首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vertical migration, motility and cell division rhythms of the diatom Amphora ovalis Kütz from Lake Kinneret, Israel, have been studied under laboratory conditions and results compared with comparable rhythms of other unicellular algae. The vertical migration rhythm exhibits two peaks during the light period, both when the cells are kept in continuous light or continuous dark. There is a single peak of motility occurring in the first half of the natural light period and a single peak of cell division in the latter half of the dark period. Rephasing of the rhythm by means of delayed start up time is illustrated and the possible interaction of phototactic and geotactic rhythms discussed.  相似文献   

2.

Subterranean Sericesthis geminata (Boisduval) beetles emerge from the soil daily during the flight season. Emergence and flight are initiated within 15 min after sunset. The beetles are active above the soil surface as the intensity of illumination decreases from 240 lux to 0.7 lux.

If young adult beetles still in their pupal cells in the soil are placed under constant, low‐intensity illumination, they first emerge at any time of day, showing no cyclical diurnal activity pattern. When such beetles are exposed to diurnal fluctuations in illuminance, the first emergence and flight occur at dusk. These beetles subsequently show a diurnal rhythm in their activity, even when exposed to constant environmental conditions. This endogenous activity cycle has a period of about 22 h, and is synchronised with diurnal fluctuations in light intensity. It is reset in response to a change in the photoperiod.

The data suggest that, after initial emergence from the soil, daily crepuscular activity is initiated by an endogenously controlled activity rhythm which causes the beetles to burrow to the soil surface shortly before dusk. At the soil surface they are exposed to fluctuations in the duration and intensity of illumination which may reset the endogenous rhythm, affecting the time of subsequent emergence.  相似文献   

3.
Chalcone-synthase (CHS) activity was followed during the development of primary leaves of oat (Avena sativa L.) seedlings grown under different illumination conditions. Continuous darkness and continuous light resulted in similar time courses of enzyme activity. The maximum of CHS activity in etiolated leaves was delayed by 1 d and reached about half the level of that of light-grown leaves. In seedlings grown under defined light-dark cycles a diurnal rhythm of CHS activity and its protein level was observed which followed the rhythm of CHS-mRNA translational activity (Knogge et al. 1986). This rhythm persisted in continuous light after a short-term pre-exposure to the light-dark cycle but not in continuous darkness.Abbreviations CHS chalcone synthase - PAL phenylalanine ammonio lyase Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged (G.W., We 630/9-7; We 630/10-1). Thanks are given to Dr. St. Kellam (Department of Plant Microbiological Sciences, University of Canterbury, New Zealand) for correcting the English.  相似文献   

4.
Unicellular dinoflagellate algae are among the best examples of organisms that exhibit biological clocks. This study examined the effect of light regime on rhythmicity of motility in the symbiotic dinoflagellate Symbiodinium sp., freshly isolated from the soft coral Heteroxenia fuscescens (Ehrenberg). Freshly isolated algal cells, placed under a 12-h L:12-h D cycle, exhibited motility with a diel rhythm. This motility occurred only during the period of illumination and lasted 8-9 h, with a peak at 2.5-4 h after lights on. Algal cells placed in an inverted light regime inverted their motility pattern. The response to the L/D regime was very precise, and even a 1-h shift backward or forward affected initiation of motility and time of its maximal peak. When placed in either constant light or dark, algal motility ceased until the L/D cycle was restored. These findings suggest that the rhythm is entrained by light cues and is not due to an endogenous circadian rhythm. Further, we provide evidence that the presence of juvenile hosts does not affect the algal motility pattern. These results offer the first evidence for the lack of impact by the host on rhythmicity of motility of free-living algal cells. The motility pattern found in freshly isolated algae may indicate the presence of light-induced diel rhythmicity in yet-to-be described free-living Symbiodinium.  相似文献   

5.
The circadian rhythm of grazing of microalgae by a laboratory culture of Ceriodaphnia quadrangula under continuous illumination was studied by continuous registration of chlorophyll fluorescence at the outlet of a flow-through cultivator. A culture of green alga Chlorella vulgaris was used as a feed. The data obtained were treated by the statistical spectral analysis. It was found that animals preliminarily grown under a 12 h light: 12 h dark regime and transferred to constant light showed two maxima in the circadian rhythm of grazing with periods of 0.7 and 1.1 h. Animals preliminarily grown under constant light showed no circadian rhythm of grazing. It was concluded that the circadian rhythm of grazing of C. quadrangula has endogenous nature and can change according to light conditions.  相似文献   

6.
Abstract

Neonatal treatment with monosodium glutamate (MSG) results in a substantial degeneration of the inner layer of the retina and a decreased diameter of the optic nerves. Nevertheless, MSG‐treated animals entrain and re‐entrain to a light dark cycle. The question arises whether MSG selectively destroys the optic pathways which are involved in vision but not the retinohypothalamic trart that mediates entrainment. In these experiments not only entrainment and re‐entrainment of the circadian food intake rhythm of MSG‐treated rats was investigated but also the freerunning period under continuous bright and dim light It appears that MSG‐treated rats have shorter freerunning periods under continuous illumination than controls. Therefore, these results suggest that also those pathways involved in entrainment of the circadian food intake rhythm are affected by neonatal treatment with MSG.  相似文献   

7.
Abstract

The Locomotory activity of the Plains Garter snake was determined under L/D: 12/12 conditions at five constant temperatures and three light intensities during the light period. The snakes were diurnal at low temperatures with nocturnal activity increasing in various amounts at higher temperatures. The different light intensities had relatively small effects on the activity rhythm.

Activity was recorded under four constant light conditions at five constant temperatures and the characteristics of the free‐running rhythm measured. A comparison of the characteristics of the free‐running rhythm to Aschoff's circadian rule indicates that this snake is an exception to this rule.

Increase light intensity decreased total activity under all conditions. Under a L/D: 12/12 cycle the decrease in activity was more pronounced during the dark period than the light period.

It is suggested that crepuscular or nocturnal activity shown by snakes at high temperatures may be an effect the temperature level has on the biological clock and activity controlling mechanisms rather than temperature selection by the snake.  相似文献   

8.
Evidence is presented for an endogenous rhythm which controls gamete formation in the coenocytic gametophytic stage of the marine alga Derbesia tenuissima (De Notaris) Crouan fr. (Chlorophyceae), formerly known as Halicystis parvula. The rhythm is present under conditions of constant light and temperature, or in alternating light and darkness (LD 12 :12 or LD 8 : 8). Under controlled conditions in the laboratory, the basic period of this rhythm is 4-5 days. The period is affected very little by temperature or light intensity. Gametangia may appear only at every other cycle of the underlying rhythm at approximately 8-day intervals, or even every third cycle at intervals of about 12 days. The observation that the interval between the appearance of new gametangia does not vary continuously when light or temperature is varied but tends to be a multiple of 4 days is the strongest evidence available that a true endogenous rhythm with a period of about 4 days is present in Derbesia. Evidence is presented that circadian rhythmicity does not play a part in the timing of the initiation of gametangia in this organism.  相似文献   

9.
Abstract: Incorporation of radiolabelled amino acids into proteins of Euglena gracilis revealed that the amount of labelled protein depends on the conditions of illumination and temperature of cultivation. Protein synthesis was generally lower under dark conditions except at 37 °C. The largest amounts of labelled protein were measured at 21 °C and decreased at higher and lower temperatures. By separating the labelled proteins of the membraneous cell fraction from subcultures under a range of culture conditions, the synthesis of some specific proteins was found to be light- and/or temperature-dependent. On incubating cells taken at different times during a light/dark cycle and under constant conditions, a circadian rhythm of 35S-methionine- as well as 35S-cysteine-incorporation was detected. Thereby the cells incorporated ten-times less cysteine than methionine. Protein synthesis always peaked during the last quarter of the daily light phase, confirming the rhythmic rise in total protein. The length of the rhythm period, approximately 24 h, was nearly independent of the applied temperature in the range of 16 to 27 °C.  相似文献   

10.
Circadian pacemakers control both “daytime” activity and nocturnal restlessness of migratory birds, and the daily rhythm of melatonin release from the pineal has been suggested to be involved in the control of migratory activity. To study the phase relations between the two activity components during entrainment and when free running, locomotor activity of bramblings (Fringilla montifringilla) was recorded continuously under a 12:12 “cool light” to “warm light” cycle (CL:WL, ca. 5000 K and ca. 2500 K, respectively) or blue light to red light cycle (BL:RL, maxima at 440 and 650 nm, respectively) at different irradiance ratios. Migratory activity was expressed primarily during the WL or RL phase of the light cycles. Under free-running conditions, the circadian periods τ correlated with the phase relations between day and night (migratory) activity components during preceding entrainment. Bramblings with migratory activity had significantly longer τ at constant light intensity than the same individuals without migratory activity. Birds with migratory activity reentrained faster after a 6h phase shift of the CL:WL cycle than birds without migratory activity. When exogenous melatonin was given in the drinking water (200 μg/mL 1% ethanol or 0.86 mM) to bramblings exposed to 12:12 CL:WL cycles with constant irradiance, the amounts of activity, which were initially higher during the WL phase of the light cycle, were suppressed to similar low levels during both light phases. The systematic changes in the amounts of activity during melatonin treatment were not correlated with consistent changes in entrainment status. The data support the hypothesis that changes in the amplitude and level of the daily melatonin cycle are involved in regulating migratory restlessness, by either allowing or inhibiting nocturnal activity. (Chronobiology International, 17(4), 471–488, 2000)  相似文献   

11.
A marine unicellular aerobic nitrogen-fixing cyanobacterium Synechococcus sp. strain Miarni BG 043511 was pretreated with different light and dark regimes in order to induce higher growth synchrony. A pretreatment of two dark and light cycles of 16 h each yielded good synchrony for 3 cell division cycles. Longer dark treatments decreased the degree of synchrony and shorter dark treatments caused irregular cell division. Once synchronous culture was established, distinct phases of cellular carbohydrate accumulation and cellular carbohydrate degradation were observed even under continuous illumination. Changes in carbohydrate content were repeated in a cyclic manner with approximately 20 h intervals, the same as the cell division cycle. This change in carbohydrate metabolism provided a good index of growth synchrony under nitrogen-fixing conditions.
Photosynthetic oxygen evolution and nitrogen fixation capabilities and their activities in near, in situ, culture conditions were measured in well synchronized cultures of this strain under continuous illumination. Distinct oscillations of both photosynthetic oxygen evolution and nitrogen fixation capabilities with ca 20-h intervals, similar to the interval of the cell division cycle, were observed for three cycles. However, the activities of photosynthetic oxygen evolution were inversely correlated with those of nitrogen fixation. During the nitrogen fixation period, net oxygen consumption was observed even in the light under conditions approximating in situ culture conditions. The phase of temporal appearance of nitrogenase activity during the cell division cycle coincided with the phase of carbohydrate net degradation. These data indicate that this unicellular cyanobacterium can grow diazotrophically under conditions of continuous illumination by the segregation of photosynthesis and nitrogen fixation within a cell division cycle.  相似文献   

12.
Regulation of PEP-Carboxylase by Biological Clock in a CAM Plant   总被引:2,自引:0,他引:2  
The endogenous circadian rhythm in a crassulacean acid metabolism(CAM) plant Graptopetalum paraguayense was investigated. Phosphoenolpyruvatecarboxylase (PEP-C) takes two forms: the malate-sensitive dayform and the malate-insensitive night form. We monitored thestate of PEP-C by measuring the sensitivity to malate as a parameterof the circadian rhythm. We also measured vacuolar pH and malateconcentration, and contents of oxaloacetate, pyruvate and phosphoenolpyruvate(PEP). A free-running circadian oscillation was observed under continuousdim light (5 klux) after 12 h/12 h light/dark cycles at 20°C.The period of the rhythm was about 20 h. Under continuous light(18 klux), the rhythm was less clear but the length of the periodwas not affected. On the other hand, the rhythms of the vacuolarpH and the malate concentration were evident under the continuouslight, but were not clear under the continuous dim light. Therhythm disappeared in continuous darkness. The content of PEPchanged simultaneously with the transformation of PEP-C duringthe normal day-night cycles and under the continuous light,but stayed at a low level under the continuous dim light. Thisindicated that the transformation of PEP-C was not sufficientto maintain the rhythm in the carbon metabolism. Shift of the timing of the start or end of the dark period priorto the continuous illumination shifted the phase of the PEP-Crhythm without changing the period length significantly. At30°C, the rhythm of PEP-C was less clear, but the periodlength was not affected. These results suggest that the biological clock controls CO2uptake and day-night CAM cycle through regulation of PEP-C transformation. (Received August 20, 1993; Accepted December 3, 1993)  相似文献   

13.
The endogenous circadian pacemaker of mammals is synchronized to the environmental day by the ambient cycle of relative light and dark. The present studies assessed the actions of light in a novel circadian entrainment paradigm where activity rhythms are bifurcated following exposure to a 24-h light:dark:light:dark (LDLD) cycle. Bifurcated entrainment under LDLD reflects the temporal dissociation of component oscillators that comprise the circadian system and is facilitated when daily scotophases are dimly lit rather than completely dark. Although bifurcation can be stably maintained in LDLD, it is quickly reversed under constant conditions. Here the authors examine whether dim scotophase illumination acts to maintain bifurcated entrainment under LDLD through potential interactions with the parametric actions of bright light during the two daily photophases. In three experiments, wheel-running rhythms of Syrian hamsters were bifurcated under LDLD with dimly lit scotophases, and after several weeks, dim scotophase illumination was either retained or extinguished. Additionally, “full” and “skeleton” photophases were employed under LDLD cycles with dimly lit or completely dark scotophases to distinguish parametric from nonparametric effects of bright light. Rhythm bifurcation was more stable in full versus skeleton LDLD cycles. Dim light facilitated the maintenance of bifurcated entrainment under full LDLD cycles but did not prevent the loss of rhythm bifurcation in skeleton LDLD cycles. These studies indicate that parametric actions of bright light maintain the bifurcated entrainment state; that dim scotophase illumination increases the stability of the bifurcated state; and that dim light interacts with the parametric effects of bright light to increase the stability of rhythm bifurcation under full LDLD cycles. A further understanding of the novel actions of dim light may lead to new strategies for understanding, preventing, and treating chronobiological disturbances. (Author correspondence: )  相似文献   

14.
Halaban R 《Plant physiology》1969,44(7):973-977
Studies were made of the effects of blue, green, red and far-red (FR) light on the circadian rhythm of leaf movement of Coleus blumei × C. frederici, a short day plant. Under continuous illumination with blue light, there was a significant lengthening of the period of the rhythm to about 24.0 hr, as compared to 22.5 hr in continuous darkness. Under continuous red light, the period length was significantly shortened to 20.5 hr. Under continuous green or FR, the period length was not significantly different from the dark control. It was observed that under continuous FR illumination, the leaves tended to oscillate in a more downward position. Eight-hr red light signals were effective in advancing the phase of the rhythm as compared to a control under continuous green light. Blue light signals were effective in delaying the phase of the rhythm. FR light signals were ineffective in producing either delay or advance phase shifts. Far-red light did not reverse the effects of either red or blue light signals. On the basis of these results it is suggested, that pigments which absorb blue or red light, rather than phytochrome, mediate the effect of light on the circadian rhythm of leaf movement.  相似文献   

15.
Abstract

Pupal eclosion of Trichogramma evanescens Westw. was studied in different conditions of light‐darkness and temperature fluctuations. The results revealed that under natural light cycles Trichogramma exhibits a distinct rhythm of emergence from pupae. Maximum emergence takes place in the morning. This rhythm persists in constant dim red light and temperature, so it is endogenous in nature. The rhythm can be entrained by artificial 24‐h temperature cycles or by day‐night cycles of light with a very low intensity of illumination (<0.01 lux). Nevertheless a single pulse of bright light or of high temperature is not able to reset the rhythm. The emergence rhythm was also absent if the culture was grown in constant darkness and temperature.  相似文献   

16.
Phase relationships of the circadian rhythms of blood ethanol clearance (metabolic) rates and body temperature were studied in rats successively exposed to 4 illumination regimens: LD (light from 0800-2000 hr), DL (light from 2000-0800 hr), constant darkness (DD) and, lastly, constant light (LL). After a 4-wk standardization to each regimen, body temperatures were taken at 9 × 4-hr intervals to establish baseline circadian profiles. One week later, groups (N = 8) received 1.5 g/kg ethanol (i.p.) at 6 equally spaced timepoints during a 24-hr span, when temperatures were again measured. Ethanol clearance rates were estimated from decreasing blood ethanol levels sampled every 20 min from 60-200 min after dosing, and the resultant elimination curves were subjected to cosinor analysis. These studies show for the first time that the high amplitude circadian rhythm in ethanol metabolism persists under constant conditions of illumination (DD and LL), demonstrating that it may well be a truly internal circadian rhythm and not a response to exogenous cues of the light/dark cycle. During both LD and DL, maximal and minimal ethanol clearance rates fell near the end of the dark and light phases, respectively, and followed circadian peak and trough control temperatures by approximately 6 hr. A fixed internal phase relationship between the core body temperature and the circadian rhythm in ethanol metabolism is demonstrated, thus establishing the rhythm in body temperature as a suitable and convenient internal marker rhythm for studies of the metabolism of low-to-moderate ethanol doses. These studies demonstrate that the phase relationships of blood ethanol clearance rate and body temperature can be manipulated by the illumination regimen selected, an observation of both basic and practical importance.  相似文献   

17.
The swimming rhythm of Pseudaega punctata Thomson is shown to have dual circadian and tidal components. The rhythm is endogenous, persisting for ten days under constant conditions in the laboratory and has a free-running period of greater than tidal frequency. The swimming activity has a basic semi-lunar rhythm even in the absence of marked differences between the heights of spring and neap tides. The rhythm is phased by exogenous factors such as light and tides but is flexible enough to deal with seasonal variations in day length and the shifting tidal cycle. Chilling weakly-rhythmic isopods re-inforces the rhythm. Control is thought to be neurosecretory, depletion of a neurosecretory product accumulated during a quiescent phase terminating swimming activity. The work is compared with similar studies on the related Eurydice pulchra which fills the same ecological niche in the northern hemisphere.  相似文献   

18.
Abstract

Four Thoroughbred mares (no. 1–4) were maintained under constant temperature (24°C) and controlled light (L/D:12/12 with lights on at 06.00 hr) conditions. They were fed and watered ad libitum with fresh feed and water given at 09.00 hr. After a 45‐day pre‐conditioning period, blood samples were obtained by veinipuncture at 4‐hr intervals for 14 days to determine circadian and day‐to‐day variation. The horses exhibited a circadian rhythm with maximum values attained at about 12.00 hr, however, there are periods of days in which no rhythm is distinguishable. Ultradian rhythms with mean periods of 105 to 128 and 24 to 31 min are superimposed upon the circadian rhythm. The individual rhythms are quite variable from horse to horse and within the same horse. During periods of decline in plasma cortisol with metabolic half‐lives of approximately 70 min, secretion of cortisol was very low or had ceased. During periods of increasing plasma concentration, secretion was occurring at a faster rate than degradation. Rapid decreases in plasma concentration (metabolic half‐life of approximately 30 min) was accompanied by a rise in specific activity indicating cortisol with a high specific activity was entering the plasma pool from other storage pools.  相似文献   

19.
1. The rate of O2-uptake of Lemna gibba G3 changed with a dampeddiurnal rhythm under continuous illumination given after shortdays. The rhythm was started by a light-on stimulus with a 6hr lag period and is thought to be under the control of a biologicalclock. 2. The 6 hr lag period was replaceable with a 6 hr dark periodinterrupted twice (at 0 and 3 hr) by a brief illumination withred light. The effect of red light was removed by immediateexposure to far-red light. This effect of far-red was reversedby subsequent red light. The 6 hr lag may involve a phytochrome-mediatedreaction which may be preparatory to the induction of this rhythm. (Received December 13, 1969; )  相似文献   

20.
Abstract

Halimeda has been found particularly suitable for studies of long‐distance chloroplast migration by virtue of its coenocytic structure and calcium carbonate skeleton. A circadian rhythm of chloroplast migration in Halimeda distorta was monitored by videography of segment surface pigmentation. In normal 12 h light/12 h dark treatments synchronised with dawn and dusk, the segments were green all day, began to become pale immediately the light was turned off, and then remained almost white for most of the night until beginning to re‐green a few hours before dawn. As a result of that, they were already quite green by the time the light was turned on. In continuous darkness a similar cycle, albeit with reducing amplitude and a period of about 23 hours, was maintained for at least 7 days. However, this cycle differed significantly from the normal one in that the segments did not remain green after the light was not switched on at dawn, but rather began to pale immediately thereafter. Conversely, in continuous light the segments did not become pale at any time. Thus, the rhythmical re‐emergence of the chloroplasts before dawn and their subsequent withdrawal appears to be controlled by an endogenous rhythm which is independent of light. However, light does completely, but reversibly, inhibit the chloroplast withdrawal component of the cycle. This behaviour of the chloroplasts in Halimeda is very similar to that in the related alga, Caulerpa, but it is quite different from that in another extensively Studied but unrelated siphonous green alga, Acetabularia, in which the circadian rhythm of chloroplast migration is maintained in continuous light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号