首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PhoX homology (PX) domain-containing proteins play critical roles in vesicular trafficking, protein sorting, and lipid modification in eukaryotic cells. Several proteins with PX domains contain an associated domain termed PXA (PX-associated). Although PXA domain-containing proteins are required for some important cellular processes, the function of the PXA domain is unknown. We identified three PXA domain-containing proteins in Schizosaccharomyces pombe. S. pombe Pxa1p (SPAC5D6.07c) contained only the PXA domain, not the PX domain. To elucidate the role of the PXA domain in eukaryotic cells, we constructed and characterized a disruption mutant, pxa1. The pxa1 disruptant contained enlarged vacuoles and exhibited mislocalization of vacuolar carboxypeptidase Y (CPY). The conversion rate from pro- to mature-CPY was greatly impaired in pxa1 cells, and fluorescence microscopy indicated that a sorting receptor for CPY, Vps10p, mislocalized to the vacuolar membrane. The mutants were also deficient in vacuolar sorting of a multivesicular body (MVB) marker, a ubiquitin–GFP–carboxypeptidase S (Ub–GFP–CPS) fusion protein. Taken together, these results indicate that Pxa1 protein is required for normal vacuole function and morphology in S. pombe.  相似文献   

2.
With the rapid progress in developing hybrid perovskite solar cells, the allure of current density–voltage ( JV) hysteresis has attracted quite a lot of interest in the research community. It requires feasible approaches that further deepen the fundamental understanding of device physics in specific device architecture in order to solve this problem eventually. Here, perovskite solar cells configured with different counter electrodes are systematically investigated with the focus on charge accumulation within the devices responsible for JV hysteresis. The results indicate that JV hysteresis is affected by charge accumulation which can be modulated by carrier extraction efficiency of the electrodes. Through a rationally induced interfacial dipole, the devices have shown improvement in carrier extraction, which thus reduces JV hysteresis significantly. It provides solid evidence for the proposition that interface charge plays an important role in JV hysteresis, and demonstrates an applicable strategy that effectively alleviates JV hysteresis in perovskite solar cells.  相似文献   

3.
To penetrate soil, a root requires pressure both to expand the cavity it is to occupy, σn, and to overcome root–soil friction, σf. Difficulties in estimating these two pressures independently have limited our ability to estimate the coefficient of soil–root friction, μsr. We used a rotated penetrometer probe, of similar dimensions to a root, and for the first time entering the soil at a similar rate to a root tip, to estimate σn. Separately we measured root penetration resistance (PR) Qr. Root PR was between two to four times σn. We estimated that the coefficient of root–soil friction (μsr) was 0.21–0.26, based on the geometry of the root tip. This is slightly larger than the 0.05–0.15 characteristic of boundary lubricants. Scanning electron microscopy showed that turgid border cells lined the root channel, supporting our hypothesis that the lubricant consisted of mucilage sandwiched between border cells and the surface of the root cap and epidermis. This cell–cell lubrication greatly decreased the friction that would otherwise be experienced had the surface of the root proper slid directly past unlubricated soil particles. Because root–soil friction can be a substantial component of root PR, successful manipulation of friction represents a promising opportunity for improving plant performance.  相似文献   

4.
The proboscis of Hubrechtella juliae was examined using transmission electron microscopy, scanning electron microscopy, and confocal laser scanning microscopy to reveal more features of basal pilidiophoran nemerteans for morphological and phylogenetic analysis. The proboscis glandular epithelium consists of sensory cells and four types of gland cells (granular, bacillary, mucoid, and pseudocnidae‐containing cells) that are not associated with any glandular systems; rod‐shaped pseudocnidae are 15–25 μm in length; the central cilium of the sensory cells is enclosed by two rings of microvilli. The nervous plexus lies in the basal part of glandular epithelium and includes 26–33 (11–12 in juvenile) irregularly anastomosing nerve trunks. The proboscis musculature includes four layers: endothelial circular, inner diagonal, longitudinal, and outer diagonal; inner and outer diagonal muscles consist of noncrossing fibers; in juvenile specimen, the proboscis longitudinal musculature is divided into 7–8 bands. The endothelium consists of apically situated support cells with rudimentary cilia and subapical myocytes. Unique features of Hubrechtella's proboscis include: acentric filaments of the pseudocnidae; absence of tonofilament‐containing support cells; two rings of microvilli around the central cilium of sensory cells; the occurrence of subendothelial diagonal muscles and the lack of an outer diagonal musculature (both states were known only in Baseodiscus species). The significance of these characters for nemertean taxonomy and phylogeny is discussed. The proboscis musculature in H. juliae and most heteronemerteans is bilaterally arranged, which can be considered a possible synapomorphy of Hubrechtellidae + Heteronemertea (= Pilidiophora). J. Morphol. 274:1397–1414, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
We have used the technique of somatic cell hybridization to study the regulation of the neutral amino acid transport system L in Chinese hamster ovary (CHO) cells. The cell line CHO–;tsO25C1 has a temperature-sinsitive mutationin leucyl-tRNA synthetase. At the nonpermissive temperature of 39oC, CHO–tsO25C1 cells are unable to charge leucyl-tRNA and behave as though starved for leucine by increasing their system L transport activity two- to fourfold. From the temperature-sensitive cell line, we have isolated a regulatory mutant cell, CHO–C11B6, that has constitutively elevated system L transport activity. The CHO–C11B6 cell line retains the temperature-sensitive leucyl-tRNA synthetase mutation, but growth of this cell line is temperature resistant because its increased system L transport activity leads of increased intracellular leucine levels, which compensate for the defective. Hybrid cells formed by fusion of the temperature-sensitive CHO–;tsO25C1 cells the temperature-resistant CHO–C11B6 cells show temperature-sensitive growth and temperature-dependent regulation of leucine transport activity. These data suggest that the system L activity of CHO cells is regulated by a dominant-acting element that is defective or absent in the regulatory mutant CHO–C11B6 cell line.  相似文献   

6.
We describe a modification and post‐functionalization technique for a donor–acceptor–donor type monomer; 6‐(4,7‐bis(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)‐2H‐benzo[d][1,2, 3]triazol‐2‐yl)hexan‐1‐amine. Folic acid was attached to the fluorescent structure. The conjugation was confirmed via NMR and Fourier transform infrared analyses. Cytotoxicity was investigated and the comparison of association of targeted monomeric structures in tumor cells was monitored via fluorescence microscopy. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:952–959, 2014  相似文献   

7.
Gene therapy, including small interfering RNA (siRNA) technology, is one of the leading strategies that help to improve the outcomes of the current therapeutic systems against HIV-1 infection. The successful therapeutic application of siRNAs requires their safe and efficient delivery to specific cells. Here, we introduce a superparamagnetic iron oxide nanoparticle (SPION) for delivering siRNA against HIV-1 nef (anti-nef siRNA) into two cell lines, HEK293 and macrophage RAW 264.7. SPIONs were coated with trimethyl chitosan (TMC), and thereafter, different concentrations of SPION–TMC were coated with different ratios of a carboxymethyl dextran (CMD) to modify the physicochemical properties and improve the biological properties of the nanocarriers. The nanoparticles exhibited a spherical shape with an average size of 112 nm. The obtained results showed that the designed delivery route enhanced the uptake of siRNA into both HEK293 and RAW 264.7 cells compared with control groups. Moreover, CMD–TMC–SPIONs containing anti-nef siRNA significantly reduced the expression of HIV-1 nef in HEK293 stable cells. The modified siRNA-loaded SPIONs also displayed no toxicity or apoptosis-inducing effects on the cells. The CMD–TMC–SPIONs are suggested as potential nanocarriers for siRNA delivery in gene therapy of HIV-1 infection.  相似文献   

8.
9.
The ciliated cells of the node of the mouse embryo contribute to the establishment of left–right patterning via generation of leftward laminar fluid flow and initiation of a left‐sided morphogen gradient. Here, we identify FOXJ1CreER2T mice in which expression of Cre recombinase is directed to ciliated node cells. The data demonstrate that foxj1 is expressed specifically in the node throughout the developmental window critical for left–right patterning. In transgenic embryos, Cre expression is detected by immunohistochemistry in ciliated cells of the node. Rosa26R reporter mice, in which expression of lacZ is activated only after Cre‐mediated recombination, demonstrate strong and uniform labeling at the node when crossed with FOXJ1CreER2T mice. Cell labeling occurred as early as 0‐ to 2‐somite stages, specifically within cells of the node, and recombination was highly efficient in response to tamoxifen. FOXJ1CreER2T transgenic mice represent a new genetic tool for the analysis of node‐specific gene expression and will also be valuable in the study of node cell lineage and temporal cell fate mapping. genesis 47:132–136, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Further selection for a better strain capable of producing D(?)-α-aminobenzylpenicillin (APc) from 6-aminopenicillanic acid (6–APA) was carried out. Pseudomonas melanogenum KY 3987 was consequently selected as a new strain possessing an APc-specific penicillin acylase.

The acylase could synthesize APc in good yields from 6–APA and phenylglycine ester and form 6–APA only from APc, not from other common penicillins. Since the Pseudomonas acylase was found incapable of forming penicillin G (Pc–G) from 6–APA and phenylacetic acid, in contrast with E. coli and Kluyvera citrophila enzymes, the enzymatic hydrolysate of Pc–G, for example by K. citrophila cells, which contained 6–APA and phenylacetate, became employed as a source of 6–APA instead of purified 6–APA to synthesize APc by the cells of P. melanogenum.  相似文献   

11.
The presence of immunoglobulin–containing cells in the epidermis of rainbow trout was traced, using post–embedding immunocytochemical techniques, in resin–embedded fragments of skin. Light microscopy observations (for which the PAP method was used)revealed the presence of immunoglobulin–containing cells in the epidermis, although no accurate identification was possible. Electron microscopy observations (employing gold–labelling) showed that, in spite of the poor preservation thought unavoidable to protect the antigenicity of the immunoglobulins, the positive cells were either lymphocyte–like cells or mucous cells. Anti–Vibrio anguillarium antibody was detected in the epidermal mucous cells of rainbow trout juveniles vaccinated by immersion, using an immunoenzymatic sandwich technique, modified for resin–embedded tissue. The possibility of the existence of a local immune system is discussed, considering the involvement of the mucous cells.  相似文献   

12.
Abstract— Cultured glial (C-6) and neuronal (neuroblastoma) cells were utilized to define the role of thiamine in the regulation of fatty acid and cholesterol biosynthesis. Glial cells subjected to thiamine deficiency exhibited rates of fatty acid synthesis that were only 13% of the rates in thiamine-supple-mented cells. The decrease in fatty acid synthetic rate was accompanied by a comparable decrease in the activities of fatty acid synthetase and acetyl-CoA carboxylase, the two critical enzymes in the pathway. Immunochemical techniques demonstrated that the decrease in activity of fatty acid synthetase reflected a decrease in enzyme content and that this change in content was caused by a decrease in enzyme synthesis. The disturbance of fatty acid synthesis was exquisitely sensitive to thiamine–i.e. marked improvement was evident within hours of replenishment with only 0.01 μ/ml of thiamine. Total recovery occurred in 1–2 days. Thiamine-deficient glia also exhibited reduced rates of cholesterol biosynthesis, i.e. 60% of the rates in thiamine-supplemented cells. This effect was accompanied by a comparable reduction in activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, the rate-limiting step in cholesterol biosynthesis. Unlike the glial cells, the neuronal cells exhibited either no or only a slight reduction in lipid synthesis under similar conditions of thiamine deficiency. The data have important implications for the genesis of the neuropathology in states of altered thiamine homeostasis and for the mechanisms of regulation of lipid synthesis.  相似文献   

13.
Abstract Recordings were made from the pheromone-sensitive receptor cells within antennal hairs of normal and mutant male cabbage loopers, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), using a cut-sensillum technique. From sampling 136 sensilla on normal males and 123 on mutant males, cells excited by pairs of behaviourally redundant minor pheromone components were discovered: Z9–14: Ac was found to be replaceable with 12: Ac and 11–12: Ac was found to be replaceable with Z5–12: Ac. These cells were not found during previous neurophysiological investigations, but explain most of the associations between mutually replaceable (redundant) pheromone components which had been demonstrated previously to be behaviourally redundant in wind tunnel studies. Our results indicate that the mutant gene in T.ni that affects pheromone production does not affect pheromone receptors in males. Using both AC- and DC-coupled recordings from receptor cells, we found that a single minor component could apparently hyperpolarize one cell while depolarizing another cell within the same sensillum, suggesting that noise reduction and other complex signal processing by receptor cells may contribute to odour processing in the macroglomerulus of the antennal lobe.  相似文献   

14.
In this study, live cells of Brevibacterium flavum were immobilized for the production of glutamic acid. The reason for such a choice was that glutamic acid fermentation is an extensively studied fermentation and one which requires the viability of entire cellular faculties for the acid production. Brevibacterium flavum was chosen because it is an industrially used bacterium, and is very potent via a vis glutamic acid production. Studies were performed to find aeration and agitation conditions for optimal growth and glutamic acid productivity. Experiments were also done to find the optimum harvesting time. The cell activity peaks during the run of fermentation, and the time at which the peak occurs, was found. Conventional methods for immobilizing the cells on collagen were found to be lacking. The pH and drying were the two main reasons for loss of viability of the cells; the latter being more important. A modified immobilization procedure has been devised, which can immobilize live cells at any given pH and ionic strength, in contrast to the conventional method which requires the pH to be above 11 or below 3. This new method involves dialysis of collagen in suitable dialysis bags against water at pH7 (or buffer at any desired pH). The dialysed collagen blended at 20,000 rpm, resulted in a very smooth dispersion, unnoticeably different from collagen dispersion prepared at pH 11. The dispersed collagen was then cast and dried at an elevated temperature, and high air flow rate over the cast membrane, decreasing the time of drying from 6–8 hr ( in the conventional method) to 1.5–2 hr. The membrane has been tested for glutamic acid producing capabilities in a column reactor with the membrane spirally wound. The reactor has been operated under continuous conditions for 5–10 days with stable activities.  相似文献   

15.
Asymmetric cell division is important for regulating cell proliferation and fate determination during stomatal development in plants. Although genes that control asymmetric division and cell differentiation in stomatal development have been reported, regulators controlling the process from asymmetric division to cell differentiation remain poorly understood. Here, we report a weak allele (fk–J3158) of the Arabidopsis sterol C14 reductase gene FACKEL (FK) that shows clusters of small cells and stomata in leaf epidermis, a common phenomenon that is often seen in mutants defective in stomatal asymmetric division. Interestingly, the physical asymmetry of these divisions appeared to be intact in fk mutants, but the cell‐fate asymmetry was greatly disturbed, suggesting that the FK pathway links these two crucial events in the process of asymmetric division. Sterol profile analysis revealed that the fk–J3158 mutation blocked downstream sterol production. Further investigation indicated that cyclopropylsterol isomerase1 (cpi1), sterol 14α–demethylase (cyp51A2) and hydra1 (hyd1) mutants, corresponding to enzymes in the same branch of the sterol biosynthetic pathway, displayed defective stomatal development phenotypes, similar to those observed for fk. Fenpropimorph, an inhibitor of the FK sterol C14 reductase in Arabidopsis, also caused these abnormal small‐cell and stomata phenotypes in wild‐type leaves. Genetic experiments demonstrated that sterol biosynthesis is required for correct stomatal patterning, probably through an additional signaling pathway that has yet to be defined. Detailed analyses of time‐lapse cell division patterns, stomatal precursor cell division markers and DNA ploidy suggest that sterols are required to properly restrict cell proliferation, asymmetric fate specification, cell‐fate commitment and maintenance in the stomatal lineage cells. These events occur after physical asymmetric division of stomatal precursor cells.  相似文献   

16.
Aims: The aim of the work is to exploit the yeast pheromone system for controlled cell–cell communication and as an amplification circuit in technical applications, e.g. biosensors or sensor‐actor systems. Methods and Results: As a proof of principle, we developed recombinant Saccharomyces cerevisiae cells that express enhanced green fluorescent protein (EGFP) in response to different concentrations of the alpha (α)‐factor mating pheromone. A respective reporter construct allowing the pheromone‐driven expression of EGFP was transformed into the S. cerevisiae strains BY4741 and BY4741 bar1Δ. Upon addition of synthetic α‐factor, the fluorescence strongly increases after 4 h. Furthermore, cells with constitutive α‐factor expression were able to induce the expression of EGFP in co‐cultivation with sensor cells only if both cell types were deleted for the gene BAR1, encoding α‐factor protease. For technical applications, the immobilization of functionalized cells may be beneficial. We show that pheromone‐induced expression of EGFP is effective in alginate‐immobilized cells. Conclusions: Based on S. cerevisiaeα‐factor, we developed a controlled cell–cell communication system and amplification circuit for pheromone‐driven expression of a target protein. The system is effective both in suspension and after cell immobilization. Significance and Impact of the Study: The developed set of recombinant yeast strains is the basis to apply the yeast pheromone system for signal production and amplification in biosensors or sensor‐actor systems.  相似文献   

17.
Alternate changes of specific surface antigen(s) (S antigen) were examined in transformed and tumor cells induced by human adenovirus type 12. All of the hamster and mouse cells transformed in vitro showed ring-form membrane fluorescence staining by anti-S antigen rabbit sera, whereas tumor cells, either induced by the virus in vivo or produced by inoculation with the S(+)-transformed cells, did not show any fluorescence. When the S(–) tumor cells were serially subcultured in vitro, all of them converted to S(+) cells, although more than ten subcultures were necessary. For the S(+) cells to form tumors in hamsters about ten times as many cells were necessary as the S(–) cells. This difference became greater when tumor formation was tested in preimmunized hamsters, while little, if any, when tested in X-irradiated hamsters. In addition, immunogenicity of the S(+) cells was suggested to be higher than that of the S(–) cells. These findings indicate that the S(+) cells are more immunosensitive and immunogenic than the S(–) cells, and that in vivo conversion from S(+) to S(–) may be due to selection of S(–)-mutant cells. In vitro conversion from S(–) to S(+) was also suggested to be due to the appearance of S(+)-mutant cells.  相似文献   

18.
Detritiation of contaminated water is an essential part of nuclear power production. Most promising methods used for this process are based on catalyzed hydrogen isotope exchange reactions. It is proposed herein to replace the platinum catalysts which are currently used in industry with immobilized hydrogenase. Whole bacterial cells of Alcaligenes eutrophus immobilized in calcium alginate or κ-carrageenan gels were found to be efficient catalysts of the reaction of hydrogen–tritium (H–T) exchange in both a batch tank reactor and in a column. The dependence of the reaction rate on the amount of immobilized cells in the system, and on the concentration of the cells in the matrix, indicate that enzymatic H–T exchange is not controlled by diffusion. Immobilized A. eutrophus cells are enzymatically active over a wide range of pH, with a broad maximum from pH 6.0 to 8.0, and are quite resistant to inhibitors of hydrogenases such as O2 and CO. Upon increasing the temperature from 4 to 37°C, the rate of hydrogenase-catalyzed H–T exchange increases by a factor of 5. From the standpoint of catalytic efficiency, 1 g of PtO2 is approximately equivalent to 10 g of cells (wet weight). In contrast of platinum-based catalysts, bacterial hydrogenases (1) are potentially inexpensive; (2) can be readily available in bulk quantities; (3) are maximally active in liquid water.  相似文献   

19.
Alcohol dehydrogenase (ADH) and amine dehydrogenase (AmDH)-catalyzed one-pot cascade conversion of an alcohol to an amine provides a simple preparation of chiral amines. To enhance the cofactor recycling in this reaction, we report a new concept of coupling whole-cells with the cell-free system to enable separated intracellular and extracellular cofactor regeneration and recycling. This was demonstrated by the respective biotransformation of racemic 4-phenyl-2-butanol 1a and 1-phenyl-2-propanol 1b to (R)-4-phenylbutan-2-amine 3a and (R)-1-phenylpropan-2-amine 3b . Escherichia coli cells expressing S-enantioselective CpsADH, R-enantioselective PfODH, and NADH oxidase (NOX) was developed to oxidize racemic alcohols 1a–b to ketones 2a–b with full conversion via intracellular NAD+ recycling. AmDH and glucose dehydrogenase (GDH) were used to convert ketones 2a–b to amines (R)- 3a–b with 89–94% conversion and 891–943 times recycling of NADH. Combining the cells and enzymes for the cascade transformation of racemic alcohols 1a–b gave 70% and 48% conversion to the amines (R)- 3a and (R)-3 b in 99% ee, with a total turnover number (TTN) of 350 and 240 for NADH recycling, respectively. Improved results were obtained by using the E. coli cells with immobilized AmDH and GDH: (R)- 3a was produced in 99% ee with 71–84% conversion and a TTN of 1410-1260 for NADH recycling, the highest value so far for the ADH–AmDH-catalyzed cascade conversion of alcohols to amines. The concept might be generally applicable to this type of reactions.  相似文献   

20.
A possible reason for the complexity of the signals produced by bioluminescent biosensors might be self‐organization of the cells. In order to verify this possibility, bioluminescence images of cultures of lux gene reporter Escherichia coli were recorded for several hours after being placed into 8–10 mm diameter cylindrical containers. It was found that luminous cells distribute near the three‐phase contact line, forming irregular azimuthal waves. As we show, space–time plots of quasi‐one‐dimensional bioluminescence measured along the contact line can be simulated by reaction–diffusion–chemotaxis equations, in which the reaction term for the cells is a logistic (autocatalytic) growth function. It was found that the growth rate of the luminous cells (~0.02 s?1) is >100 times higher than the growth rate of E. coli. We provide an explanation for this result by assuming that E. coli exhibits considerable respiratory flexibility (the ability of oxygen‐induced switching from one metabolic pathway to another). According to the simple two‐state model presented here, the number of oxic (luminous) cells grows at the expense of anoxic (dark) cells, whereas the total number of (oxic and anoxic) cells remains unchanged. It is conjectured that the corresponding reaction–diffusion–chemotaxis model for bioluminescence pattern formation can be considered as a model for the energy‐taxis and metabolic self‐organization in the population of the metabolically flexible bacteria under hypoxic conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号