首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Treatment of the 2,3-di-O-benzoate 1 with sodium boronhydride mainly afforded the 3-O-benzoate 2 accompanied with isomers 3a,b and fully deprotected product 4. Compound 2 was converted to 5, from which 8 was obtained. The 1-cyclobutanols 8 and 5 were successfully condensed with 6-chloropurine by Mitsunobu reaction to give 9 and 11, respectively. After partial deprotection, the cyclobutyl nucleosides 10 and 15 were subjected to fluorination using DAST to afford the fluoromethyl analogs 12 and 16 from which target compounds 14 and 17 were obtained in good yields, respectively.

  相似文献   

2.
A detailed doublet potential energy surface for the reaction of CH with CH3CCH is investigated at the B3LYP/6-311G(d,p) and G3B3 (single-point) levels. Various possible reaction pathways are probed. It is shown that the reaction is initiated by the addition of CH to the terminal C atom of CH3CCH, forming CH3CCHCH 1 (1a,1b). Starting from 1 (1a,1b), the most feasible pathway is the ring closure of 1a to CH3–cCCHCH 2 followed by dissociation to P 3 (CH3–cCCCH+H), or a 2,3 H shift in 1a to form CH3CHCCH 3 followed by C–H bond cleavage to form P 5 (CH2CHCCH+H), or a 1,2 H-shift in 1 (1a, 1b) to form CH3CCCH2 4 followed by C–H bond fission to form P 6 (CH2CCCH2+H). Much less competitively, 1 (1a,1b) can undergo 3,4 H shift to form CH2CHCHCH 5. Subsequently, 5 can undergo either C–H bond cleavage to form P 5 (CH2CHCCH+H) or C–C bond cleavage to generate P 7 (C2H2+C2H3). Our calculated results may represent the first mechanistic study of the CH + CH3CCH reaction, and may thus lead to a deeper understanding of the title reaction.  相似文献   

3.
The three oligosaccharide octyl-S-glycosides Man-α1,6-Man-α1,4-GlcNH2-α1,S-Octyl (19), Man-α1,6-(Gal-α1,3)Man-α1,4-GlcNH2-α1,S-Octyl (27) and Man-α1,2-Man-α1,6-(Gal-α1,3)Man-α1,4-GlcNH2-α1,S-Octyl (37), related to the GPI anchor of Trypanosoma brucei were prepared by a stepwise and block-wise approach from octyl 2-azido-2-deoxy-3,6-di-O-benzyl-1-thio-α-d-glucopyranoside (8) and octyl 2-O-benzoyl-4,6-O-(1,1,3,3-tetraisopropyl-1,3-disiloxane-1,3-diyl)-1-thio-α-d-mannopyransoside (9). Glucosamine derivative 8 was obtained from 1,3,4,6-tetra-O-acetyl-2-azido-2-desoxy-β-d-glucopyranose (1) in five steps. Mannoside 9 was converted into the corresponding imidate 12 and coupled with 8 to give disaccharide octyl-S-glycoside 13 which was further mannosylated to afford trisaccharide 19 upon deprotection. Likewise, mannoside 9 was galactosylated, converted into the corresponding imidate and coupled with 8 to give trisaccharide 25. Mannosylation of the latter afforded tetrasaccharide 27 upon deprotection. Condensation of 25 with disaccharide imidate 35 gave, upon deprotection of the intermediates, the corresponding pentasaccharide octyl-S-glycoside 37. Saccharides 19, 27 and 37 are suitable substrates for studying the enzymatic glycosylation pattern of the GPI anchor of T. brucei.  相似文献   

4.
Various antimicrobial constituents of camu-camu fruit were isolated. Acylphloroglucinol (compound 1) and rhodomyrtone (compound 2) were isolated from the peel of camu-camu (Myrciaria dubia) fruit, while two other acylphloroglucinols (compounds 3 and 4) were obtained from camu-camu seeds. The structures of the isolated compounds were characterized by spectrophotometric methods. Compounds 1 and 4 were confirmed to be new acylphloroglucinols with different substituents at the C7 or C9 position of 2, and were named myrciarone A and B, respectively. Compound 3 was determined to be isomyrtucommulone B. This is the first report of the isolation of 3 from a natural resource. The antimicrobial activities of compounds 1, 3, and 4 were similar to those of 2, and the minimum inhibitory concentrations were either similar to or lower than that of kanamycin. These results suggest that the peel and seeds of camu-camu fruit could be utilized for therapeutic applications.  相似文献   

5.
(±)-Muscone (3-methylcyclopentadecanone) (8) was synthesized from ethyl 6-methyl-8-oxopentadecanedioate (1) in a 31.9% over-all yield. Ethylene ketal (2) of 1 was cyclized to the acyloin mixture (3) by the acyloin condensation. Reduction of 3 gave 9,9-ethylenedioxy-7-methylcyclopentadecane-1,2-diol (4) which afforded 1,2-ditosyloxy derivative (5). By detosylation according to the Tipson-Cohen procedure, 5 was converted to 9,9-ethylenedioxy-7-methylcyclopentadec-1-ene (6) which was hydrogenated to 8.  相似文献   

6.
Owing to ever-increasing bacterial and fungal drug resistance, we attempted to develop novel antitubercular and antimicrobial agents. For this purpose, we developed some new fluorine-substituted chalcone analogs (3, 4, 9–15, and 20–23) using a structure–activity relationship approach. Target compounds were evaluated for their antitubercular efficacy against Mycobacterium tuberculosis H37Rv and antimicrobial activity against five common pathogenic bacterial and three common fungal strains. Three derivatives (3, 9, and 10) displayed significant antitubercular activity with IC50 values of ≤16,760. Compounds derived from trimethoxy substituent scaffolds with monofluoro substitution on the B ring of the chalcone structure exhibited superior inhibition activity compared to corresponding hydroxy analogs. In terms of antimicrobial activity, most compounds (3, 9, 1214, and 23) exhibited moderate to potent activity against the bacteria, and the antifungal activities of compounds 3, 13, 15, 20, and 22 were comparable to those of reference drugs ampicillin and fluconazole.  相似文献   

7.
During the formation of radical A (2) and its precursor (tris(2-deoxy-2-L-ascorbyl)amine, 1) by the reaction of dehydroascorbic acid (DHA) with amino acid, ascorbic acid (AsA) and the reduced red pigment (3) were newly identified, in addition to scorbamic acid (SCA) and the red pigment (4), as intermediate products. The addition of AsA to the DHA-amino acid reaction, as well as to the DHA-SCA reaction, greatly increased the formation of 3 and 1. The reaction of AsA with 4 gave rapidly 3, followed by the gradual production of 1. From these results, a reaction pathway is proposed that 3 formed by the reduction of 4 with AsA is a key intermediate and its condensation with DHA followed by reduction with AsA might produce 2 and 1.  相似文献   

8.
The importance and requirements for catalytic activation of sialyl donors are discussed, leading to the acid sensitive phosphite and phosphate moiety, respectively, as leaving group and nitriles as solvent. Therefore, from readily availableN-acetylneuraminic acid, derivative1 with phosphochloridites2a-f and Huenigs' base sialyl phosphites3a-f were prepared and isolated in high yields. Oxidation of3a, c withtert-butyl-hydroperoxide afforded the corresponding phosphates4a, c. As expected, phosphites3 could be activated in acetonitrile by catalytic amounts of TMSOTf; thus, from3a-e as donors and lactose derivatives8A, B as acceptors the ganglioside building blocks9A and9B, respectively, were obtained in good yields. The best results were obtained with diethyl phosphite derivative3a as sialyl donor, which exceeded by far the reults obtained with the corresponding phosphate derivative4a. Trisaccharide9B was transformed into known9A and into the fullyO-acetylated GM3-trisaccharide10.  相似文献   

9.
The polymer PEDOT+ (1 or 2) mediates a cyclodehydration reaction with alditols 3, 5, 7, 9, in hydrocarbon solvents, to give cyclic ethers 4, 6, 8, or 10, respectively, in high yield with a trivial isolation protocol. Polymers 1 or 2 also mediate the cyclodehydration of ketohexoses such as d-fructose, but not aldohexoses, to the important industrial intermediate 5-hydroxymethylfurfural (17), under milder conditions when compared to reactions mediated by mineral acids. A cascade reaction with ketohexoses is observed in toluene via cyclodehydration followed by Friedel–Crafts alkylation of the initially formed benzylic alcohol to give 16.  相似文献   

10.
By the action of ozone, sodium cyanoborohydride and the optically active benzylic amines 2, the 1-substituted cyclopentenes 1, 5 and 9 were converted to a diastereoisomeric mixture of 1,2-disubstituted piperidines (3, 6 and 10), respectively. Hydrogenation of these compounds and the following work-up yielded optically active 2-alkylpiperidines (4, up to 68% e.e.), pipecolic acid (7, 84%e.e.) and 2-(hydroxymethyl)piperidine (11, up to 85%e.e.). Chromatographic separation of the major isomers of 3b and 6 enabled optically pure coniine (4b) and pipecolic acid (7) to be prepared, respectively.  相似文献   

11.
Eighteen brominated sponge-derived metabolites and synthetic analogues were analyzed for antilarval settlement of Balanus improvisus. Only compounds exhibiting oxime substituents including bastadin-3 (4), −4 (1), −9 (2), and −16 (3), hemibastadin-1 (6), aplysamine-2 (5), and psammaplin A (10) turned out to inhibit larval settling at 1 to 10 μM. Analogues of hemibastadin-1 (6) were synthesized and tested for structure activity studies. Debromohemibastadin-1 (8) inhibited settling of B. improvisus, albeit at lower concentrations than hemibastadin-1 (6). Both 6 and 8 also induced cyprid mortality. 5,5′-dibromohemibastadin-1 (7) proved to be nontoxic, but settlement inhibition was observed at 10 μM. Tyrosinyltyramine (9), lacking the oxime function, was not antifouling active and was non-toxic at 100 μM. Hemibastadin-1 (6) and the synthetic products showed no general toxicity when tested against brine shrimp larvae. In contrast to the lipophilic psammaplin A (10), the hydrophilic sulfated psammaplin A derivative (11) showed no antifouling activity even though it contains an oxime group. We therefore hypothesize that the compound needs to cross membranes (probably by diffusion) and that the target for psammaplin A lies intracellularly.  相似文献   

12.
Enantiomeric cyclopropavir phosphates (+)-9 and (?)-9 were synthesized and investigated as substrates for GMP kinase. N2-Isobutyryl-di-O-acetylcyclopropavir (11) was converted to (+)-monoacetate 12 using hydrolysis catalyzed by porcine liver esterase. Phosphorylation via phosphite 13 gave after deacylation, phosphate (+)-9. Acid-catalyzed tetrahydropyranylation of (+)-monoacetate 12 gave, after deacylation, tetrahydropyranyl derivative 14. Phosphorylation via phosphite 15 furnished, after deprotection, enantiomeric phosphate (-)-9. Racemic diphosphate 16 was also synthesized. The phosphate (+)-9 is a relatively good substrate for GMP kinase with a KM value of 57 μM that is similar to that of the natural substrates GMP (61 μM) and dGMP (82 μM). In contrast, the enantiomer (?)-9 is not a good substrate (KM 1200 μM) indicating a significant enantioselectivity for the GMP kinase catalyzed reaction of monophosphate to diphosphate.  相似文献   

13.
The product of the bglG gene of Escherichia coli was among the first bacterial antiterminators to be identified and characterized. Since the elucidation ten years ago of its role in the regulation of the bgl operon of E. coli,a large number of homologies have been discovered in both Gram-positive and Gram-negative bacteria. Often the homologues of BglG in other organisms are also involved in regulating β-glucoside utilization. Surprisingly, in many cases, they mediate antitermination to regulate a variety of other catabolic functions. Because of the high degree of conservation of the cis-acting regulatory elements, antiterminators from one organism can function in another. Generally the antiterminator protein itself is negatively regulated by phosphorylation by a component of the phosphotransferase system. This family of proteins thus represents a highly evolved regulatory system that is conserved across evolutionarily distant genuses.  相似文献   

14.
A new series of 12 N4-substituted isatin-3-thiosemicarbazones 2a-l has been synthesized, characterized and screened for in vitro cytotoxic, phytotoxic and urease inhibitory effects. All the compounds proved to be active in the brine shrimp bioassay; 2a, 2b, 2d, 2f and 2h-l exhibited a high degree of cytotoxic activity (LD50 = 1.10 × 10? 5 M–3.10 × 10? 5 M). In urease-inhibition assay, compounds 2a, 2b, 2e, 2f, 2h-j and 2l proved to be potent inhibitors displaying relatively much greater inhibition of the enzyme with IC50 values ranging from 20.6 μM to 50.6 μM. Amongst these, 2a and 2f were found to be the most potent ones exhibiting pronounced inhibition with IC50 value 20.6 μM. All the synthetic compounds showed weak to moderate (10–40%) phytotoxicity at the highest tested concentration (500 μg/mL) indicating their usefulness as inhibitors of soil ureases.  相似文献   

15.
Regioselective alkylation of 2-thiouracils 1a–c and 4-thiouracils 7a,b with 2,3-O-isopropylidene-2,3-dihydroxypropyl chloride (2) afforded 2-{[(2,2-Dimethyl-1,3-dioxolan-4-yl) methyl]thio}pyrimidin-4(1H)-ones 3a–c and 4-{[(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl]thio} pyrimidin-2(1H)-ones 8a,b, respectively. Further alkylation with 2 and/or 2,3-O-isopropylidine-1-O-(4-toluenesulfonyl)-glycerol (4) gave the acyclo N-nucleosides 5a–c and 9a,b whose deprotection afforded 6a–c and 10a,b. 2-(Methylthio)pyrimidin-4(1H)-ones 11a–c and 4-(methylthio)pyrimidin-2(1H)-ones 14a,b were treated with 2 and/or 4 to give 12a–c and 15a,b which were deprotected to give 13a–c and 16a,b. Pyrimidine-2,4(1H,3H)-dithiones 17a–c were treated with two equivalents of 2 to give 2,4-bis{[(2,2-dimethyl-1,3-dioxolan-4-yl)methyl]thio}pyrimidines 18a–c. Deprotection of compounds 18a–c gave 2,4-bis[(2,3-dihydroxypropyl)thio]pyrimidines 19a-c. The activity of the deprotected nucleosides against Hepatitis B virus was evaluated and showed moderate inhibition activity against HBV with mild cytotoxicity.  相似文献   

16.
Cholinesterases (ChEs) are enzymes that break down neurotransmitters associated with cognitive function and memory. We isolated cinnamic acids (1 and 2), indolinones (3 and 4), and cycloartane triterpenoid derivatives (519) from the roots of Cimicifuga dahurica (Turcz.) Maxim. by chromatography. These compounds were evaluated for their inhibitory activity toward ChEs. Compound 1 was determined to have an IC50 value of 16.7?±?1.9?μM, and to act as a competitive inhibitor of acetylcholinesterase (AChE). Compounds 3, 4 and 14 were found to be noncompetitive with IC50 values of 13.8?±?1.5 and 6.5?±?2.5?μM, and competitive with an IC50 value of 22.6?±?0.4?μM, respectively, against butyrylcholinesterase (BuChE). Our molecular simulation suggested each key amino acid, Tyr337 of AChE and Asn228 of BuChE, which were corresponded with potential inhibitors 1, and 3 and 4, respectively. Compounds 1 and 4 were revealed to be promising compounds for inhibition of AChEs and BuChEs, respectively.  相似文献   

17.
Abstract

Three isomers of 9-(4,6-O-benzylidene-3-deoxy-β-D-hexopyranosyl) adenines (2–4) were isolated. The manno isomer 2 could be isomerized to the gluco isomer 3. The manno (2) and galacto isomer (4) were deprotected to 5 and 7, respectively. Michael addition of some organic amines and thiolates to the nitroolefin intermediate (8) gave the corresponding 2-(substituted)-3-nitro-glucopyranosides (9a-h). Compounds 9a,c,h were deprotected to 10a,c,h. Sodium azide with 8 gave the triazolo nucleoside 11, which was deprotected to 12. 2-Deoxy-3-nitro analogue 14 was also obtained.

  相似文献   

18.
Li Y  Zhou Y  Ma Y  Li X 《Carbohydrate research》2011,(13):1714-1720
GlmM and GlmU are key enzymes in the biosynthesis of UDP-N-acetyl-d-glucosamine (UDP-GlcNAc), an essential precursor of peptidoglycan and the rhamnose–GlcNAc linker region in the mycobacterial cell wall. These enzymes are involved in the conversion of two important precursors of UDP-GlcNAc, glucosamine-6-phosphate (GlcN-6-P) and glucosamine-1-phosphate (GlcN-1-P). GlmM converts GlcN-6-P to GlcN-1-P, GlmU is a bifunctional enzyme, whereby GlmU converts GlcN-1-P to GlcNAc-1-P and then catalyzes the formation of UDP-GlcNAc from GlcNAc-1-P and uridine triphosphate. In the present study, methyl 2-amino-2-deoxyl-α-d-glucopyranoside 6-phosphate (), methyl 2-amino-2-deoxyl-β-d-glucopyranoside 6-phosphate (), two analogs of GlcN-6-P, were synthesized as GlmM inhibitors; 2-azido-2-deoxy-α-d-glucopyranosyl phosphate (2) and 2-amino-2,3-dideoxy-3-fluoro-α-d-glucopyranosyl phosphate (3), analogs of GlcN-1-P, were synthesized firstly as GlmU inhibitors. Compounds , , 2, and 3 as possible inhibitors of mycobacterial GlmM and GlmU are reported herein. Compound 3 showed promising inhibitory activities against GlmU, whereas , and 2 were inactive against GlmM and GlmU even at high concentrations.  相似文献   

19.
The mechanism of resistance toB toxicity in barley and wheat was studied in a solution culture experiment using several cultivars displaying a large range of sensitivity to excessB supply. Plants were cultured for 35 d atB concentrations ranging from normal to excessive (15 to 5000 M, respectively) then examined for dry matter production and theB distribution between roots and shoots.In both species, increasedB supply was accompanied by increased tissueB concentrations, development ofB toxicity symptoms and depressed growth. At each level ofB supply, however, resistant cultivars accumulated considerably lessB than did sensitive cultivars, in both roots and shoots. Even at the lowestB supply, at which noB toxicity symptoms developed and growth was not affected, resistant cultivars maintained relatively low tissueB concentrations. No cultivar displayed an ability to tolerate high tissueB concentrations.These results indicate that sensitivity toB toxicity in barley and wheat is governed by the ability of cultivars to excludeB. If theB concentrations of tissues is used to indicate resistance toB toxicity, then cultivars have the same ranking whether cultured at a normal or excessB supply.  相似文献   

20.
2-Methoxytetrahydropyran (1), -thiopyran (2) and -selenopyran (3) have been chosen as model compounds to investigate the origin of the anomeric effect (AE). The impacts of the hyperconjugation, electrostatic and steric interactions on the conformational preferences of compounds 13 have been analysed by means of complete basis set-4, hybrid-density functional theory (B3LYP/6-311+G**) based methods and natural bond orbital (NBO) interpretation. Both levels of theory showed that the axial conformations of compounds 13 are more stable than their equatorial conformations. The Gibbs free energy difference (G eqG ax) values (i.e. ΔG eq–ax) between the axial and equatorial conformations increase from compound 1 to compound 2 but decrease from compound 2 to compound 3. Based on the NBO results obtained, the AE associated with the electron delocalisation [i.e. Σ(endo-AEeq + exo-AEeq) ? Σ(endo-AEax + exo-AEax)] increase slightly from compound 1 to compound 2 but decrease from compound 2 to compound 3. Similar trend is also observed for the differences between the calculated total steric exchange energy values [i.e. Δ(TSEE)eq–ax]. On the other hand, the calculated differences between the dipole moment values of the axial and equatorial conformations [i.e. Δ(μeq–μax)] decrease from compound 1 to compound 3. These findings led to the proposal that the AE associated with the electron delocalisation (the hyperconjugation effect) is more significant for the explanation of the conformational preferences of compounds 13 than the electrostatic model. The correlations between the AE associated with the electron delocalisation, bond orders, TSEE, ΔG eq–ax, dipole–dipole interactions, structural parameters and conformational behaviours of compounds 13 have been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号