首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Pigment analysis carried out by thin-layer chromatography confirms that Chlorocloster engadinensis Vischer, C. solani George and Nephrodiella brevis Vischer are all green algae (Chlorophyceae) and not yellow-green algae (Xanthophyceae) as has been suggested. The pigments of Coccomyxa elongata Jaag, C. simplex (Pringsheim) Mainx and Pyrobotrys stellata Korshikov are also typical of green algae. The pigments of Pleurochloris commutata Pascher, P. magna Boye Petersen, Polyedriella helvetica Vischer et Pascher, Mischococcus sphaerocephalus Vischer and Tribonema aequale Pascher, are different to those of the green algae in accordance with their being classified as yellow-green algae. However, a detailed comparison of the pigments of Pleurochloris and Tribonema suggests that whilst both contain chlorophyll, α, β-carotene and esterified vaucheriaxanthin, the major xanthophyll in Pleurochloris corresponds to violaxanthin and not to antheraxanthin as in Tribonema.  相似文献   

2.
Summary 1. From a large scale preparation of Euglena gracilis, strain Z, besides the acetylenic pigments diatoxanthin and diadinoxanthin and the allene neoxanthin, an additional acetylenic xanthophyll has been isolated. 2. Mass and IR spectra and chemical reactions showed typical patterns of heteroxanthin from Vaucheria. 3. The pigment was transformed into diadinochrome-isomers with acidified acetone. 4. A partial synthesis of heteroxanthin from diadinoxanthin by LiAlH4-reduction is described, confirming the structure proposed by Strain. 5. The identity of heteroxanthin with the trollein—like pigment described for Euglena is discussed.  相似文献   

3.
The carotenoid pigments of Amphidinium klebsii cultures grown in LD 12:12 light regimes were determined in cells harvested during the log phase growth in the dark and light photoperiods. The analysis of the individual pigments revealed the presence of an endogenous redox carotenoid system involving the epoxide carotenoid diadinoxanthin and an unidentified carotenoid with the properties of a dihydroxy xanthophyll.  相似文献   

4.
Pigment-protein complexes were isolated from two species of Eustigmatophyceae, Monodus subterraneus Peterson and Vischeria punctata Vischer, by digitonin treatment followed by density gradient centrifugation. Absorption and fluorescence spectra of the samples were monitored at various steps of preparation, and pigment composition was analyzed by reverse phase HPLC. Although the fluorescence emission spectra were very different in the two species, the absorption spectra were similar, and each exhibited an absorption band with a maximum at 487 nm attributable to violaxanthin and vaucheriaxanthin ester (the molar concentration of these pigments in Monodus was, respectively, 28 and 10 per 100 Chl a). The light-harvesting role of these xanthophylls was ascertained by fluorescence excitation spectra. The light-harvesting fractions (LH) collected in the upper part of the gradient were depleted in β-carotene, whereas their xanthophyll/chlorophyll ratio was almost the same as in whole cells. This is consistent with the presence in these algae of large LH antennae and relatively small core antennae in the photosystems. In Monodus, a polypeptide of 23 kDa, immunologically related to the major LH polypeptide of brown algae, constituted the majority of the LH protein moiety.  相似文献   

5.
Summary High Performance Liquid Chromatography analysis of algal pigments from inter- and subtidal (deep and shallow) sediments from the Kerguelen Islands showed clear differences in the pigment composition at the different stations. High concentrations of chlorophyll c and fucoxanthin were present at all locations, indicating significant diatom densities, chlorophyll b was detected at all sites. At one station the other green algal pigments were also present; here green algae contributed more to chlorophyll a concentrations than diatoms, as estimated by using pigment ratios and microscopic observations. At another location chlorophyll b was associated with a high concentration of diadinoxanthin, indicating an abundance of euglenoids. This indicates that chemotaxonomy can be powerful tool in microphytobenthos studies since enumeration of living cells are difficult as many algae are attached to sediment particles (epipsammic algae). Ways of diagenesis, carotenoid degradation and the role of grazing are briefly mentioned. Phaeophorbide a-like pigments were the most significant chlorophyll a degradation products, with concentrations up to 110 g · g–1 dry weight sediment, i.e. 10 times the chlorophyll a concentration. Some taxonomic estimations, based on pigments ratios, and their limits, are discussed.  相似文献   

6.
In this work we characterize the changes induced by iron deficiency in the pigment composition of pear (Pyrus communis L.) leaves grown under high light intensities in field conditions in Spain. Iron deficiency induced decreases in neoxanthin and β-carotene concomitantly with decreases in chlorophyll a, whereas lutein and carotenoids within the xanthophyll cycle were less affected. Iron deficiency caused major increases in the lutein/chlorophyll a and xanthophyll cycle pigments/chlorophyll a molar ratios. The chlorophyll a/chlorophyll b ratio increased in response to iron deficiency. The carotenoids within the xanthophyll cycle in iron-deficient and in iron-sufficient (control) leaves underwent epoxidations and de-epoxidations in response to ambient light conditions. In control leaves dark-adapted for several hours, most of the xanthophyll cycle pigment pool was in the epoxidated form vio-laxanthin, whereas iron-deficient leaves had significant amounts of zeaxanthin. Iron-deficient leaves also exhibited an increased non-photochemical quenching, supporting the possibility of a role for pigments within the xanthophyll cycle in photoprotection.  相似文献   

7.
The biosynthesis and turnover of the pigments fucoxanthin, diadinoxanthin (DD), and diatoxanthin (DT) were studied in exponentially growing cultures of the diatom Thalassiosira weissflogii (Grunow) Fryxell and Hasle to investigate the dependence of pigment turnover on algal growth rates and light intensity. 14C-bicarbonate was used as a tracer. The labeling kinetics of fucoxanthin and DT were described satisfactorily by a simple precursor-pigment model with two free parameters, the precursor and pigment turnover rate. At growth irradiances < 200 μE · m?2· s?1, labeling kinetics of DD indicated the presence of two kinetically distinct DD pools and at least one precursor pool. The average growth rate-normalized pigment turnover rate of fucoxanthin was 0. The growth rate-normalized turnover rate of DT, determined only at high light irradiances (> 200 μE·m?2·s?1), was 1.3. At high light irradiances, the growth rate-normalized turnover rate of DD was 1.8. At low light irradiances, the turnover rates of the two DD pools were 3.7 and 0, respectively. The corresponding pigment turnover times were on the order of days to weeks, depending on the growth rate of the cultures. A comparison of pigment pool sizes, pigment turnover rates, and precursor turnover rates suggests that fucoxanthin is synthesized from a pool of DD and that DD and DT are synthesized from a common precursor, possibly β-carotene. No evidence was seen for dynamic xanthophyll cycling. This suggests that the commonly known “xanthophyll cycle” is the simple unidirectional conversion of DD into DT, or of DT into DD, in response to rapid irradiance changes.  相似文献   

8.
Snow algae inhabit unique environments such as alpine and high latitudes, and can grow and bloom with visualizing on snow or glacier during spring-summer. The chrysophytes Ochromonas smithii and Ochromonas itoi are dominant in yellow-colored snow patches in mountainous heavy snow areas from late May to early June. It is considered to be effective utilizing the xanthophyll cycle and holding sunscreen pigments as protective system for snow algae blooming in the vulnerable environment such as low temperature and nutrients, and strong light, however the study on the photoprotection of chrysophytes snow algae has not been shown. To dissolve how the chrysophytes snow algae can grow and bloom under such an extreme environment, we studied with the object of light which is one point of significance to this problem. We collected the yellow snows and measured photosynthetically active radiation at Mt. Gassan in May 2008 when the bloom occurred, then tried to establish unialgal cultures of O. smithii and O. itoi, and examined their photosynthetic properties by a PAM chlorophyll fluorometer and analyzed the pigment compositions before and after illumination with high-light intensities to investigate the working xanthophyll cycle. This experimental study using unialgal cultures revealed that both O. smithii and O. itoi utilize only the efficient violaxanthin cycle for photoprotection as a dissipation system of surplus energy under prolonged high-light stress, although they possess chlorophyll c with diadinoxanthin.  相似文献   

9.
Diatoms differ from higher plants by their antenna system, in terms of both polypeptide and pigment contents. A rapid isolation procedure was designed for the membrane-intrinsic light harvesting complexes (LHC) of the diatom Phaeodactylum tricornutum to establish whether different LHC subcomplexes exist, as well to determine an uneven distribution between them of pigments and polypeptides. Two distinct fractions were separated that contain functional oligomeric complexes. The major and more stable complex ( approximately 75% of total polypeptides) carries most of the chlorophyll a, and almost only one type of carotenoid, fucoxanthin. The minor complex, carrying approximately 10-15% of the total antenna chlorophyll and only a little chlorophyll c, is highly enriched in diadinoxanthin, the main xanthophyll cycle carotenoid. The two complexes also differ in their polypeptide composition, suggesting specialized functions within the antenna. The diadinoxanthin-enriched complex could be where the de-epoxidation of diadinoxanthin into diatoxanthin mostly occurs.  相似文献   

10.
Aquatic habitats are usually structured by light attenuation with depth resulting in different microalgal communities, each one adapted to a certain light regime by their specific pigment composition. Several taxa contain pigments restricted to one phylogenetic group, making them useful as marker pigments in phytoplankton community studies. The nuisance and invasive freshwater microalga Gonyostomum semen (Raphidophyceae) is mainly found in brown water lakes with sharp vertical gradients in light intensity and color. However, its pigment composition and potential photoadaptations have not been comprehensively studied. We analyzed the photopigment composition of 12 genetically different strains of G. semen by high performance liquid chromatography after acclimation to different light conditions. We confirmed the pigments chl a, chl c1c2, diadinoxanthin, trans‐neoxanthin, cis‐neoxanthin, α and β carotene, which have already been reported for G. semen. In addition, we identified, for the first time, the pigments violaxan‐thin, zeaxanthin, and alloxanthin in this species. Alloxanthin has never been observed in raphidophytes before, suggesting differences in evolutionary plastid acquisition between freshwater lineages and the well‐described marine species. The amount of total chl a per cell generally decreased with increasing light intensity. In contrast, the increasing ratios of the prominent pigments diadinoxanthin and alloxanthin per chl a with light intensity suggest photoprotective functions. In addition, we found significant variation in cell‐specific pigment concentration among strains, grouped by lake of origin, which might correspond to genetic differences between strains and populations.  相似文献   

11.
Spectrophotometric and paper chromatographic analyses of the pigments in the phytoplankton were made from early spring till the end of summer in two small Dutch freshwater lakes. It was found that pigment diversity cannot be adequately estimated by MARGALEF'S pigment ratio nor by polychromatic spectrophotometric methods. The pigments detected with the paper chromatographic method were: chlorophyll-a, chlorophyll-b, chlorophyll-c, phaeophytin-a (traces), phaeophorbide-a, Mg-containing chlorophyll-derivatives, carotene, lutein, violaxanthin, neoxanthin (traces), fucoxanthin, diadinoxanthin, diatoxanthin (traces), peridinin and keto-carotenoids (traces). It is suggested to distinguish between a richness-component and an evenness-component of pigment diversity.  相似文献   

12.
Nine lakes in northern Wisconsin were sampled from February through September 1996, and HPLC analysis of water column pigments was carried out on epilimnetic seston. Pigment distributions were evaluated throughout the water column during summer in Crystal Lake and Little Rock Lake. The purpose of our study was to investigate the use of phytopigments as markers of the main taxonomic groups of algae. As a first approach, multiple regression of marker pigments against chlorophyll a (chl a) was used to derive the best linear combination of the main xanthophylls (peridinin, fucoxanthin, alloxanthin, lutein, and zeaxanthin). A significant regression equation (r2= 0.98) was obtained for epilimnion data. The good fit indicates that the chl a:xanthophyll ratios were fairly constant in the epilimnion of the nine lakes over time. Chlorophyll a recalculated from the main xanthophylls in each sample showed good agreement with measured chl a in epilimnetic waters. A second approach used the CHEMTAX program to analyze the same data set. CHEMTAX provided estimates of chl a biomass for all algal classes and allowed distinction between diatoms and chrysophytes, and between chlorophytes and euglenophytes. These results showed a reasonably good agreement with biomass estimates from microscope counts, despite uncertainties associated with differences in sampling procedure. Changes of pigment ratios over time in the epilimnetic waters were also investigated, as well as differences between surface and deep samples of Little Rock Lake and Crystal Lake. We found evidence that changes in the ratio of photoprotective pigments to chl a occurred as a response to changes in light climate. Changes were also observed for certain light‐harvesting pigments. The comparison between multiple regression and CHEMTAX analyses for inferring chl a biomass from concentrations of marker pigments highlighted the need to take account of variations in pigment ratio, as well as the need to acquire additional data on the pigment composition of planktonic algae.  相似文献   

13.
Beer A  Gundermann K  Beckmann J  Büchel C 《Biochemistry》2006,45(43):13046-13053
Two different fucoxanthin-chlorophyll protein complexes (FCP) were purified from the centric diatom Cyclotella meneghiniana and characterized with regard to their polypeptide and pigment composition. Whereas the oligomeric FCPb complex is most probably composed of fcp5 gene products, the trimeric FCPa has subunits encoded by fcp1-3 and fcp6/7. The amount of the latter polypeptide is enhanced when FCPa is isolated from algae grown under HL conditions. This increase in Fcp6/7 polypeptides is accompanied by an increase in the pool of xanthophyll cycle pigments, diadinoxanthin and diatoxanthin, and a concomitant decrease in fucoxanthin content. In addition, the de-epoxidation ratio, i.e., the amount of diatoxanthin in relation to the pool of xanthophyll cycle pigments, is increased by a factor of 2. With regard to fluorescence yield, HL FCPa was quenched in comparison to LL FCPa. This is in accordance with the larger amount of diatoxanthin that is bound, which is supposed to act as a quencher like zeaxanthin in higher plants. Thus, we conclude that the enhanced content of diatoxanthin in FCPa plays a protective role, which is paralleled by a weakened light harvesting function due to a smaller amount of fucoxanthin.  相似文献   

14.
The present study shows that thylakoid membranes of the diatom Cyclotella meneghiniana contain much higher amounts of negatively charged lipids than higher plant or green algal thylakoids. Based on these findings, we examined the influence of SQDG on the de-epoxidation reaction of the diadinoxanthin cycle and compared it with results from the second negatively charged thylakoid lipid PG. SQDG and PG exhibited a lower capacity for the solubilization of the hydrophobic xanthophyll cycle pigment diadinoxanthin than the main membrane lipid MGDG. Although complete pigment solubilization took place at higher concentrations of the negatively charged lipids, SQDG and PG strongly suppressed the de-epoxidation of diadinoxanthin in artificial membrane systems. In in vitro assays employing the isolated diadinoxanthin cycle enzyme diadinoxanthin de-epoxidase, no or only a very weak de-epoxidation reaction was observed in the presence of SQDG or PG, respectively. In binary mixtures of the inverted hexagonal phase forming lipid MGDG with the negatively charged bilayer lipids, comparable suppression took place. This is in contrast to binary mixtures of MGDG with the neutral bilayer lipids DGDG and PC, where rapid and efficient de-epoxidation was observed. In complex lipid mixtures resembling the lipid composition of the native diatom thylakoid membrane, we again found strong suppression of diadinoxanthin de-epoxidation due to the presence of SQDG or PG. We conclude that, in the native thylakoids of diatoms, a strict separation of the MGDG and SQDG domains must occur; otherwise, the rapid diadinoxanthin de-epoxidation observed in intact cells upon illumination would not be possible.  相似文献   

15.
The effect of Fe(III) deficiency on qualitative and quantitative changes in pigment composition in Phaeodactylum tricornutum Bohlin was demonstrated by HPLC and AAS. Maximum content of pigments showed the diatom cells incubated at the optimum iron concentration, i.e., 10 M. The contents of chlorophyll a, chlorophyll c 1+c 2, fucoxanthin, diadinoxanthin and ,-carotene were 109.99, 20.16, 40.39, 1.29 and 1.48 fg per cell, respectively. The results obtained showed that Fe(III) affected qualitative and quantitative pigment composition in P. tricornutum. The content of individual pigments, proportions between accompanying pigments and their ratios to chlorophyll a were important indicators of phytoplankton response to iron stress. The strong reduction in ,-carotene content, several times (2–5) increase in diadinoxanthin level as compared to ,-carotene, and high amount of diadinoxanthin in relation to chlorophyll a were observed in algae growing at very low Fe(III) concentrations, 0.001 and 0.01 M. The data suggested that phytoplankton pigments could be a potential physiological marker.  相似文献   

16.
Lohr M  Wilhelm C 《Planta》2001,212(3):382-391
Recently, we reported the presence of the violaxanthin-antheraxanthin-zeaxanthin cycle in diatoms, and showed that violaxanthin is the putative precursor of both diadinoxanthin and fucoxanthin in the diatom Phaeodactylum tricornutum Bohlin (M. Lohr and C. Wilhelm, 1999, Proc. Natl. Acad. Sci. USA 96: 8784–8789). In the present study, two possible intermediates in the synthesis of violaxanthin from β-carotene were identified in P. tricornutum, namely β-cryptoxanthin and β-cryptoxanthin epoxide. In low light, the latter pigment prevails, but in high light β-cryptoxanthin accumulates, probably as the result of an increased activity of the xantophyll-cycle de-epoxidase. The apparent kinetics of several xanthophyll conversion steps were determined for P. tricornutum and Cyclotella meneghiniana Kützing. The experimentally determined conversion rates were used to evaluate the hypothetical pathway of xanthophyll synthesis in diatoms. For this purpose a mathematical model was developed which allows the calculation of theoretical rates of pigment conversion for microalgae under steady-state growth conditions. A comparison between measured and calculated conversion rates agreed well with the proposal of a sequential synthesis of fucoxanthin via violaxanthin and diadinoxanthin. The postulation of zeaxanthin as an obligatory intermediate in the synthesis of violaxanthin, however, resulted in large discrepancies between the measured and calculated rates of its epoxidation. Instead of zeaxanthin, β-cryptoxanthin epoxide may be involved in the biosynthesis of violaxanthin in diatoms. Received: 16 March 2000 / Accepted: 30 June 2000  相似文献   

17.
The role of the xanthophyll cycle in the adaptation of two chlorococcal algae Scenedesmus quadricauda and Chlorella sorokiniana to high irradiance was studied under laboratory and outdoor conditions. We wished to elucidate whether the xanthophyll cycle plays a key role in dissipating the excesses of absorbed light, as in higher plants, and to characterise the relationship between chlorophyll fluorescence parameters and the content of xanthophyll-cycle pigments. The xanthophyll cycle was found to be operative in both species; however, its contribution to overall non-photochemical quenching (NPQ) could only be distinguished in Scenedesmus (15–20% of total NPQ). The Scenedesmus cultures showed a larger pool of xanthophyll-cycle pigments than Chlorella, and lower sensitivity to photoinhibition as judged from the reduction of maximum quantum yield of photosystem II. In general, both algae had a larger xanthophyll-cycle pool when grown outdoors than in laboratory cultures. Comparing the two species, Scenedesmus exhibited a higher capacity to adapt to high irradiance, due to an effective quenching mechanism and high photosynthetic capacity; in contrast, Chlorella represents a species with a larger antennae system, less-efficient quenching and lower photosynthetic performance. Non-photochemical quenching (NPQ) induced through the xanthophyll cycle can, to a limited extent, represent a regulatory factor in diluted algal cultures grown in outdoor solar photobioreactors, as well as in natural algal phytoplankton populations exposed transiently to high irradiance. However, it does not play an appreciable role in dense, well-mixed microalgal suspensions. Received: 6 August 1998 / Accepted: 12 February 1999  相似文献   

18.
The xanthophyll cycle represents one of the important photoprotection mechanisms in plant cells. In the present review, we summarize current knowledge about the violaxanthin cycle of vascular plants, green and brown algae, and the diadinoxanthin cycle of the algal classes Bacillariophyceae, Xanthophyceae, Haptophyceae, and Dinophyceae. We address the biochemistry of the xanthophyll cycle enzymes with a special focus on protein structure, co-substrate requirements and regulation of enzyme activity. We present recent ideas regarding the structural basis of xanthophyll cycle-dependent photoprotection, including different models for the mechanism of non-photochemical quenching of chlorophyll a fluorescence. In a dedicated chapter, we also describe the unique violaxanthin antheraxanthin cycle of the Prasinophyceae, together with its implication for the mechanism of xanthophyll cycle-dependent heat dissipation. The interaction between the diadinoxanthin cycle and alternative electron flow pathways in the chloroplasts of diatoms is an additional topic of this review, and in the last chapter we cover aspects of the importance of xanthophyll cycle-dependent photoprotection for different algal species in their natural environments.  相似文献   

19.
Growth rate, pigment composition, and noninvasive chl a fluorescence parameters were assessed for a noncalcifying strain of the prymnesiophyte Emiliania huxleyi Lohman grown at 50, 100, 200, and 800 μmol photons·m?2·s?1. Emiliania huxleyi grown at high photon flux density (PFD) was characterized by increased specific growth rates, 0.82 d?1 for high PFD grown cells compared with 0.38 d?1 for low PFD grown cells, and higher in vivo chl a specific attenuation coefficients that were most likely due to a decreased pigment package, consistent with the observed decrease in cellular photosynthetic pigment content. High PFD growth conditions also induced a 2.5‐fold increase in the pool of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin responsible for dissipation of excess energy. Dark‐adapted maximal photochemical efficiency (Fv/Fm) remained constant at around 0.58 for cells grown over the range of PFDs, and therefore the observed decline, from 0.57 to 0.33, in the PSII maximum efficiency in the light‐adapted state, (Fv′/Fm′), with increasing growth PFD was due to increased dissipation of excess energy, most likely via the xanthophyll cycle and not due to photoinhibition. The PSII operating efficiency (Fq′/Fm′) decreased from 0.48 to 0.21 with increasing growth PFD due to both saturation of photochemistry and an increase in nonphotochemical quenching. The changes in the physiological parameters with growth PFD enable E. huxleyi to maximize rates of photosynthesis under subsaturating conditions and protect the photosynthetic apparatus from excess energy while supporting higher saturating rates of photosynthesis under saturating PFDs.  相似文献   

20.
The spectral reflectance of coral is inherently related to the amounts of photosynthetic pigments present in the zooxanthellae. There are no studies, however, showing that the suite of major photosynthetic pigments can be predicted from optical reflectance spectra. In this study, we measured cm-scale in vivo and in situ spectral reflectance for several colonies of the massive corals Porites lobata and Porites lutea, two colonies of the branching coral Porites compressa, and one colony of the encrusting coral Montipora flabellata in Kaneohe Bay, Oahu, Hawaii. For each reflectance spectrum, we collected a tissue sample and utilized high-performance liquid chromatography to quantify six major photosynthetic pigments, located in the zooxanthellae. We used multivariate multiple regression analysis with cross-validation to build and test an empirical linear model for predicting pigment concentrations from optical reflectance spectra. The model accurately predicted concentrations of chlorophyll a, chlorophyll c 2, peridinin, diadinoxanthin, diatoxanthin and β-carotene, with correlation coefficients of 0.997, 0.941, 0.995, 0.996, 0.980 and 0.984, respectively. The relationship between predicted and actual concentrations was 1:1 for each pigment, except chlorophyll c 2. This simple empirical model demonstrates the potential for routine, rapid, non-invasive monitoring of coral-zooxanthellae status, and ultimately for remote sensing of reef biogeochemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号