首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gunning  B. E. S.  Hughes  J. E.  Hardham  A. R. 《Planta》1978,143(2):121-144
The root of the water fern Azolla is a compact higher-plant organ, advantageous for studies of cell division, cell differentiation, and morphogenesis. The cell complement of A. filiculoides Lam. and A. pinnata R.Br. roots is described, and the lineages of the cell types, all derived ultimately from a tetrahedral apical cell, are characterised in terms of sites and planes of cell division within the formative zone, where the initial cells of the cell files are generated. Subsequent proliferation of the initial cells is highly specific, each cell type having its own programme of divisions prior to terminal differentiation. Both formative and proliferative divisions (but especially the former) occur in regular sequences. Two enantiomorphic forms of root develop, with the dispositions of certain types of cell correlating with the direction, dextrorse or sinistrorse, of the cell-division sequence in the apical cells. Root growth is determinate, the apical cell dividing about 55 times, and its cell-cycle duration decreasing from an initial 10 h to about 4 h during the major phase of root development. Sites of proliferation progress acropetally during aging, but do not penetrate into the zone of formative divisions. The detailed portrait of root development that was obtained is discussed with respect to genetic and epigenetic influences; quantal and non-quantal cell cycles; variation in cell-cycle durations; relationships between cell expansion and cell division: the role of the apical cell; and the limitation of the total number of mitotic cycles during root formation.  相似文献   

2.
Whether they are of low or high histopathological grade, human astrocytic tumors are characterized by a marked propensity to diffuse into large areas of normal brain parenchyma. This invasion relates mainly to cell motility, which enables individual cell migration to take place. The present study characterizes in vitro the gastrin-mediated effects on both the growth (cell proliferation vs. cell death) and motility dynamics of the human U87 and U373 glioblastoma cell lines. A computer-assisted phase-contrast microscope was used to track the number of mitoses versus cell deaths every 4 min over a 72-h period and so to quantitatively describe the trajectories of living U373 and U87 cells growing on plastic supports in culture media both with and without the addition of 0.1, 5, or 100 nM gastrin. While 5 or 100 nM gastrin only weakly (p < .05 to p < .01) increased cell proliferation in the U87 cell line and not in U373 one, it very significantly (p < .001) inhibited the amount of cell death at 5 and 100 nM in both the U87 and U373 lines. In addition, 5 nM gastrin markedly inhibited cell mobility in U87 (p < .00001) and U373 (p < .0001) glioblastoma models. All these data strongly suggest that gastrin plays a major role in the biological behavior of the in vitro U87 and U373 human glioblastoma cell lines in matters concerning their levels of cell motility and growth dynamics. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 373–382, 1998  相似文献   

3.
Protein prenylation is required for a variety of growth and developmental processes in flowering plants. Here we report the consequences of loss of function of all known prenylation subunits in the moss Physcomitrella patens. As in Arabidopsis, protein farnesyltransferase and protein geranylgeranyltransferase type I are not required for viability. However, protein geranylgeranyltransferase type I activity is required for cell adhesion, polar cell elongation, and cell differentiation. Loss of protein geranylgeranyltransferase activity results in colonies of round, single‐celled organisms that resemble unicellular algae. The loss of protein farnesylation is not as severe but also results in polar cell elongation and differentiation defects. The complete loss of Rab geranylgeranyltransferase activity appears to be lethal in P. patens. Labeling with antibodies to cell wall components support the lack of polarity establishment and the undifferentiated state of geranylgeranyltransferase type I mutant plants. Our results show that prenylated proteins play key roles in P. patens development and differentiation processes.  相似文献   

4.
Summary A. mediterranea cells capable of full morphogenesis were reassembled from nuclei, cytoplasm, and cell wall fraction.Reassembly was performed stepwise with the recombination of cytoplasm and cell walls and finally a nucleus was implanted.Reassembly of anucleate cells was carried out by means of retransplantation of their own cytoplasm or transplantation of cytoplasm from another cell. Combinations between cytoplasm and cell walls of dark or light maintained cells were prepared. The nuclei were always transferred from light maintained cells.  相似文献   

5.
For 14 samples of ventilated hay and 6 of fresh grass, digestibility was determined with young wethers. The contribution to the digestibility was calculated for the Weende components (crude protein, crude fibre, nitrogen-free extractives + fat) and for cell content and cell wall (Van Soest) components. For the cell content and crude protein, a hyperbolic relationship, y' = a − b/x between the digestibility coefficient of the components (y') and the percentage component in dry matter (DM, x) can be accepted with a sufficient degree of certainty. This means that the apparent digestibility of the cell content and crude protein increase with increasing concentration. The latter formula can be transformed into a linear regression y = ax − b where y = percentage digestible component in DM, a being an estimate of the true digestibility of the component and b an estimate of the endogenous excretion of the component. From these relationships some important practical conclusions can be drawn. For other dry matter components, such as crude fibre, nitrogen free extractives + fat and cell wall, the relationship between the digestibility coefficient and the percentage of the component in DM cannot be expressed by a simple regression line. The advantages of splitting the digestibility into a contribution from cell content and cell wall components versus splitting into contributions from the Weende components are discussed.By determination of the cell wall and its digestibility in vitro, a very good prediction for the dry matter digestibility of grass can be given, which is of great importance for plant breeding and grassland research.  相似文献   

6.
In this study, we aimed to investigate the effects of lncRNA CASC11 on gastric cancer (GC) cell progression through regulating miR-340-5p and cell cycle pathway. Expressions of lncRNA CASC11 in gastric cancer tissues and cell lines were determined by qRT-PCR. Differentially expressed lncRNAs, mRNAs and miRNAs were screened through microarray analysis. The relationship among CASC11, CDK1 and miR-340-5p was predicted by TargetScan and validated through dual luciferase reporter assay. Western blot assay examined the protein level of CDK1 and several cell cycle regulatory proteins. GO functional analysis and KEGG pathway analysis were used to predict the association between functions and related pathways. Cell proliferation was determined by CCK-8 assays. Cell apoptosis and cell cycle were detected by flow cytometry assay. CASC11 was highly expressed in GC tissues and cell lines. Knockdown of CASC11 inhibited GC cell proliferation, promoted cell apoptosis and blocked cell cycle. KEGG further indicated an enriched cell cycle pathway involving CDK1. QRT-PCR showed that miR-340-5p was down-regulated in GC cells tissues, while CDK1 was up-regulated. Furthermore, CASC11 acted as a sponge of miR-340-5p which directly targeted CDK1. Meanwhile, miR-340-5p overexpression promoted GC cell apoptosis and induced cell cycle arrest, while CDK1 overexpression inhibited cell apoptosis and accelerated cell cycle. Our study revealed the mechanism of CASC11/miR-340-5p/CDK1 network in GC cell line, and suggested that CASC11 was a novel facilitator that exerted a biological effect by activating the cell cycle signaling pathway. This finding provides a potential therapeutic target for GC.  相似文献   

7.
The bcl-2 gene product, a 25 kDa membrane protein residing at mitochondrial, microsomal and nuclear membrane sites within many cell types, is a broad and potent inhibitor of cell death by apoptosis. A family of bcl-2-related genes with death-inhibiting or -promoting activities has recently been described, indicating a potentially quite complex cell death regulatory network at the level of gene expression and protein-protein interactions. The function of bcl-2 may be to regulate a final common pathway in apoptosis. Current hypotheses suggest that oxidative stress, specific proteolytic activity or cell cycle control may be common elements in apoptosis through which bcl-2 exerts its survival function. Based on the extent to which elements of apoptotic pathways overlap with non-apoptotic cellular functions, the physiological role of bcl-2 may also extend to other cellular processes such as differentiation and proliferation.  相似文献   

8.
When treated with the steroid hormone 20‐hydroxyecdysone (20E), C7‐10 cells from the mosquito, Aedes albopictus, arrest in the G1 phase of the cell cycle. To explore whether 20E‐mediated cell cycle arrest proceeds through increased levels of cell cycle inhibitor (CKI) proteins, we cloned the Ae. albopictus homolog of dacapo, the single member of the Cip/Kip family of CKI proteins known from Drosophila melanogaster. The Ae. albopictus dacapo cDNA encoded a 261‐amino acid homolog of the Aedes aegypti protein XP_001651102.1, which is encoded by an ~23 kb gene containing three exons. Like dacapo from D. melanogaster, the ~27 kDa protein from Aedes and Culex mosquitoes contained several S/TXXE/D motifs corresponding to potential protein kinase CK2 phosphorylation sites, and a binding site for proliferating cell nuclear antigen (PCNA). When extracts from cells treated with 20E were analyzed by western blotting, using a primary antibody to synthetic peptides from the mosquito dacapo protein, up‐regulation of an ~27 kDa protein was observed within 24 h, and the abundance of the protein further increased by 48 h after hormone treatment. This is the first investigation of a cell cycle inhibitory protein in mosquitoes. The results reinforce growing evidence that 20E affects expression of proteins that regulate cell cycle progression. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
Summary Insect cell lines from Arthropoda represented by Lepidoptera, Coleoptera, Diptera, and Homoptera were evaluated for their ability to support replication of AcMNPV. In addition, some of the cell lines that were refractive to AcMNPV were tested with AcMNPV hsp70 Red, a recombinant carrying the red fluorescent protein (RFP) gene, for their ability to express this protein after inoculation. Of the 10 lepidopteran cell lines tested, only three cell lines from Helicoverpa zea (BCIRL-HZ-AM1), Lymantria dispar (IPLB-LD 65), and Cydia pomonella (CP-169) failed to support detectable viral replication as measured by tissue culture infectious dose 50 (TCID50) assay. Heliothis virescens (BCIRL-HV-AM1) produced the highest viral titer of 2.3±0.1×107 TCID50/ml followed by Heliothis subflexa (BCIRL-HS-AM1) at 4.7±0.1×106 TCID50/ml and Spodoptera frugiperda (IPLB-SF21) at 4.1±0.1×106 TCID50/ml. None of the coleopteran, dipteran, or homopteran cell lines supported AcMNPV replication. However, when studies were performed using AcMNPV hsp70 Red, the dipteran cell lines Aedes aegypti (ATC-10) and Drosophila melanogaster (line 2), both expressed the RFP as well as the refractive lepidopteran cell lines from H. zea and L. dispar. No RFP expression was observed in any of the coleopteran or homopteran cell lines. Cell lines refractive to AcMNPV did not appear to be adversely affected by the virus, as judged by their ability to multiply, nor was there any indication of induced apoptosis, as assessed by deoxyribonucleic acid fragmentation profiles or cell blebbing or both. Disclaimer: Mention of trade names or commercial product in the publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture. All programs and services of the U. S. Department of Agriculture are offered on a nondiseriminatory basis without regard to race, color, national origin, religion, sex, age marital status, or handicap.  相似文献   

10.
11.
Mitochondria,oxidative stress and cell death   总被引:4,自引:0,他引:4  
In addition to the well-established role of the mitochondria in energy metabolism, regulation of cell death has recently emerged as a second major function of these organelles. This, in turn, seems to be intimately linked to their role as the major intracellular source of reactive oxygen species (ROS), which are mainly generated at Complex I and III of the respiratory chain. Excessive ROS production can lead to oxidation of macromolecules and has been implicated in mtDNA mutations, ageing, and cell death. Mitochondria-generated ROS play an important role in the release of cytochrome c and other pro-apoptotic proteins, which can trigger caspase activation and apoptosis. Cytochrome c release occurs by a two-step process that is initiated by the dissociation of the hemoprotein from its binding to cardiolipin, which anchors it to the inner mitochondrial membrane. Oxidation of cardiolipin reduces cytochrome c binding and results in an increased level of “free” cytochrome c in the intermembrane space. Conversely, mitochondrial antioxidant enzymes protect from apoptosis. Hence, there is accumulating evidence supporting a direct link between mitochondria, oxidative stress and cell death.  相似文献   

12.
The physiological function of cell wall amidases has been investigated in several proteobacterial species. In all cases, they have been implicated in the cleavage of cell wall material synthesized by the cytokinetic ring. Although typically non‐essential, this activity is critical for daughter cell separation and outer membrane invagination during division. In Escherichia coli, proteins with LytM domains also participate in cell separation by stimulating amidase activity. Here, we investigated the function of amidases and LytM proteins in the opportunistic pathogen Pseudomonas aeruginosa. In agreement with studies in other organisms, PaAmiB and three LytM proteins were found to play crucial roles in P. aeruginosa cell separation, envelope integrity and antibiotic resistance. Importantly, the phenotype of amidase‐defective P. aeruginosa cells also differed in informative ways from the E. coli paradigm; PaAmiB was found to be essential for viability and the successful completion of cell constriction. Our results thus reveal a key role for amidase activity in cytokinetic ring contraction. Furthermore, we show that the essential function of PaAmiB can be bypassed in mutants activated for a Cpx‐like envelope stress response, suggesting that this signaling system may elicit the repair of division machinery defects in addition to general envelope damage.  相似文献   

13.
Cell size, cell growth, and cell cycle events are necessarily intertwined to achieve robust bacterial replication. Yet, a comprehensive and integrated view of these fundamental processes is lacking. Here, we describe an image‐based quantitative screen of the single‐gene knockout collection of Escherichia coli and identify many new genes involved in cell morphogenesis, population growth, nucleoid (bulk chromosome) dynamics, and cell division. Functional analyses, together with high‐dimensional classification, unveil new associations of morphological and cell cycle phenotypes with specific functions and pathways. Additionally, correlation analysis across ~4,000 genetic perturbations shows that growth rate is surprisingly not predictive of cell size. Growth rate was also uncorrelated with the relative timings of nucleoid separation and cell constriction. Rather, our analysis identifies scaling relationships between cell size and nucleoid size and between nucleoid size and the relative timings of nucleoid separation and cell division. These connections suggest that the nucleoid links cell morphogenesis to the cell cycle.  相似文献   

14.
15.
16.
Allium hirtifolim (Persian Shallot) belongs to Allium genus (Alliaceae family). We investigated the in vitro effects of chloroformic extract of A. hirtifolium and its Allicin on the proliferation of HeLa (cervical cancer), MCF7 (human, caucasion, breast, adenocarcinoma) and L929 (mouse, C3H/An, connective) cell lines. Our results showed that components of A. hirtifolium might inhibit proliferation of tumor cell lines. This inhibition in HeLa and MCF-7 cells was dose-dependent. The presence of Allicin was evaluated by TLC method in bulbs and the extract of A. hirtifolium was analyzed by HPLC. MTT test was performed 24, 48 and 72 h after cell culture. A significant decrease in cell lines was observed in HeLa and MCF-7 as compared to L929 cell lines. DNA fragmentation analysis revealed a large number of apoptotic cells in treated HeLa and MCF-7 cell groups, but no effects in L929 cells. Therefore A. hirtifolium might be a candidate for tumor suppression.  相似文献   

17.
The mode of action of NaCl in terms of cell proliferation and cell death was examined in seminal roots of rice plants (Oryza sativa L.). Salt/sodium chloride was inhibitory to cell number increase and to cell death in cortical tissue, whereas final cortical cell size was the same as in control roots that were not exposed to NaCl. It seems that NaCl may stimulate the transition phase from cell division to cell elongation. Further analysis of the role of NaCl in the suppression of cortical cell death was confined to a delay in the early stage of cell collapse, which was caused by tonoplast disruption, and plasma-membrane destruction. Sodium chloride did not have any effect on the cell-to-cell movement of macromolecules in the root cortex. In-situ hybridization studies indicated that expression of the gene for tonoplast intrinsic protein (rTip1) was localized predominantly in the epidermal and exodermal cells as well as in metaxylem cells in seminal roots. Upon NaCl treatment, the intensity of rTip1 gene expression was raised in the cortical parenchyma, suggesting that salt plays a role in the rapid onset of cell elongation. Received: 2 April 1998 / Accepted: 18 September 1998  相似文献   

18.
Cell proliferation is a fundamental event essential for plant organogenesis and contributes greatly to the final organ size. Although the control of cell proliferation in plants has been extensively studied, how the plant sets the cell number required for a single organ is largely elusive. Here, we describe the Arabidopsis SMALL ORGAN 4 (SMO4) that functions in the regulation of cell proliferation rate and thus final organ size. The smo4 mutant exhibits a reduced size of organs due to the decreased cell number, and further analysis reveals that such phenotype results from a retardation of the cell cycle progression during organ development. SMO4 encodes a homolog of NUCLEOLAR PROTEIN 53 (NOP53) in Saccharomyces cerevisiae and is expressed primarily in tissues undergoing cell proliferation. Nevertheless, further complementation tests show that SMO4 could not rescue the lethal defect of NOP53 mutant of S. cerevisiae. These results define SMO4 as an important regulator of cell proliferation during organ growth and suggest that SMO4 might have been evolutionarily divergent from NOP53.  相似文献   

19.
Effect of osmotic pressure on root growth,cell cycle and cell elongation   总被引:8,自引:0,他引:8  
Summary The paper reports a study of root growth, the duration of the cell division cycle and cell size, inAllium cepa roots grown in mannitol solution, with osmotic pressures of 0–16 atm., at 25° C, with aeration. Root growth decreases markedly as the osmotic pressure rises, at 12 atm. being about 35% of what it is at 0 atm. The rate of the cell cycle, , expressed as the percentage of cells passing through any given point in the cycle in one hour, is a roughly linear function of the osmotic pressure, and at 12 atm. is reduced to 80% of what it is at 0 atm. The reaction of the cell size to osmotic pressure is similar to that of the growth. The relative values of the two diverge progressively as the osmotic pressure increases and at 12 atm. the elongation of the cells has dropped to 40% of normal.The data obtained agree with those given by the equationG = K · · L, in whichK is a constant, is the rate of the cycle (reciprocal of its duration) andL the average size of the mature epidermal cells.  相似文献   

20.
Both the psychrophile Aquaspirillum arcticum and the psychrotroph Bacillus psychrophilus were found to acquire thermotolerance when either heat shocked or treated with nalidixic acid; two conditions which also resulted in the induction of heat shock proteins and/or stress proteins and also cell filamentation. The possible relatedness of acquisition of thermotolerance and cell filamentation was examined by inhibiting cell filamentation with 1.5% KCl. A. arcticum cells which were heat shocked in the presence of KCl did not become filamentous nor acquire thermotolerance suggesting that these two responses may be related. On the other hand, when cells of B. psychrophilus were treated in a similar fashion, they also were prevented from cell filamentation but their ability to become thermotolerant was unaffected. When A. arcticum cells were heat shocked in the presence of chloramphenicol, heat shock protein synthesis was inhibited but not the acquistion of thermotolerance. Similar experiments with B. psychrophilus revealed that partial induction of heat shock proteins still occurred; however, no thermotolerance was exhibited.Abbreviations hsp(s) heat shock proteins(s) - SEM standard error of the mean  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号