共查询到4条相似文献,搜索用时 0 毫秒
1.
2.
Indirect food web interactions affect predation of Tengmalm's Owls Aegolius funereus nests by Pine Martens Martes martes according to the alternative prey hypothesis 下载免费PDF全文
Although population cycles of rodents are geographically widespread and occur in a number of rodent species, higher‐order food web interactions mediated by predator–rodent dynamics have primarily been described from boreal and arctic biomes. During periods of low rodent abundance, predators may switch to alternative prey, which may affect other predators directly or indirectly. Using a long‐term dataset, we assessed the frequency of Pine Marten Martes martes predation on the nests of Tengmalm's Owl Aegolius funereus during periods of fluctuating rodent abundance in Central Europe. The number of nests predated by Pine Martens was positively correlated with the annual number of nests available. The probability of predation by Pine Martens on Tengmalm's Owl nests decreased with increasing spring abundance index of Apodemus mice, but was not related to the abundance index of Myodes and Microtus voles, pooled rodent abundance or age of the nestbox. Additionally, we found no relationship between the breeding frequency (i.e. the number of nesting attempts per nestboxes available) and an abundance index of Microtus and Myodes voles, Apodemus mice or overall rodent abundance. Our results demonstrate, for the first time in a temperate area, that during periods of low Apodemus mouse abundance, the switching response of an opportunistic mammalian predator can lead to indirect food web interactions through an increase in nest predation on a sympatric avian predator. 相似文献
3.
4.
Katie J. Stumpf Tad C. Theimer Mary Anne Mcleod Thomas J. Koronkiewicz 《The Journal of wildlife management》2012,76(2):269-277
The southwestern willow flycatcher (Empidonax traillii extimus) is a federally endangered subspecies that breeds in increasingly fragmented and threatened habitat. We examined whether temporal and habitat characteristics were associated with risk of predation and probability of brood parasitism by brown-headed cowbirds (Molothrus ater) on flycatcher nests at 6 sites in southern Nevada and northwestern Arizona, USA. For nest predation, we found the most support for a model that included date and an interaction between parasitism status and nesting stage. Daily nest survival decreased from 0.87 (95% CI = 0.81–0.93) to 0.78 (95% CI = 0.72–0.84) through the season for parasitized nests but remained relatively constant for unparasitized nests (0.93, 95% CI = 0.91–0.95 to 0.92, 95% CI = 0.91–93). Parasitized nests had lower survival than non-parasitized nests during the incubation (0.85, 95% CI = 0.84–0.86 vs. 0.92, CI = 0.91–0.93) and nestling (0.79, 95% CI = 0.77–0.81 vs. 0.91, 95% CI = 0.90–0.92) stages. Of the variables included in our parasitism candidate models, model-averaged coefficients and odds ratios supported only distance to habitat edge; odds of parasitism decreased 1% for every 1 m from the habitat edge. Nests greater than 100 m from an edge were 50% less likely to be parasitized as those on an edge, however, only 52 of 233 nests (22%) were found at this distance. Where management and conservation goals include reducing nest losses due to parasitism, we recommend restoration of habitat patches that minimize edge and maximize breeding habitat further from edges. At sites where cowbirds have been documented as important nest predators, controlling cowbirds may be one option, but further study of the link between parasitism and nest predation and the identification of major nest predators at specific sites is warranted. © 2011 The Wildlife Society. 相似文献