首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capsule Long-distance migrant birds show less favourable trends than sedentary/short-distance species.

Aims To use breeding bird surveys to contrast population trends amongst common species according to their migration pattern.

Methods Changes in abundance of 62 Danish breeding sedentary, short-distance (Europe/North Africa) or long-distance (trans-Saharan) migrants were described by fitting log linear regression models to point-count census data gathered during 1976–2005.

Results Trans-Saharan migrants declined by 1.3% per annum during this period, while short-distance migrants and sedentary species increased by 1.4% and 1.0% per annum, respectively. There were no significant decadal declines amongst species using different summer breeding habitats, except for wetlands, and there was no consistent variation in trends associated with wintering regions or habitats or diet.

Conclusions More information is urgently needed on diet, feeding ecology, habitat requirements, winter distribution and intra-African movements of the commoner European summer visitors to identify causes of the declines and highlight when in the annual cycle detrimental effects occur. Studies linking individuals on their breeding, staging and wintering grounds are especially needed. Danish trends resemble those from elsewhere in Europe, confirming that restoration to favourable conservation status requires inter-continental action to meet European and global targets to reduce or halt biodiversity loss.  相似文献   

2.
The blackcap Sylvia atricapilla shows a complex migratory pattern and is a suitable species for the studies of morphological migratory syndrome, including adaptations of wing shape to different migratory performance. Obligate migrants of this species that breed in northern, central, and Eastern Europe differ by migration distance and some cover shorter distance to the wintering grounds in the southern part of Europe/North Africa or the British Isles, although others migrate to sub-Saharan Africa. Based on ˃40 years of ringing data on blackcaps captured during autumn migration in the Southern Baltic region, we studied age- and sex-related correlations in wing pointedness and wing length of obligate blackcap migrants to understand the differences in migratory behavior of this species. Even though the recoveries of blackcaps were scarce, we reported some evidence that individuals which differ in migration distance differed also in wing length. We found that wing pointedness significantly increased with an increasing wing length of migrating birds, and adults had longer and more pointed wings than juvenile birds. This indicates stronger antipredator adaptation in juvenile blackcaps than selection on flight efficiency, which is particularly important during migration. Moreover, we documented more pronounced differences in wing length between adult and juvenile males and females. Such differences in wing length may enhance a faster speed of adult male blackcaps along the spring migration route and may be adaptive when taking into account climatic effects, which favor earlier arrival from migration to the breeding grounds.  相似文献   

3.
Nils Anthes 《Bird Study》2013,60(3):203-211
Capsule Evidence for earlier spring migration of Tringa sandpipers after warmer winters, but no clear pattern concerning autumn migration timing.

Aim To analyse the timing of migration of three Tringa sandpipers between 1966 and 2002 with respect to recent global warming on a local and a hemispheric scale.

Methods I analysed long-term migration timing variation in Greenshank Tringa nebularia, Spotted Redshank T. erythropus and Wood Sandpiper T. glareola at four Central European staging sites. Variation in passage onset, median and end per migration period was analysed using stepwise regression with respect to variation in (i) local abundance, residence time and age-dependent abundance as an estimate of breeding success and (ii) climate at the staging sites, snowmelt at the presumed central breeding area and the North Atlantic Oscillation (NAO).

Results All three species consistently showed an overall spring migration advance and autumn migration delay. Autumn passage timing varied with both climatic conditions at the breeding area and breeding success, while in 43% of all cases spring passage correlated with local and hemispheric climate variation.

Conclusion The distinction between population dynamic and climatic effects on timing of autumn migration requires separate data for local adult and juvenile passage or a larger sample of sites. In spring, the data strongly suggest a flexible response of migration timing to local weather conditions and the hemispheric variation of the North Atlantic Oscillation. This indicates that even long-distance migrants are able to adjust their overall migration pattern to fluctuating environmental conditions on a phenotypic basis.  相似文献   

4.
Declines in migratory species are a pressing concern worldwide, but the mechanisms underpinning these declines are not fully understood. We hypothesised that species with greater within‐population variability in migratory movements and destinations, here termed ‘migratory diversity’, might be more resilient to environmental change. To test this, we related map‐based metrics of migratory diversity to recent population trends for 340 European breeding birds. Species that occupy larger non‐breeding ranges relative to breeding, a characteristic we term ‘migratory dispersion’, were less likely to be declining than those with more restricted non‐breeding ranges. Species with partial migration strategies (i.e. overlapping breeding and non‐breeding ranges) were also less likely to be declining than full migrants or full residents, an effect that was independent of migration distance. Recent rates of advancement in Europe‐wide spring arrival date were greater for partial migrants than full migrants, suggesting that migratory diversity may also help facilitate species responses to climate change.  相似文献   

5.
Abstract

Migration is a biologically distinct and unique phenomenon that enables the birds to migrate twice-a-year between the breeding and wintering grounds. These movements are known as spring and autumn migration, respectively. Depending on their inherent programming, the migratory birds may fly during day or night or both. Different environmental factors such as, temperature, food, predator pressure and physiological demands of energy storage and expenditure, contribute to the pattern of migrations, day or nighttime. Since, most of them are nighttime migrants they have to make dramatic changes in their physiology and behavior to transform them from being diurnal to predominantly nocturnal. These changes result in different life history stages (LHSs) such as migration, reproduction and molt, in their annual cycle, which are regulated by endogenous circadian and circannual clocks. As a result, the birds start preparing well in advance for the approaching LHS. The present review focuses on behavioral strategies of a nocturnal migrant and understanding of the possible physiological responses to ensure successful migration.  相似文献   

6.
Migratory divides represent narrow zones of overlap between parapatric populations with distinct migration directions and, consequently, expected divergent non‐breeding distributions. The composition of the mixed population at a migratory divide and the corresponding non‐breeding ranges remain, however, unknown for many Palaearctic‐African migrants. Here, we used light‐level geolocation to track migration direction and non‐breeding grounds of Eurasian reed warblers Acrocephalus scirpaceus from three breeding populations across the species’ migratory divide. Moreover, by using feathers grown at non‐breeding grounds, we quantified stable isotope composition for individuals with known southwestern (SW) and southeastern (SE) migration directions. On a larger sample per population, we then assessed the proportions of SW‐ and SE‐migrating phenotypes in each of the three populations. All tracked reed warblers from Germany and two thirds of the birds tagged from the Czech population headed initially SW. Nevertheless, about one third of the birds from the Czech site migrated towards SE. No tracking data have been obtained for the Bulgarian population. The initial migration direction determined by geolocators was a strong predictor of the non‐breeding region, with SW migrants staying in west Africa and SE migrants in central Africa. Feather δ34S and δ15N values confirmed the predominance of SW migrants in the German population, the co‐occurrence of SW and SE migrants in the Czech population, and indicated a high (72%) proportion of SE migrants in the Bulgarian population. Thus, the combined approach of geolocator tracking and stable isotopic assignments provided clear evidence for the existence of a migratory divide in the southeast of central Europe and predicted non‐breeding range in central and central‐eastern Africa for the eastern population.  相似文献   

7.
1. The painted lady Vanessa cardui is a long‐range migratory butterfly that performs an annual multi‐generational round‐trip between Europe and Africa. Each autumn it returns to northwest (NW) Africa, presumably to track changes in resources that follow a predictable climate‐related spatio‐temporal pattern. 2. Data on the abundance of adult and immature stages in the Maghreb in 2014–2016 are used to test several hypotheses regarding the autumn migration of this species. 3. A strong seasonal migratory strategy was confirmed by the all but total absence of the species in NW Africa at the end of summer and the arrival of huge numbers migrants in October and November. Migration was timed to coincide with an increase in host plant availability but not with any increase in nectar sources. 4. Flower abundance was the main predictor of adult abundance in autumn, with Ditrichia viscosa, Verbesina encelioides, and Medicago sativa being key resources that attracted enormous numbers of butterflies to oases, ruderal habitats, and oueds. The distribution of immature stages was strongly predicted by host plant abundance (with traditional agriculture representing the most important breeding habitat) and latitude (most breeding occurred in the south of the region). Also, both adults and immature stages were more common inland than in coastal areas. 5. Changes in age structure of the adult population were also noted. The number of fresh adults slowly increased, indicating that butterflies did not return in a single wave and that the first offspring of the first returners were already emerging when some butterflies were still arriving.  相似文献   

8.
The central‐eastern European populations of sand martin and house martin have declined in the last decades. The drivers for this decline cannot be identified as long as the whereabouts of these long distance migrants remain unknown outside the breeding season. Ringing recoveries of sand martins from central‐eastern Europe are widely scattered in the Mediterranean basin and in Africa, suggesting various migration routes and a broad non‐breeding range. The European populations of house martins are assumed to be longitudinally separated across their non‐breeding range and thus narrow population‐specific non‐breeding areas are expected. By using geolocators, we identified for the first time, the migration routes and non‐breeding areas of sand martins (n = 4) and house martins (n = 5) breeding in central‐eastern Europe. In autumn, the Carpathian Bend and northern parts of the Balkan Peninsula serve as important pre‐migration areas for both species. All individuals crossed the Mediterranean Sea from Greece to Libya. Sand martins spent the non‐breeding season in northern Cameroon and the Lake Chad Basin, within less than a 700 km radius, while house martins were widely scattered in three distinct regions in central, eastern, and southern Africa. Thus, for both species, the expected strength of migratory connectivity could not be confirmed. House martins, but not sand martins, migrated about twice as fast in spring compared to autumn. The spring migration started with a net average speed of > 400 km d–1 for sand martins, and > 800 km d–1 for house martins. However, both species used several stopover sites for 0.5–4 d and were stationary for nearly half of their spring migration. Arrival at breeding grounds was mainly related to departure from the last sub‐Saharan non‐breeding site rather than distance, route, or stopovers. We assume a strong carry‐over effect on timing in spring.  相似文献   

9.
Adult passerines renew their flight feathers at least once every year. This complete moult occurs either in the breeding areas, just after breeding (summer moult), or, in some long-distance migratory species, at the non-breeding areas, after arrival to the southern wintering area at the end of autumn migration (winter moult). The aim of this study was to relate moult strategies with the DMD, the difference in median migration date, through Israel, between juveniles and adults. Our data on autumn migration timing in juveniles and adults was based on ringing data of 49,125 individuals belonging to 23 passerine species that breed in Europe and Western Asia and migrate through Israel. We found that DMD was associated with moult timing. In all species that perform a winter moult, adults preceded juveniles during autumn. Among migrants who perform a summer moult, we found evidence of both migration timing patterns: juveniles preceding adults or adults preceding juveniles. In addition, in summer moulters, we found a significant, positive correlation between mean breeding latitude and DMD. Although previous studies described that moult duration and extent can be affected by migration, we suggest that moult strategies affect both migration timing and migration strategy. These two moult strategies (summer or winter moult) also represent two unique migration strategies. Our findings highlight the evolutionary interplay between moult and migration strategies.  相似文献   

10.
Global climate change can cause pronounced changes in species? migratory behaviour. Numerous recent studies have demonstrated climate‐driven changes in migration distance and spring arrival date in waterbirds, but detailed studies based on long‐term records of individual recapture or re‐sighting events are scarce. Using re‐sighting data from 430 marked individuals spanning a 60‐year period (winters 1956/1957 to 2015/2016), we assessed patterns in migration distance and spring arrival date, wintering‐site fidelity and survival in the increasing central European breeding population of Greylag Geese Anser anser. We demonstrate a long‐term decrease in migration distance, changes in the wintering range caused by winter partial short‐stopping, and the earlier arrival of geese on their breeding grounds. Greylag Geese marked on central Europe moulting grounds have not been recorded wintering in Spain since 1986 or in Tunisia and Algeria since 2004. The migration distance and spring arrival of geese indicated an effect of temperature at the breeding site and values of the NAO index. Greylag Geese migrate shorter distances and arrive earlier in milder winters. We suggest that shifts in the migratory behaviour of Central European Greylag Geese are individual temperature‐dependent decisions to take advantage of wintering grounds becoming more favourable closer to their breeding grounds, allowing birds to acquire breeding territories earlier.  相似文献   

11.
Seasonal migration is a complex and variable behaviour with the potential to promote reproductive isolation. In Eurasian blackcaps (Sylvia atricapilla), a migratory divide in central Europe separating populations with southwest (SW) and southeast (SE) autumn routes may facilitate isolation, and individuals using new wintering areas in Britain show divergence from Mediterranean winterers. We tracked 100 blackcaps in the wild to characterize these strategies. Blackcaps to the west and east of the divide used predominantly SW and SE directions, respectively, but close to the contact zone many individuals took intermediate (S) routes. At 14.0° E, we documented a sharp transition from SW to SE migratory directions across only 27 (10–86) km, implying a strong selection gradient across the divide. Blackcaps wintering in Britain took northwesterly migration routes from continental European breeding grounds. They originated from a surprisingly extensive area, spanning 2000 km of the breeding range. British winterers bred in sympatry with SW-bound migrants but arrived 9.8 days earlier on the breeding grounds, suggesting some potential for assortative mating by timing. Overall, our data reveal complex variation in songbird migration and suggest that selection can maintain variation in migration direction across short distances while enabling the spread of a novel strategy across a wide range.  相似文献   

12.
Tracking migratory movement of small animals with variable migration patterns is difficult with standard mark–recapture methods or genetic analysis. We used stable hydrogen isotope (δD) measurements of wings from European red admirals Vanessa atalanta to study several aspects of this species’ migration. In the central part of southern Europe we found large differences in δD values between red admirals sampled in autumn and spring supporting the hypothesis that reproduction takes place in the Mediterranean region during winter. There was also an apparent influx to southern Europe in the spring of individuals with a more southerly origin, since many samples had higher δD values and similar to those expected from coastal areas of North Africa. We found a clear seasonal difference in the δD values of red admirals sampled in northern Europe. Spring migrants arriving in northern Europe generally had high δD values that indicated a southerly origin. In autumn, δD values suggested that red admirals were mostly from regions close to the sampling sites, but throughout the sampling period there were always individuals with δD values suggesting non‐local origins. The migration pattern of this species is supposedly highly variable and plastic. δD differences between individuals in the western part of Europe were generally small making migratory patterns difficult to interpret. However, butterflies from western Europe were apparently isolated from those from north‐eastern Europe, since δD values in the western region rarely corresponded to those of autumn migrants from the north‐east. Use of δD data for inferring butterfly migration in Europe is complex, but our study showed that this technique can be used to help uncover previously unknown aspects of red admiral migration.  相似文献   

13.
We examined breeding dispersal directions in the white stork (Ciconia ciconia), a migratory bird breeding in large parts of Europe. We asked whether and how the direction of the major spring/autumn migration route (from south-east to north-west and vice versa) affects breeding dispersal directions. Breeding dispersal directions were clearly nonrandomly distributed and were influenced by the major spring migration direction, leading to a bias toward south-eastward and north-westward breeding dispersal.  相似文献   

14.
For many bird species, recovery of ringed individuals remains the best source of information about their migrations. In this study, we analyzed the recoveries of ringed European Hoopoe (Upupa epops) and the Eurasian Wryneck (Jynx torquilla) from 1914 to 2005 from all European ringing schemes. The aim was to define general migration directions and to make inferences about the winter quarters, knowing that hardly any recoveries are available from sub-Saharan Africa. For the autumn migration, there is evidence of a migratory divide for the Hoopoe in Central Europe, at approximately 10–12°E. Autumn migration directions of Wrynecks gradually change from SW to SE depending on the longitude (west to east) of the ringing place. In both species, only a few recoveries were available indicating spring migration directions, but they showed similar migration axes as for autumn migration, and hence no evidence for loop-migration. Due to a paucity of recoveries on the African continent, we can make only limited inferences about wintering grounds: extrapolating migration directions are only indicative of the longitude of the wintering area. The directions of autumn migration indicate a typical pattern observed in European long-distance migrants: west-European Hoopoes and Wrynecks are likely to winter in western Africa, while central- and east-European birds probably winter more in the east. Due to the migratory divide, for the Hoopoe, this phenomenon is more pronounced.  相似文献   

15.
Variations in the geometry of the external flight apparatus of birds are beneficial for different behaviors. Long-distance flight is less costly with more pointed wings and shorter tails; however these traits decrease maneuverability at low speeds. Selection has led to interspecific differences in these and other flight apparatuses in relation to migration distance. If these principles are general, how are the external flight apparatus within a partially migratory bird species shaped in which individuals either migrate or stay at their breeding grounds? We resolved this question by comparing the wing pointedness and tail length (relative to wing length) of migrant and resident European blackbirds (Turdus merula) breeding in the same population. We predicted that migrant blackbirds would have more pointed wings and shorter tails than residents. Contrary to our predictions, there were no differences between migrants and residents in either measure. Our results indicate that morphological differences between migrants and residents in this partially migratory population may be constrained.  相似文献   

16.
Determining the implications of global climate change for highly mobile taxa such as migratory birds requires a perspective that is spatiotemporally comprehensive and ecologically relevant. Here, we document how passerine bird species that migrate within the Western Hemisphere (= 77) are associated with projected novel climates across the full annual cycle. Following expectations, highly novel climates occurred on tropical non‐breeding grounds and the least novel climates occurred on temperate breeding grounds. Contrary to expectations, highly novel climates also occurred within temperate regions during the transition from breeding to autumn migration. This outcome was caused by lower inter‐annual climatic variability occurring in combination with stronger warming projections. Thus, migrants are projected to encounter novel climates across the majority of their annual cycle, with a pronounced peak occurring when juveniles are leaving the nest and preparing to embark on their first migratory journey, which may adversely affect their chances of survival.  相似文献   

17.
Evidences for phenological changes in response to climate change are now numerous. One of the most documented changes has been the advance of spring arrival dates in migratory birds. However, the effects of climate change on subsequent events of the annual cycle remain poorly studied and understood. Moreover, the rare studies on autumn migration have mainly concerned passerines. Here, we investigated whether raptor species have changed their autumn migratory phenology during the past 30 years at one of the most important convergent points of western European migration routes in France, the Organbidexka pass, in the Western Pyrenees. Eight out of the 14 studied raptor species showed significant phenological shifts during 1981–2008. Long-distance migrants displayed stronger phenological responses than short-distance migrants, and advanced their mean passage dates significantly. As only some short-distance migrants were found to delay their autumn migration and as their trends in breeding and migrating numbers were not significantly negative, we were not able to show any possible settling process of raptor populations. Negative trends in numbers of migrating raptors were found to be related to weaker phenological responses. Further studies using data from other migration sites are necessary to investigate eventual changes in migration routes and possible settling process.  相似文献   

18.
We use widely supported handbook data on annual fecundity (clutch size × annual number of normal broods) to obtain indications related to the relative costs of long-distance migration compared to lower levels of migratoriness. Our examples show that the yearly production of eggs in congeneric passerines of similar size from temperate Europe is lower in long-distance migrants than in their less migratory relatives. The same tendency shows up in a more heterogeneous sample of non-passerines. In most passerines and in one among five pairs of non-passerines, this is due to longer breeding periods allowing a higher number of clutches in the less migratory species in spite of a tendency towards larger clutches in the passerine long-distance migrants. If both migratory types have only one clutch (as in one species pair of the passerines and in four non-passerine pairs) the trend towards larger clutches was reversed between the two types. The higher fecundity of the less migratory species suggests that wintering under harsh conditions may be more expensive than trans-Sahara migration among similar species. In keeping with this result, Ortolan and Rock Buntings (Emberiza hortulana and E. cia) breeding syntopically (and, in the 1980s, still in relatively stable populations) in an inner Alpine valley provide a well-studied example illustrating the high longevity of the migrants compared to the relatively short life span of the residents.  相似文献   

19.
Fat reserves influence the orientation of migrating songbirds at ecological barriers, such as expansive water crossings. Upon encountering a body of water, fat migrants usually cross the barrier exhibiting 'forward' migration in a seasonally appropriate direction. In contrast, lean birds often exhibit temporary 'reverse' orientation away from the water, possibly to lead them to suitable habitats for refueling. Most examples of reverse orientation are restricted to autumn migration and, in North America, are largely limited to transcontinental migrants prior to crossing the Gulf of Mexico. Little is known about the orientation of lean birds after crossing an ecological barrier or on the way to their breeding grounds. We examined the effect of fat stores on migratory orientation of both long- and short-distance migrants before and after a water crossing near their breeding grounds; Catharus thrushes (Swainson's and gray-cheeked thrushes, C. ustulatus and C. minimus ) and white-throated sparrows Zonotrichia albicollis were tested for orientation at the south shore of Lake Ontario during spring and autumn. During both spring and autumn, fat birds oriented in a seasonally appropriate, forward direction. Lean thrushes showed a tendency for reverse orientation upon encountering water in the spring and axial, shoreline orientation after crossing water in the autumn. Lean sparrows were not consistently oriented in any direction during either season. The responses of lean birds may be attributable to their stopover ecology and seasonally-dependent habitat quality.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号