首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT. Members of the family Warnowiaceae are unarmored phagotrophic dinoflagellates that possess an ocelloid. The genus Erythropsidinium (= Erythropsis ) has also developed a unique dynamic appendage, the piston, which is able to independently retract and extend for at least 2 min after the cell lyses. We provide the first small subunit ribosomal RNA gene sequences of warnowiid dinoflagellates, those of the type Erythropsidinium agile and one species of Warnowia . Phylogenetic analyses show that warnowiid dinoflagellates branch within the Gymnodinium sensu stricto group, forming a cluster separated from the Polykrikos clade and with autotrophic Pheopolykrikos beauchampii as closest relative. This reinforces their classification as unarmored dinoflagellates based on the shape of the apical groove, despite the strong ecological and ultrastructural diversity of the Gymnodinium s.s. group. Other structures, such as the ocelloid and piston, have no systematic value above the genus level.  相似文献   

2.
Dinophysoid dinoflagellates are usually considered a large monophyletic group. Large subunit and small subunit (SSU) rDNA phylogenies suggest a basal position for Amphisoleniaceae (Amphisolenia,Triposolenia) with respect to two sister groups, one containing most Phalacroma species plus Oxyphysis and the other Dinophysis,Ornithocercus, Dinophysoid dinoflagellates are usually considered a large monophyletic group. Large subunit and small subunit (SSU) rDNA phylogenies suggest a basal position for Amphisoleniaceae (Amphisolenia,Triposolenia) with respect to two sister groups, one containing most Phalacroma species plus Oxyphysis and the other Dinophysis,Ornithocercus, Histioneis,Citharistes and some Phalacroma species. We provide here new SSU rDNA sequences of Pseudophalacroma (pelagic) and Sinophysis (the only benthic dinophysoid genus). Molecular phylogenies support that they are very divergent with respect to the main clade of Dinophysales. Additional molecular markers of these two key genera are needed to elucidate the evolutionary relations among the dinophysoid dinoflagellates. Histioneis,Citharistes and some Phalacroma species. We provide here new SSU rDNA sequences of Pseudophalacroma (pelagic) and Sinophysis (the only benthic dinophysoid genus). Molecular phylogenies support that they are very divergent with respect to the main clade of Dinophysales. Additional molecular markers of these two key genera are needed to elucidate the evolutionary relations among the dinophysoid dinoflagellates.  相似文献   

3.
The taxonomic position of Blastodinium navicula Chatton and B. contortum Chatton, parasites of marine copepods, was investigated on the basis of morphological observations and molecular data. The life cycle of Blastodinium includes a parasitic stage, a trophont, and free‐swimming dinospores. The individual cells in the trophont, as well as the dinospores that they produced, were thecate. Dinospores of B. contortum and Bnavicula had peridinioid plate tabulation formula, demonstrating an affiliation to the order Peridiniales Heackel (subdivision Dinokaryota Fensome et al.). This systematic position is in contrast to current classifications, in which the order Blastodiniales Chatton is thought to represent an early evolutionary branch of the dinokaryote lineage. Small‐subunit rRNA gene sequences were generated from six Blastodinium individuals isolated from three different host species. In phylogenetic analyses based on SSU rRNA genes, Blastodinium spp. branched with the typical dinoflagellates. Even though overall statistical support was low, the analyses suggested that Blastodinium spp. are late‐branching, dinokaryote dinoflagellates. Species currently included in Blastodiniales are all parasites, but they are morphologically and functionally diverse. Emerging molecular data also reveal high genetic diversity, and therefore, the taxonomy of the group requires reevaluation.  相似文献   

4.
A new genus of Pfiesteria‐like heterotrophic dinoflagellate, Luciella gen. nov., and two new species, Luciella masanensis sp. nov. and Luciella atlantis sp. nov., are described. These species commonly occur with other small (<20 μm) heterotrophic and mixotrophic dinoflagellates in estuaries from Florida to Maryland and the southern coast of Korea, suggesting a possible global distribution. An SEM analysis indicates that members of the genus Luciella have the enhanced Kofoidian plate formula of Po, cp, X, 4′, 2a, 6″, 6c, PC, 5+s, 5?, 0p, and 2″″. The two four‐sided anterior intercalary plates are diamond shaped. The genus Luciella differs from the other genera in the Pfiesteriaceae by a least one plate in the plate tabulation and in the configuration of the two anterior intercalary plates. An SSU rDNA phylogenetic analysis confirmed the genus as monophyletic and distinct from the other genera in the Pfiesteriaceae. The morphology of Luciella masanensis closely resembles Pfiesteria piscicida Steid. et J. M. Burkh. and other Pfiesteria‐like dinoflagellates in size and shape, making it easily misidentified using LM. Luciella atlantis, in contrast, has a more distinctive morphology. It can be distinguished from L. masanensis and other Pfiesteria‐like organisms by a larger cell size, a more conical‐shaped epitheca and hypotheca, larger rhombic‐shaped intercalary plates, and an asymmetrical hypotheca. The genus Luciella is assigned to the order Peridiniales and the family Pfiesteriaceae based on plate tabulation, plate pattern, general morphology, and phylogenetic analysis.  相似文献   

5.
Phylogenetic and structural studies in the thelebolaceae (Ascomycota)   总被引:1,自引:0,他引:1  
Several minute dung-inhabiting discomycetes have been classified in the family Thelebolaceae, which has traditionally been included in the order Pezizales. The non-operculate type-genusThelebolus has recently been excluded from the Pezizales. The phylogenetic distribution of other genera associated with Thelebolaceae is still obscure. We have analysed ca. 580 bp from a variable part of the nuclear SSU rRNA gene fromAscozonus, Caccobius, Lasiobolus andThecotheus, and compared these with ca. 1700 bp sequences fromThelebolus, Pleospora, Pezizales, leotiales and Leotiales-related taxa. In the resulting tree,Ascozonus andCaccobius group withThelebolus and the inoperculate discomycetes;Lasiobolus groups withAscodesmis, andThecotheus withAscobolus within Pezizales. SEM pictures of fruit-bodies and ascus apices ofAscozonus, and ascospores fromThecotheus are presented to illustrate characteristic features of these taxa. Submitting author: FAX: +47-22 85 46 64, TEL: +47-22 85 46 61.  相似文献   

6.
Distinctive spindle‐shaped thecae first described by Samuel Eddy in 1930 and assigned to the genus Peridinium Ehrenberg are commonly reported from freshwater environments in eastern North America. We demonstrate that thecae incubated from cysts of Peridinium wisconsinense Eddy have six cingular plates and a protuberant apical pore complex characteristic of the family Thoracosphaeraceae Schiller 1930 emend. Tangen in Tangen et al . 1982. Small subunit ribosomal DNA (SSU rDNA) and internal transcribed spacer (ITS) sequences confirm the close genetic similarity with Chimonodinium lomnickii (Wo?oszyńska) Craveiro, Calado, Daugbjerg, Gert Hansen & Moestrup and with species recently reassigned to the genus Apocalathium Craveiro, Daugbjerg, Moestrup & Calado that was inferred from previously published LSU rDNA analysis of cysts of P. wisconsinense . Despite sharing identical tabulation with the thoracosphaeracean genera Chimonodinium Craveiro, Calado, Daugbjerg, Gert Hansen & Moestrup and Apocalathium , substantial morphological differences in the morphology of both the thecate and cyst stages of P. wisconsinense led us to reassign this species to the genus Fusiperidinium gen. nov. The phylogenetic position of Fusiperidinium wisconsinense comb. nov., inferred from concatenated data of SSU and LSU sequences, suggests that it evolved from the brackish Scrippsiella lineage, independently of the transition that produced the family Peridiniaceae. Cysts described as Geiselodinium tyonekensis Engelhardt from nonmarine strata from Alaska are apparently identical to the resistant cysts produced by F. wisconsinense . The palynologically‐constrained late Middle Miocene age for the Tyonek Formation provides a minimum age of 11.6 Ma for the evolution of this lineage, coinciding with a rapid glacioeustatic decline in sea level. Our findings also call into question the inclusion of the family Thoracosphaeraceae within the order Peridiniales Haeckel.  相似文献   

7.
8.
Concatenated sequences of small- and large-subunit rRNA genes were used to infer the phylogeny of 29 species in six genera of Tintinnida. We confirmed previous results on the positions of major clusters and the grouping of various genera, including Stenosemella, the paraphyletic Tintinnopsis, the newly investigated Helicostomella, and some species of the polyphyletic Favella. Tintinnidium and Eutintinnus were found to be monophyletic. This study contributes to tintinnid phylogenetic reconstruction by increasing both the number of species and the range of genetic markers analyzed.  相似文献   

9.
Abstract Nuclear-encoded SSU rDNA sequences have been obtained from 64 strains of conjugating green algae (Zygnemophyceae, Streptophyta, Viridiplantae). Molecular phylogenetic analyses of 90 SSU rDNA sequences of Viridiplantae (inciuding 78 from the Zygnemophyceae) were performed using complex evolutionary models and maximum likelihood, distance, and maximum parsimony methods. The significance of the results was tested by bootstrap analyses, deletion of long-branch taxa, relative rate tests, and Kishino–Hasegawa tests with user-defined trees. All results support the monophyly of the class Zygnemophyceae and of the order Desmidiales. The second order, Zygnematales, forms a series of early-branching clades in paraphyletic succession, with the two traditional families Mesotaeniaceae and Zygnemataceae not recovered as lineages. Instead, a long-branch Spirogyra/Sirogonium clade and the later-diverging Netrium and Roya clades represent independent clades. Within the order Desmidiales, the families Gonatozygaceae and Closteriaceae are monophyletic, whereas the Peniaceae (represented only by Penium margaritaceum) and the Desmidiaceae represent a single weakly supported lineage. Within the Desmidiaceae short internal branches and varying rates of sequence evolution among taxa reduce the phylogenetic resolution significantly. The SSU rDNA-based phylogeny is largely congruent with a published analysis of the rbcL phylogeny of the Zygnemophyceae (McCourt et al. 2000) and is also in general agreement with classification schemes based on cell wall ultrastructure. The extended taxon sampling at the subgenus level provides solid evidence that many genera in the Zygnemophyceae are not monophyletic and that the genus concept in the group needs to be revised.  相似文献   

10.
The morphologically diverse members of the Laminariales are separated into three families, the Alariaceae, Laminariaceae and Lessoniaceae, on the basis of developmental features exhibited at the stipeblade transition zone. We have investigated the relationships of lessoniacean taxa with those of alariacean and laminariacean affinity. This was done by completing phylogenetic analyses of 3 small-subunit (SSU) rRNA gene (113 bp), first internal transcribed spacer (ITS 1), 5.8S rRNA gene and second internal transcribed spacer (ITS2)(12 bp) sequence data from a variety of taxa. In summary, the Alariaceae and Lessoniaceae are polyphyletic. We present a restricted view of the Alariaceae, including only Alaria and Pterygophora of the genera usually placed in this family, and transfer the monotypic genus Lessoniopsis to this group. Current theories of kelp evolution and biogeography must be reconsidered in view of our data.  相似文献   

11.
The planktonic dinoflagellate Ptychodiscus noctiluca combined distinctive morphological features such as a disk‐shaped anteroposteriorly compressed cell body and an apical carina, together with a flexible and tough cell covering, suggesting intermediate characteristics between thecate and naked dinoflagellates. Ptychodiscus noctiluca was examined by light, epifluorescence, and scanning electron microscopy from specimens collected in the Mediterranean Sea and the North and South Atlantic Ocean. Ptychodiscus noctiluca showed a straight apical groove that bisected the carina, a cell covering with a polygonal surface reticulum, nucleus without capsule, sulcal intrusion in the episome, sulcal ventral flange, and yellowish‐green chloroplasts that are shared characters with Brachidinium/Karenia. The cell division was the typical binary fission of gymnodinioid dinoflagellates, although exceptionally in an oblique transversal axis. We examined the intraspecific variability during incubation experiments. In the fattened cells, termed as Ptychodiscus carinatus, chloroplasts transformed into dark granules, and the cell acquired the swollen and smaller stage, termed as P. inflatus. Ptychodiscus carinatus, P. inflatus, and Diplocystis antarctica are synonyms of P. noctiluca. Molecular phylogeny based on the SSU rDNA sequence revealed that Ptychodiscus branched within the short‐branching dinokaryotic dinoflagellates as an independent lineage with affinity to Brachidinium/Karenia and Karlodinium/Takayama in a generally poorly resolved clade. Our results indicated that the order Ptychodiscales, established for unarmored dinoflagellates with a strongly developed pellicle, has artificially grouped thecate dinoflagellates (Kolkwitziella, Herdmania), naked dinoflagellates with thick cell covering (Balechina, Cucumeridinium) and other insufficiently known unarmored genera with typical cell coverings (Brachidinium, Ceratoperidinium).  相似文献   

12.
The morphology of two little-known urostyloid ciliates, Anteholosticha randani (Grolière, 1975) Berger, 2003 and A. antecirrata Berger, 2006, collected from freshwater biotopes in southern China, was studied based on live observations and protargol staining. Anteholosticha randani is characterized by its bipartite adoral zone and short, longitudinally aligned undulating membranes. One early stage of reorganization/morphogenesis, one early-middle stage of reorganization and one middle stage of morphogenesis are also reported. Anteholosticha antecirrata is characterized by its large body size in vivo (200–400 × 40–80 μm), a row of buccal cirri and conspicuous, yellow-green cortical granules. Phylogenetic analyses based on SSU rDNA sequence data reveal that A. antecirrata may share a most recent common ancestor with Urostyla grandis and Bakuella granulifera, whereas A. randani branches independently and is sister to a large clade that includes Pseudourostyla, Pseudokeronopsis, Caudiholosticha and several species of Anteholosticha.  相似文献   

13.
A new species of benthic marine dinoflagellate, Pyramidodinium spinulosum Horiguchi, Moriya, Pinto & Terada is described from the deep (36 m) seafloor off Mageshima Island, Kagoshima Prefecture, Japan in the subtropical region of the northwest Pacific. The life cycle of the dinoflagellate consists of a dominant, attached, dome‐shaped, vegetative form and short‐lasting, motile cell. Asexual reproduction takes place by the formation of two motile cells within each non‐motile cell. The released motile cells swim only for a short period and transform directly into the dome‐shaped vegetative form. The duration of the cell cycle varies and can be extremely long, ranging 5–38 days under culture conditions. The non‐motile cell is enclosed by a cell wall and its surface is covered with many (80 – 130) spines of various length. The dinoflagellate is photosynthetic and contains many (more than 50) discoidal chloroplasts. Phylogenetic analysis reveals that the dinoflagellate is closely related to the type species of the genus Pyramidodinium, P. atrofuscum which also possesses a dominant, attached, non‐motile form. However, P. spinulosum can be clearly distinguished from P. atrofuscum by the cell shape (dome‐shaped vs. pyramid‐shaped) and surface ornamentation (spines vs. wart‐like processes) of the non‐motile form. Based on these morphological differences together with molecular evidence, it was concluded that this organism from a deep water sand sample should be described as a second species of the genus Pyramidodinium, P. spinulosum.  相似文献   

14.
Microdiaphanosoma arcuatum Wenzel, 1953 is a world-wide distributed ciliate, recorded mainly in soil samples, which we have also identified in ground water samples from South Africa. This ciliate has been frequently overlooked or not determined due to its small size, ~12 μm. The genus Microdiaphanosoma is nowadays included in the class Colpodea, order Bryometopida, family Kreyellidae. The first complete small subunit (SSU) rDNA gene sequence of this ciliate was obtained from a South African isolate. Phylogenetic analysis including available SSU rDNA sequences from another Colpodea species in the GenBank strongly supported the position of M. arcuatum within the order Cyrtolophosidida instead of the order Bryometopida. The analysis also suggested a sister relationship between this species and species from the family Cyrtolophosididae.  相似文献   

15.
PCR primers targeting conserved regions of the SSU rRNA gene are commonly used in bacterial community studies. For microbes associated with eukaryotes, co-amplification of eukaryotic DNA may preclude the analysis. We present a simple and efficient PCR strategy to obtain pure bacterial rDNA amplicons from samples predominated by eukaryotic DNA.  相似文献   

16.
Cibicidoides dispars and Cibicidoides variabilis are two neritic cibicidids commonly found on the Patagonian coasts. Phylogenetic analyses of partial SSU rDNA sequences show that they both belong to the genus Cibicidoides. Cibicidoides dispars branches close to Cibicidoides wuellerstorfi, whereas C. variabilis clusters with Cibicidoides pachyderma. In both cases, species clustering together are well separated morphologically and ecologically but close genetically. Molecular data indicate clearly that C. dispars and C. variabilis are well separated genetically from Cibicidoides lobatulus, another shallow water cibicidid sharing a similar ecology and morphology. Moreover, our molecular results show that neritic and bathyal or abyssal species are found together in different clades, suggesting multiple colonization events from shallow to deep water or vice versa. The analysis of more variable ITS rDNA region, on the other hand, reveals small differences between individuals of C. variabilis sampled in the south and north of Chilean Patagonia, which could indicate a cryptic speciation undergoing in this species.  相似文献   

17.
Nucleotide sequences of the small-subunit (SSU) ribosomal DNA were determined forPelvetia babingtonii, P. canaliculate, Pelvetiopsis limitata, andAscophyllum nodosum in the family Fucaceae. A total of 1755 positions were aligned for the whole sequence. The positional differences in the primary structure among the taxa ranged from 16 to 30 nucleotide changes in pairwise comparisons. There was a minimum divergence betweenPs. limitata andP. babingtonii while a maximum betweenPs. limitata andP. canaliculata. The SSU rDNA trees showed that the genusPelvetia was not monophyletic and the genusPelvetiopsis was not closely related toPelvetia. Our results suggest that the taxonomic revision of the genusPelvetia as well as the family Fucaceae is needed based on detailed morphological observations.  相似文献   

18.
The ciliate genus Chlamydodon is characterized by a unique cross-striated band (CSB) along the cell perimeter. To date, more than 15 nominal species have been assigned to this genus, all of which are exclusively from marine or brackish water. In the present work, we have revised the genus according to the available data and suggest an illustrated key to aid species diagnosis. In addition, the systematic relationships of chlamydodontid congeners were analysed based on SSU rRNA gene sequences, indicating that all congeners belong to a well-defined clade. Furthermore, we investigated three species from coastal areas of China, including two new species, Chlamydodon wilberti sp. nov. and C. bourlandi sp. nov., using morphological and phylogenetic criteria. Chlamydodon wilberti sp. nov. is characterized by a cell size of 65–105 × 35–60 µm, a complete CSB, and 38–49 somatic kineties. Chlamydodon bourlandi sp. nov. has a cell size of 150–250 × 65–150 µm, a complete CSB, a reddish to violet cell colour, 83–97 somatic kineties, and 40–68 contractile vacuoles. As a further contribution, a well-studied species, C. triquetrus (Müller, 1786) Kahl, 1931, is also re-described.

www.zoobank.org/urn:lsid:zoobank.org:pub:B83A5466-9D2B-4502-9A23-F16A61D48172.  相似文献   


19.
20.
The effects of three physical variables on sporulation, germination and gametophyte survival were evaluated on two species of Laminariales at Coquimbo, Chile (30° S). Parameters were evaluated using reproductive fronds of Lessonia nigrescens Bory and Lessonia trabeculata Villouta and Santelices with treatment variables including type of pre-rinse, dehydration, and temperature. Although the response was slightly different in the two species, it was found that pre-rinsing the blades with tap water produced marked sporulation without affecting germination and survival. Minor effects were observed with other variables, including positive effects of lower temperature and negative effects of longer dehydration periods. The high commercial value of these two species has promoted much interest in their artificial propagation in Chile. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号