–prey cycles, so predator peaks precede prey peaks rather than vice versa. However, this has only rarely been shown in either model studies or empirical systems. Here, we investigate whether this rarity is a fundamental feature of reversed cycles by exploring under which conditions they should be found. For this, we first identify potential conditions and parameter ranges most likely to result in reversed cycles by developing a new measure, the effective prey biomass, which combines prey biomass with prey and predator traits, and represents the prey biomass as perceived by the predator. We show that predator dynamics always follow the dynamics of the effective prey biomass with a classic ¼‐phase lag. From this key insight, it follows that in reversed cycles (i.e., ¾‐lag), the dynamics of the actual and the effective prey biomass must be in antiphase with each other, that is, the effective prey biomass must be highest when actual prey biomass is lowest, and vice versa. Based on this, we predict that reversed cycles should be found mainly when oscillations in actual prey biomass are small and thus have limited impact on the dynamics of the effective prey biomass, which are mainly driven by trait changes. We then confirm this prediction using numerical simulations of a coevolutionary predator–prey system, varying the amplitude of the oscillations in prey biomass: Reversed cycles are consistently associated with regions of parameter space leading to small‐amplitude prey oscillations, offering a specific and highly testable prediction for conditions under which reversed cycles should occur in natural systems.  相似文献   

3.
In traditional models of predator–prey population dynamics, it is usually assumed that consumed prey are immediately removed from the population. However, in plant–herbivore interactions, damaged plants are generally alive after attacks by herbivores. This can result in successive or simultaneous attacks by multiple predators on a single prey item (here, the term prey is expanded to include plants). We constructed a mathematical model with two time scales, taking into account predation processes within a generation, considering post‐predation survival and the modularity of prey. We assumed that a prey item can be divided into modules and that it can be fed on by multiple predators or parasitized by multiple parasites at the same time. The model includes two essential factors: the modularity of prey for predators (n) and the detaching/attaching ratio of predators to prey (ε). Based on the formulae, we revealed a general property of realistic dynamics in plant–herbivore and host–parasite interactions. The analysis showed that the model could be approximated by models with the type I, type II or Beddington–DeAngelis functional responses by taking appropriate limits to the situations. When modularity is low or the detaching/attaching ratio is high, population dynamics tend to be stabilized. These stabilizing effects may be related to interference competition among predator individuals or increases in free prey modules and free predator individuals. In the limit of high modularity, the ratio of the attached prey modules to the total prey modules becomes negligible and the dynamics tend to be destabilized. However, if quantity and quality of prey modules are negatively correlated, the equilibrium is likely to be stabilized at high modularity as long as it remains feasible. These results suggest that considering post‐predation survival and modularity of prey is crucial to understand predator–prey interactions.  相似文献   

4.
Prey quality can have large impacts on the survival, growth and behavior of predators. A number of studies have examined how different species of prey vary in quality. However, far less is known about intraspecific variation in the quality of prey for predators and even less about what nutrients are extracted from prey by predators. We examined how the sex, feeding level and developmental status of prey affected the quantities of nutrients present in prey bodies and the quantities of nutrients that could be extracted from prey by spiders. Female and well‐fed prey were larger and had more nutrients than male and food‐limited prey, respectively. After taking into account differences in prey size, spiders extracted relatively more lipid and less protein from female and well‐fed prey than from male and food‐limited prey, respectively. Mealworms were of higher quality than adult mealworm beetles; spiders were able to extract more lipid, protein and other nutrients from larvae than adults. While lipid present in prey was a good predictor of lipid consumed, protein present in prey was not a reliable predictor of protein consumed. The variation in prey quality that we observed within a single species of prey (i.e. well‐fed vs food‐limited crickets) was as large as variation in quality among the three species of prey used in these experiments. Intraspecific variation in prey quality may be an important factor affecting predatory arthropods, especially in habitats or at times of year when one species of prey is abundant. Further studies are needed to examine the consequences of intraspecific variation in prey quality on the life history and behavior of predators.  相似文献   

5.
Predation can result in differing patterns of local prey diversity depending on whether predators are selective and, if so, how they select prey. A recent study comparing the diversity of juvenile fish assemblages among coral reefs with and without predators concluded that decreased prey diversity in the presence of predators was most likely caused by predators actively selecting rare prey species. We used several related laboratory experiments to explore this hypothesis by testing: (1) whether predators prefer particular prey species, (2) whether individual predators consistently select the same prey species, (3) whether predators target rare prey, and (4) whether rare prey are more vulnerable to predation because they differ in appearance/colouration from common prey. Rare prey suffered greater predation than expected and were not more vulnerable to predators because their appearance/colouration differed from common prey. Individual predators did not consistently select the same prey species through time, suggesting that prey selection behaviour was flexible and context dependent rather than fixed. Thus, selection of rare prey was unlikely to be explained by simple preferences for particular prey species. We hypothesize that when faced with multiple prey species predators may initially focus on rare, conspicuous species to overcome the sensory confusion experienced when attacking aggregated prey, thereby minimizing the time required to capture prey. This hypothesis represents a community-level manifestation of two well-documented and related phenomena, the “confusion effect” and the “oddity effect”, and may be an important, and often overlooked, mechanism by which predators influence local species diversity.  相似文献   

6.
Several conceptual models describing patterns of prey selection by predators have been proposed, but such models rarely have been tested empirically, particularly with terrestrial carnivores. We examined patterns of prey selection by sympatric wolves ( Canis lupus ) and cougars ( Puma concolor ) to determine i) if both predators selected disadvantaged prey disproportionately from the prey population, and ii) if the specific nature and intensity of prey selection differed according to disparity in hunting behavior between predator species. We documented prey characteristics and kill site attributes of predator kills during winters 1999–2001 in Idaho, and located 120 wolf-killed and 98 cougar-killed ungulates on our study site. Elk ( Cervus elephus ) were the primary prey for both predators, followed by mule deer ( Odocoileus hemionus ). Both predators preyed disproportionately on elk calves and old individuals; among mule deer, wolves appeared to select for fawns, whereas cougars killed primarily adults. Nutritional status of prey, as determined by percent femur marrow fat, was consistently poorer in wolf-killed prey. We found that wolf kills occurred in habitat that was more reflective of the entire study area than cougar kills, suggesting that the coursing hunting behavior of wolves likely operated on a larger spatial scale than did the ambush hunting strategy of cougars. We concluded that the disparity in prey selection and hunting habitat between predators probably was a function of predator-specific hunting behavior and capture success, where the longer prey chases and lower capture success of wolf packs mandated a stronger selection for disadvantaged prey. For cougars, prey selection seemed to be limited primarily by prey size, which could be a function of the solitary hunting behavior of this species and the risks associated with capturing prime-aged prey.  相似文献   

7.
Gut content analyses on field-caught Aurelia aurita showed bothquantitative and qualitative change in diet as a function ofmedusa size. Larger medusae tended towards greater numbersand diversity of prey (up to 1550 individual prey representingas many as 13 different prey groups). We also found that medusasize was a good predictor of prey diversity recovered from themedusa gut. While a shift toward greater prey diversity inlarger medusae might be explained by increased contact rateswith 'rare' prey taxa, we also found size-based prey selectivitychanges in A. aurita. We used in situ gut content data to describeselectivity by A. aurita for three prey types representing varyingdegrees of swimming or escape velocity. Fish eggs were usedas a non-swiming prey, and small (  相似文献   

8.
1. Current formulations of functional responses assume that the prey is homogeneous and independent of intraspecific processes. Most prey populations consist of different coexisting size classes that often engage in asymmetrical intraspecific interactions, including cannibalism, which can lead to nonlinear interaction effects. This may be important as the size structure with the prey could alter the overall density-dependent predation rates. 2. In a field experiment with damselfly and dragonfly larvae, 16 treatments manipulated the density of a small prey stage, the presence of large conspecific prey and the presence of heterospecific predators. 3. Size structure in the prey (i.e. when both prey stages were present) decreased the impact of the predator on overall prey mortality by 25-48% at mid and high prey densities, possibly due to density-dependent size-structured cannibalism in the prey. The predation rates on small prey stages were determined by the interaction of large prey and predators. Predation rates increased with prey density in the absence of large prey, but predation rates were constant across densities when large conspecifics were present. 4. The functional response for unstructured prey followed a Holling type III model, but the predation rate for size-structured prey was completely different and followed a complex pattern that could not be explained with any standard functional response. 5. Using additional laboratory experiments, a mortality model was developed and parameterized. It showed that the overall prey mortality of size-structured prey can be adequately predicted with a composite functional response model that modelled the individual functional responses of each prey stage separately and accounted for their cannibalistic interaction. 6. Thus, treating a prey population as a homogeneous entity will lead to erroneous predictions in most real-world food webs. However, if we account for the effects of size structure and the intraspecific interactions on functional responses by treating size classes as different functional groups, it is possible to reliably predict the dynamics of size-structured predator-prey systems.  相似文献   

9.
Numerous studies have found that predators can suppress prey densities and thereby impact important ecosystem processes such as plant productivity and decomposition. However, prey suppression by spiders can be highly variable. Unlike predators that feed on prey within a single energy channel, spiders often consume prey from asynchronous energy channels, such as grazing (live plant) and epigeic (soil surface) channels. Spiders undergo few life cycle changes and thus appear to be ideally suited to link energy channels, but ontogenetic diet shifts in spiders have received little attention. For example, spider use of different food channels may be highly specialized in different life stages and thus a species may be a multichannel omnivore only when we consider all life stages. Using stable isotopes, we investigated whether wolf spider (Pardosa littoralis, henceforth Pardosa) prey consumption is driven by changes in spider size. Small spiders obtained > 80% of their prey from the epigeic channel, whereas larger spiders used grazing and epigeic prey almost equally. Changes in prey consumption were not driven by changes in prey density, but by changes in prey use by different spider size classes. Thus, because the population size structure of Pardosa changes dramatically over the growing season, changes in spider size may have important implications for the strength of trophic cascades. Our research demonstrates that life history can be an important component of predator diet, which may in turn affect community- and ecosystem-level processes.  相似文献   

10.
PearreJr  & Maass 《Mammal Review》1998,28(3):125-139
House Cats Felis catus L., whether attached to human households or not, appear to be versatile opportunistic predators. Their principal prey in most areas are mammals (rodents and rabbits), with bird prey secondary. Trophic niche breadth, as measured by the standard deviation of the spectrum of logarithmically transformed prey sizes ('SLH'), shows a latitudinal trend, being greater in low latitudes: it is also greater in periods of high prey availability. This appears to be influenced by inclusion of very small prey, especially insects, in areas and seasons when they are available. Both the niche breadth and the mean prey size (niche position) appear to be constant as population mean cat size increases. The most common prey size for cats is about 1% of their own body weights, which is much less than most previously reported values for carnivores.  相似文献   

11.
In this review, we summarize the energetic and physiological correlates of prey handling and ingestion in lizards and snakes. There were marked differences in the magnitude of aerobic metabolism during prey handling and ingestion between these two groups, although they show a similar pattern of variation as a function of relative prey mass. For lizards, the magnitude of aerobic metabolism during prey handling and ingestion also varied as a function of morphological specializations for a particular habitat, prey type, and behavior. For snakes, interspecific differences in aerobic metabolism during prey handling seem to be correlated with adaptations for prey capture (venom injection vs. constriction). During ingestion by snakes, differences in aerobic metabolism might be due to differences in cranial morphology, although allometric effects might be a potentially confounded effect. Anaerobic metabolism is used for prey handling and ingestion, but its relative contribution to total ATP production seems to be more pronounced in snakes than in lizards. The energetic costs of prey handling and ingestion are trivial for both groups and cannot be used to predict patterns of prey-size selection. For lizards, it seems that morphological and ecological factors set the constraints on prey handling and ingestion. For snakes, besides these two factors, the capacity of the cardio-respiratory system may also be an important factor constraining the capacity for prey handling and ingestion.  相似文献   

12.
That predators attack and prey defend is an oversimplified view. When size changes during development, large prey may be invulnerable to predators, and small juvenile predators vulnerable to attack by prey. This in turn may trigger a defensive response in adult predators to protect their offspring. Indeed, when sizes overlap, one may wonder "who is the predator and who is the prey"! Experiments with "predatory" mites and thrips "prey" showed that young, vulnerable prey counterattack by killing young predators and adult predators respond by protective parental care, killing young prey that attack their offspring. Thus, young individuals form the Achilles' heel of prey and predators alike, creating a cascade of predator attack, prey counterattack and predator defence. Therefore, size structure and relatedness induce multiple ecological role reversals.  相似文献   

13.
Over a number of decades the process of prey choice has been investigated using fishes as model predators. Using fishes for the model has allowed the proximate factors that determine how a mobile predator finds and chooses to eat the prey encountered within a variable 3‐D environment to be estimated. During prey choice a number of constraints exist, in particular most fish predators will eat their prey whole thus their jaws and gut create functional limitations once a prey has been attacked. By considering the relationship between the size of the prey and the predator's feeding apparatus and feeding motivation this study explores the link between mechanistic studies and theoretical, optimal foraging based predictions. How the prediction of prey choices made by the fish following prey encounter can be reconciled with what is likely to be found in the fish's stomach is discussed. This study uses a progression of empirical examples to illustrate how the limits of functional constraints and prey choice at different stages of motivation to feed can be taken into account to improve predictions of predator prey choice.  相似文献   

14.
When foraging in communities with mixed prey, generalist predators may be confronted with prey species that differ in quality, size and mobility and interact with one another. To examine prey selection, predation by Macrolophus pygmaeus (Heteroptera: Miridae) was recorded by providing a diet of either one or two prey species of Myzus persicae (third‐instar nymphs), Aphis gossypii (fourth‐instar nymphs), Trialeurodes vaporariorum (third‐instar nymphs) and Ephestia kuehniella (eggs). In the experiments, prey mobility, prey quality and prey biomass were considered. The biomass consumed by the predator was dependent on the combination of prey species and the quantity of biomass offered. In choice experiments with diets mixed of two prey species at equal densities, the predation to A. gossypii was significantly reduced in the presence of E. kuehniella but the rate of consumption of M. persicae, T. vaporariorum and E.kuehniella was not significantly affected by the coexistence of any other species in the mixed prey diet. When equal amounts of biomass from two prey species were provided in combination, the total consumed biomass was significantly reduced in the mixed prey diets composed of E. kuehniella eggs and aphid nymphs. Thus, under the mixed‐prey situation, prey selection by predators may be affected by interactions among prey species differing in traits such as quality, mobility and size.  相似文献   

15.
Frequency-dependent selection by predators   总被引:4,自引:0,他引:4  
Sometimes predators tend to concentrate on common varieties of prey and overlook rare ones. Within prey species, this could result in the fitness of each variety being inversely related to its frequency in the population. Such frequency-dependent or 'apostatic' selection by predators hunting by sight could maintain polymorphism for colour pattern, and much of the supporting evidence for this idea has come from work on birds and artificial prey. These and other studies have shown that the strength of the observed selection is affected by prey density, palatability, coloration and conspicuousness. When the prey density is very high, selection becomes 'anti-apostatic': predators preferentially remove rare prey. There is still much to be learned about frequency-dependent selection by predators on artificial prey: work on natural polymorphic prey has hardly begun.  相似文献   

16.
A large variety of predatory species rely on their visual abilities to locate their prey. However, the search for prey may be hampered by prey camouflage. The most prominent example of concealing coloration is background-matching prey coloration characterized by a strong visual resemblance of prey to the background. Even though this principle of camouflage was recognized to efficiently work in predator avoidance a long time ago, the underlying mechanisms are not very well known. In this study, we assessed whether blue tits (Cyanistes caeruleus) use chromatic cues in the search for prey. We used two prey types that were achromatically identical but differed in chromatic properties in the UV/blue range and presented them on two achromatically identical backgrounds. The backgrounds had either the same chromatic properties as the prey items (matching combination) or differed in their chromatic properties (mismatching combination). Our results show that birds use chromatic cues in the search for mismatching prey, whereupon chromatic contrast leads to a ‘pop-out’ of the prey item from the background. When prey was presented on a matching background, search times were significantly higher. Interestingly, search for more chromatic prey on the matching background was easier than search for less chromatic prey on the matching background. Our results indicate that birds use both achromatic and chromatic cues when searching for prey, and that the combination of both cues might be helpful in the search task.  相似文献   

17.
Kenneth A. Schmidt 《Oikos》2004,106(2):335-343
Many communities consist of a generalist predator that consumes multiple prey species whose persistence is thereby threatened through the indirect effect of apparent competition. However, uncommon and/or ephemeral prey may be encountered only incidentally through the predator's effort expended to consume primary prey. In such instances, the functional response to incidental prey is driven entirely through the density of primary prey. Moreover, rarity and brevity in the predator's diet precludes a numerical response to incidental prey. Instead, the persistence of incidental prey may be critically linked to gaps in space unexploited by predators, i.e. enemy-free space. I use optimal foraging theory to derive a mechanism by which enemy-free space is created as a result of a predator's forging aptitude and patch-use behavior. In non-competitive environments enemy-free space provides a behavioral refuge for incidental prey that may prevent their extinction. In competitive environments, greater enemy-free space is associated with higher incidental prey densities and concomitantly greater competitive effects. As a result, incidental prey diversity declines with an increase in enemy-free space.  相似文献   

18.
Synopsis Experiments with the Danube bleak, Chalcalburnus chalcoides mento, an obligatory planktivore, were carried out to test some basic assumptions of foraging theory regarding prey selection. The results of experiments in which two prey types were offered simultaneously were compared with results of corresponding experiments with single prey types. Although the fish always selected for the more profitable prey they always did far worse than theoretical predictions. Selectivity cannot compensate for the costs accruing from the presence of alternate prey. Under conditions which are closer to natural prey assemblages, characterized by low densities of highly profitable prey, the inability to cope adequately with a mixed prey supply may be of little disadvantage. Because of relatively low locomotion costs, patch selection may be more important than prey selection for optimizing feeding.  相似文献   

19.
David A. Spiller 《Oecologia》1992,90(4):457-466
Summary I studied the relationship between prey consumption and colony size in the orb spiderPhiloponella semiplumosa. Observations of unmanipulated colonies showed that prey biomass per juvenile spider was positively correlated with colony size, indicating that prey consumption was highest in the largest colonies observed. In contrast, the relationship between prey biomass per adult female and colony size was curvilinear; prey consumption tended to be highest in intermediatesized colonies. Adult female cephalothorax width was positively correlated with colony size. Number of egg sacs per adult female tended to be highest in intermediate-sized colonies. Prey biomass per juvenile was lower in experimentally reduced colonies than in large control colonies. Aerial-arthropod abundance was not correlated with colony size, and experimental prey supplementation did not affect colony size. Thus, the relationship between prey consumption and colony size was influenced by coloniality directly, rather than by a correlation between prey abundance at a site and colony size.  相似文献   

20.
It is widely argued that defended prey have tended to evolve conspicuous traits because predators more readily learn to avoid defended prey when they are conspicuous. However, a rival theory proposes that defended prey have evolved such characters because it allows them to be distinguished from undefended prey. Here we investigated how the attributes of defended (unprofitable) and undefended (profitable) computer-generated prey species tended to evolve when they were subject to selection by foraging humans. When cryptic forms of defended and undefended species were similar in appearance but their conspicuous forms were not, defended prey became conspicuous while undefended prey remained cryptic. Indeed, in all of our experiments, defended prey invariably evolved any trait that enabled them to be distinguished from undefended prey, even if such traits were cryptic. When conspicuous mutants of defended prey were extremely rare, they frequently overcame their initial disadvantage by chance. When Batesian mimicry of defended species was possible, defended prey evolved unique traits or characteristics that would make undefended prey vulnerable. Overall, our work supports the contention that warning signals are selected for their reliability as indicators of defense rather than to capitalize on any inherent educational biases of predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号