首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Capsule: This study documents evidence of interglacial refugia during the Last Interglacial for birds in the Mediterranean region, and emphasizes the importance of the Last Interglacial on the geographic distribution and genetic structure of Mediterranean species.

Aims: We focused on the historical biogeography of the subalpine warbler complex: Subalpine Warbler Sylvia cantillans and Moltoni’s Warbler Sylvia subalpina; we tested if this Mediterranean bird complex shared a similar demographic fate as the present-day widespread species in the temperate zones of Europe, through the late Quaternary glacial-interglacial cycles.

Methods: An ecological niche model was developed to predict the geographic distribution of the subalpine warblers under the past (the Last Interglacial and the Last Glacial Maximum) and the present bioclimatic conditions. Additionally, Bayesian Skyline Plot analysis was used to assess effective population size changes over the history of the subalpine warbler complex.

Results: During the Last Glacial Maximum, the subalpine warblers almost reached their current distribution in the Mediterranean region; yet, unlike the widespread temperate bird species, they survived the Last Interglacial in allopatric refugia in the Mediterranean region.

Conclusion: A unique biogeographic pattern was revealed, indicating the importance of the Last Interglacial on current distributional patterns and demographic histories of common bird species in the Mediterranean region. This study suggests that Mediterranean biogeography is far more complex than previously assumed, and so deserves further study and more attention.  相似文献   

2.
We assess the role of the Carpathians as an extra‐Mediterranean glacial refugium for the crested newt Triturus cristatus. We combine a multilocus phylogeography (one mitochondrial protein‐coding gene, three nuclear introns, and one major histocompatibility complex gene) with species distribution modelling (projected on current and Last Glacial Maximum climate layers). All genetic markers consistently show extensive genetic variation within and genetic depletion outside the Carpathians. The species distribution model suggests that most of the current range was unsuitable at the Last Glacial Maximum, but a small suitable area remained in the Carpathians. Triturus cristatus dramatically expanded its postglacial range, colonizing much of temperate Eurasia from a glacial refugium in the Carpathians. Within the Carpathians, T. cristatus persisted in multiple geographically discrete regions, providing further support for a Carpathian ‘refugia within refugia’ scenario. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 574–587.  相似文献   

3.
The Mongolian Plateau (MP), which is situated in the interior of Asia and possesses a typical continental climate, experienced harsh climatic conditions during the Quaternary glacial fluctuations. Although these events likely had huge impacts on the local animal populations, the current effects have hardly been explored. To investigate whether the MP supported a refugium along an oceanic-continental gradient (ROCG), and whether this refugium was glacial or interglacial, we investigated the demographic and phylogeographic history of an endemic mammal species, the desert hamster Phodopus roborovskii. We reconstructed the demographic variation, the phylogeographic diffusion, and modelled the potential habitat during historical periods. The genetic diversity in the MP was the highest among all the localities, and the MP was a suitable habitat throughout the modelled historical periods. A phylogeographic diffusion analysis emphasized the importance of the MP as the centre of origin, preservation and spread for P. roborovskii. The homogeneous landscape provided the opportunity for a wide gene flow, which resulted in low resolution of the phylogenetic relationships. Moreover, P. roborovskii was favoured by the interglacial condition, with both its demographical and geographical ranges expanded within the interglacial periods. The range variation from the Last Glacial Maximum to the current condition reflects a distinct longitudinal shift, while both ranges largely contracted from that of the Last Interglacial. Our results support that the MP served as a refugium and spread centre for P. roborovskii during the Quaternary climate fluctuations. The interglacial expansion and the longitudinal shifts highlighted the important effects of precipitations on the distribution range of species adapted to arid and semi-arid during glacial oscillations.  相似文献   

4.
Pleistocene climatic oscillations have played an important role in shaping many species’ current distributions. In recent years, there has been increasing interest in studying the effects of glacial periods on East Asian birds. Integrated approaches allow us to study past distribution range changes due to Pleistocene glaciation, and how these changes have affected current population genetic structure, especially for species with unusual distribution patterns. The Wuyi disjunction is the disjunct distribution of birds between the Wuyi Mountains in south‐eastern China and south‐western China. Although several species exhibit the Wuyi disjunction, the process behind this unusual distribution pattern has remained relatively unstudied. Therefore, we used the Chestnut‐vented Nuthatch Sitta nagaensis as a model species to investigate the possible causes of the Wuyi disjunction. Based on phylogenetic analyses with three mitochondrial and six nuclear regions, the Wuyi population of the Chestnut‐vented Nuthatch was closely related to populations in mid‐Sichuan, from which it diverged approximately 0.1 million years ago, despite the long geographical distance between them (over 1,300 km). In contrast, geographically close populations in mid‐ and southern Sichuan were genetically divergent from each other (more than half a million years). Ecological niche modelling suggested that the Chestnut‐vented Nuthatch has experienced dramatic range expansions from Last Interglacial period to Last Glacial Maximum, with some range retraction following the Last Glacial period. We propose that the Wuyi disjunction of the Chestnut‐vented Nuthatch was most likely due to recent range expansion from south‐western China during the glacial period, followed by postglacial range retraction.  相似文献   

5.
The Pleistocene was an epoch of extreme climatic and environmental changes. How individual species responded to the repeated cycles of warm and cold stages is a major topic of debate. For the European fauna and flora, an expansion–contraction model has been suggested, whereby temperate species were restricted to southern refugia during glacial times and expanded northwards during interglacials, including the present interglacial (Holocene). Here, we test this model on the red deer (Cervus elaphus) a large and highly mobile herbivore, using both modern and ancient mitochondrial DNA from the entire European range of the species over the last c. 40 000 years. Our results indicate that this species was sensitive to the effects of climate change. Prior to the Last Glacial Maximum (LGM) haplogroups restricted today to South‐East Europe and Western Asia reached as far west as the UK. During the LGM, red deer was mainly restricted to southern refugia, in Iberia, the Balkans and possibly in Italy and South‐Western Asia. At the end of the LGM, red deer expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, Scandinavia, Germany, Poland and Belarus. Ancient DNA data cannot rule out refugial survival of red deer in North‐West Europe through the LGM. Had such deer survived, though, they were replaced by deer migrating from Iberia at the end of the glacial. The Balkans served as a separate LGM refugium and were probably connected to Western Asia with genetic exchange between the two areas.  相似文献   

6.
Background: Previous studies have indicated that several plant species had shown remarkable resistance to Pleistocene climate changes and survived the Last Glacial Maximum in scattered ice-free refugia within the European Alps and peripheral areas nearby. The ‘Expansion–Contraction’ model has been proposed to describe the responses of organisms to Pleistocene climate change. Nevertheless, the timing and extent to which species were affected by Quaternary glaciations remain uncertain.

Aims: To test whether the ‘Expansion–Contraction’ model appropriately describes plant distribution responses to Pleistocene climate change in the Western Alps.

Methods: We employed two Bayesian coalescent-based methods on plastid DNA sequences to infer the demographic histories of Ranunculus kuepferi, R. glacialis, Biscutella laevigata, Saxifraga oppositifolia, Primula allionii, P. marginata, Silene cordifolia and Viola argenteria.

Results: R. kuepferi conformed to the ‘Expansion–Contraction’ model, while other species did not. For example, P. allionii showed an alarming population decline during the Middle-Late Pleistocene.

Conclusions: The application of Bayesian coalescent-based methods to plastid DNA data offers useful insights into plant demography as a function of palaeoclimatic events. Our findings favour an idiosyncratic response of plant species in the Western Alps to Pleistocene climate change.  相似文献   

7.
The Last Glacial Maximum (LGM) severely restricted forest ecosystems on New Zealand’s South Island, but the extent of LGM distribution for forest species is still poorly understood. We used mitochondrial DNA phylogeography (COI) and ecological niche modelling (ENM) to identify LGM refugia for the mycophagous beetle Agyrtodes labralis (Leiodidae), a forest edge species widely distributed in the South Island. Both the phylogenetic analyses and the ENM indicate that A. labralis refuged in Kaikoura, Nelson, and along much of the South Island’s west coast. Phylogeography of this species indicates that recolonization of the largely deforested east and southeast South Island occurred in a west–east direction, with populations moving through the Southern Alps, and that the northern refugia participated little in interglacial population expansion. This contradicts published studies of other New Zealand species, in which recolonization occurs in a north–south fashion from many of the same refugia.  相似文献   

8.
The present study aimed to understand how Anatolian ground squirrels, Spermophilus xanthoprymnus (Bennett, 1835), have responded to global climate changes through the Late Quaternary glacial–interglacial cycles. Accordingly, ecological niche modelling was used, together with molecular phylogeography. Using species occurrence data compiled from field observations and relevant sources and the maximum entropy machine learning algorithm in MAXENT, an ecological niche model was developed to predict the potential geographical distribution of S. xanthoprymnus under reconstructed past (the Last Interglacial, approximately 130 000–116 000 years ago and the Last Glacial Maximum, 21 000 years ago) and present (1950–2000) bioclimatic conditions. In addition, using cytochrome b mitochondrial DNA sequences deposited in GenBank and the Bayesian skyline plot in BEAST, demographic events (population fluctuations) were further assessed over the history of Anatolian ground squirrels. Combined ecological niche modelling and molecular phylogeography revealed that S. xanthoprymnus, itself also a temperate (mid‐latitude) species, has responded to global climate changes through the Late Quaternary glacial–interglacial cycles in a fashion converse to that of most temperate (mid‐latitude) species: its range expanded rather than contracted during the glacial periods and contracted rather than expanded during the interglacial periods. In other words, Anatolian ground squirrels have been in refugia during the interglacial periods, suggesting that the classical paradigm of glacial range contraction and interglacial range expansion for temperate species may not be as general as previously assumed. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 19–32.  相似文献   

9.
The warm-temperate vegetation of Korea, currently limited to southern coastal areas, shifted during the Last Glacial Maximum (LGM) towards glacial refugia, putatively located in southern Japan. We hypothesized two scenarios of post-glacial re-colonization of warm-temperate species in relation to current levels of genetic diversity within their populations. If extant Korean populations originated from a single source (a single glacial refugium), we expect significantly lower levels of genetic diversity relative to those from Japan due to founder effects. Alternatively, if they were derived from multiple source populations, levels of genetic diversity within Korean populations will not be significantly reduced compared to those of Japanese ones. To test which of these scenarios is more likely, we investigated the patterns of genetic diversity in 14 populations (seven from southern Korea and seven from southern Japan) of the broad-leaved evergreen tree Machilus thunbergii, employing 11 allozyme loci. High levels of genetic variation in M. thunbergii were found both in southern Korea and southern Japan, with a considerable genetic homogeneity not only between the two regions but also between populations within the two regions. These results suggest a pattern of re-colonization after the LGM fitting the second scenario (immigration from multiple refugia), probably through multiple waves and/or with large founder populations.  相似文献   

10.
The barbastelle (Barbastella barbastellus) is a rare forest bat with a wide distribution in Europe. Here, we combine results from the analysis of two mtDNA fragments with species distribution modelling to determine glacial refugia and postglacial colonization routes. We also investigated whether niche conservatism occurs in this species. Glacial refugia were identified in the three southern European peninsulas: Iberia, Italy and the Balkans. These latter two refugia played a major role in the postglacial colonization process, with their populations expanding to England and central Europe, respectively. Palaeo‐distribution models predicted that suitable climatic conditions existed in the inferred refugia during the last glacial maximum (LGM). Nevertheless, the overlap between the current and the LGM distributions was almost inexistent in Italy and in the Balkans, meaning that B. barbastellus populations were forced to shift range between glacial and interglacial periods, a process that probably caused some local extinctions. In contrast, Iberian populations showed a ‘refugia within refugium’ pattern, with two unconnected areas containing stable populations (populations that subsisted during both glacial and interglacial phases). Moreover, the match between LGM models and the refugial areas determined by molecular analysis supported the hypothesis of niche conservatism in B. barbastellus. We argue that geographic patterns of genetic structuring, altogether with the modelling results, indicate the existence of four management units for conservation: Morocco, Iberia, Italy and UK, and Balkans and central Europe. In addition, all countries sampled possessed unique gene pools, thus stressing the need for the conservation of local populations.  相似文献   

11.
Alternating glacial and interglacial periods led to range shifts (contractions and expansions), persistence in distinct glacial refugia and extinction events in various temperate organisms. Today, the integrative analysis of molecular markers and spatial distribution models conducted for multiple taxa allows the detection of phylogeographical patterns, thus reconstructing major biogeographical events in their shared evolutionary history. In this study, the effects of past climate change on the evolutionary history of two sympatric moth species (Gnopharmia colchidaria s.l. and G. kasrunensis) and their host plants (Prunus scoparia and P. fenzliana) were inferred for the largely neglected biodiversity hot spot Iran. We complementarily analyzed the population structure of both moth species (187 specimens, based on COI) in congruence with batched species distribution models (SDMs) for all four taxa and for the times of the Last Glacial Maximum (21 ky BP), 6 ky BP and today. Coincidence of SDMs and the distribution of haplotype lineages indicated a shared refugium for the southwestern Zagros Mountains and potential species-specific refugial areas in the southern Caucasus and the Kope-Dagh Mountains. Both moth species experienced past population expansion.  相似文献   

12.
Recent empirical work on cloud forest‐adapted species supports the role of both old divergences across major geographical areas and more recent divergences attributed to Pleistocene climate changes. The shrub Moussonia deppeana is distributed in northern Mesoamerica, with geographically disjunct populations. Based on sampling throughout the species range and employing plastid and nuclear markers, we (i) test whether the fragmented distribution is correlated with main evolutionary lineages, (ii) reconstruct its phylogeographical history to infer the history of cloud forest in northern Mesoamerica and (iii) evaluate a set of refugia/vicariance scenarios for the region and demographic patterns of the populations whose ranges expanded and tracked cloud forest conditions during the Last Glacial Maximum. We found a deep evolutionary split in M. deppeana about 6–3 Ma, which could be consistent with a Pliocene divergence. Comparison of variation in plastid and nuclear markers revealed several lineages mostly congruent with their isolated geographical distribution and restricted gene flow among groups. Results of species distribution modelling and coalescent simulations fit a model of multiple refugia diverging during interglacial cycles. The demographic history of M. deppeana is not consistent with an expanding–contracting cloud forest archipelago model during the Last Glacial Maximum. Instead, our data suggest that populations persisted across the geographical range throughout the glacial cycles, and experienced isolation and divergence during interglacial periods.  相似文献   

13.
1. At the end of the Last Glacial Maximum brown bears Ursus arctos recolonized the glacial landscape of Central and Northern Europe faster than all other carnivorous mammal species of the Holocene fauna. Ursus arctos was recorded in Northern Europe from the beginning of the Late-Glacial. The recolonization of northern Central Europe may have taken place directly after the maximum glaciation. The distribution of the brown bear was restricted to glacial refugia only during the Last Glacial Maximum, for probably no more than 10 000 years. 2. Genetic analyses have suggested three glacial refugia for the brown bear: the Iberian Peninsula, the Italian Peninsula and the Balkans. Subfossil records of Ursus arctos from north-western Moldova as well as reconstructed environmental conditions during the Last Glacial Maximum in this area suggest to us a fourth glacial refuge for the brown bear. Because of its connection to the Carpathians, we designate this as the ‘Carpathian refuge’. 3. Due to the low genetic distance between brown bears of northern Norway, Finland, Estonia, north-eastern Russia and the northern Carpathians (the so-called eastern lineage), the Carpathians were considered the geographical origin of the recolonization of these regions. During the recolonization of northern Europe the brown bear probably reached these areas rapidly from the putative Carpathian refuge.  相似文献   

14.
Quaternary climatic oscillations greatly influenced the present-day population genetic structure of animals and plants. For species with high dispersal and reproductive potential, phylogeographic patterns resulting from historical processes can be cryptic, overshadowed by contemporary processes. Here we report a study of the phylogeography of Odocoileus hemionus , a large, vagile ungulate common throughout western North America. We examined sequence variation of mitochondrial DNA (control region and cytochrome b ) within and among 70 natural populations across the entire range of the species. Among the 1766 individual animals surveyed, we recovered 496 haplotypes. Although fine-scale phylogenetic structure was weakly resolved using phylogenetic methods, network analysis clearly revealed the presence of 12 distinct haplogroups. The spatial distribution of haplogroups showed a strong genetic discontinuity between the two morphological types of O. hemionus , mule deer and black-tailed deer, east and west of the Cascade Mountains in the Pacific Northwest. Within the mule deer lineage, we identified several haplogroups that expanded before or during the Last Glacial Maximum, suggesting that mule deer persisted in multiple refugia south of the ice sheets. Patterns of genetic diversity within the black-tailed deer lineage suggest a single refugium along the Pacific Northwest coast, and refute the hypothesis that black-tailed deer persisted in one or more northern refugia. Our data suggest that black-tailed deer recolonized areas in accordance with the pattern of glacial retreat, with initial recolonization northward along a coastal route and secondary recolonization inland.  相似文献   

15.
Aim We examine several hypotheses emerging from biogeographical and fossil records regarding glacial refugia of a southern thermophilic plant species. Specifically, we investigated the glacial history and post‐glacial colonization of a forest understorey species, Trillium cuneatum. We focused on the following questions: (1) Did T. cuneatum survive the Last Glacial Maximum (LGM) in multiple refugia, and (if so) where were they located, and is the modern genetic structure congruent with the fossil record‐based reconstruction of refugia for mesic deciduous forests? (2) What are the post‐glacial colonization patterns in the present geographical range? Location South‐eastern North America. Methods We sampled 45 populations of T. cuneatum throughout its current range. We conducted phylogeographical analyses based on maternally inherited chloroplast DNA (cpDNA haplotypes) and used TCS software to reconstruct intraspecific phylogeny. Results We detected six cpDNA haplotypes, geographically highly structured into non‐overlapping areas. With one exception, none of the populations had mixed haplotype composition. TCS analysis resulted in two intraspecific cpDNA lineages, with one clade subdivided further by shallower diversification. Main conclusions Our investigation revealed that T. cuneatum survived the LGM in multiple refugia, belonging to two (western, eastern) genealogical lineages geographically structured across south‐eastern North America. The western clade is confined to the south‐western corner of T. cuneatum’s modern range along the Lower Mississippi Valley, where fossil records document a major refugium of mesic deciduous forest. For the eastern clade, modern patterns of cpDNA haplotype distribution suggest cryptic vicariance, in the form of forest contractions and subsequent expansions associated with Pleistocene glacial cycles, rather than simple southern survival and subsequent northward colonization. The north–south partitioning of cpDNA haplotypes was unexpected, suggesting that populations of this rather southern thermophilic species may have survived in more northern locations than initially expected based on LGM climate reconstruction, and that the Appalachian Mountains functioned as a barrier to the dispersal of propagules originating in more southern refugia. Furthermore, our results reveal south‐west to north‐east directionality in historical migration through the Valley and Ridge region of north‐west Georgia.  相似文献   

16.
The phylogeographic architecture of the common vole, Microtus arvalis, has been well‐studied using mitochondrial DNA and used to test hypotheses relating to glacial refugia. The distribution of the five described cytochrome b (cyt b) lineages in Europe west of Russia has been interpreted as a consequence of postglacial expansion from both southern and central European refugia. A recently proposed competing model suggests that the ‘cradle’ of the M. arvalis lineages is in western central Europe from where they dispersed in different directions after the Last Glacial Maximum. In the present study, we report a new cyt b lineage of the common vole from the Balkans that is not closely related to any other lineage and whose presence might help resolve these issues of glacial refugia. The Balkan phylogroup occurs along the southern distributional border of M. arvalis in central and eastern Bosnia and Herzegovina, Montenegro, and eastern Serbia. Further north and west in Slovenia, Bosnia and Herzegovina, and Serbia, common voles belong to the previously‐described Eastern lineage, whereas both lineages are sympatric in one site in Bosnia and Herzegovina. The Balkan phylogroup most reasonably occupied a glacial refugium already known for various Balkan endemic species, in contrast to the recently proposed model. South‐east Europe is an absolutely crucial area for understanding the postglacial colonization history of small mammals in Europe and the present study adds to the very few previous detailed phylogeographic studies of this region. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 788–796.  相似文献   

17.
Frequently, Pleistocene climatic cycling has been found to be the diver of genetic structuring in populations, even in areas that did not have continental ice sheets, such as on the Qinghai‐Tibetan Plateau (QTP). Typically, species distributed on the plateau have been hypothesized to re‐treat to south‐eastern refugia, especially during the Last Glacial Maximum (LGM). We evaluated sequence variation in the mitochondrial DNA gene Cytb and the nuclear DNA gene RAG‐1 in Rana kukunoris, a species endemic to the QTP. Two major lineages, N and S, were identified, and lineage N was further subdivided into N1 and N2. The geographical distribution and genealogical divergences supported the hypothesis of multiple refugia. However, major lineages and sublineages diverged prior to the LGM. Demographical expansion was detected only in lineage S and sublineage N2. Sublineage N1 might have survived several glacial cycles in situ and did not expand after the LGM because of the absence of suitable habitat; it survived in river islands. Genetic analysis and environment modelling suggested that the north‐eastern edge of QTP contained a major refugium for R. kukunoris. From here, lineage S dispersed southwards after the LGM. Two microrefugia in northern Qilian Mountains greatly contributed to current level of intraspecific genetic diversity. These results were found to have important implications for the habitat conservation in Northwest China.  相似文献   

18.
Glacial refugia protected and promoted biodiversity during the Pleistocene, not only at a broader scale, but also for many endemics that contracted and expanded their ranges within refugial areas. Understanding the evolutionary history of refugial endemics is especially important in the case of endangered species to recognize the origins of their genetic structure and thus produce better informed conservation practices. The Iberian Peninsula is an important European glacial refugium, rich in endemics of conservation concern, including small mammals, such as the Cabrera vole (Microtus cabrerae). This near‐threatened rodent is characterized by an unusual suite of genetic, life history and ecological traits, being restricted to isolated geographic nuclei in fast‐disappearing Mediterranean subhumid herbaceous habitats. To reconstruct the evolutionary history of the Cabrera vole, we studied sequence variation at mitochondrial, autosomal and sex‐linked loci, using invasive and noninvasive samples. Despite low overall mitochondrial and nuclear nucleotide diversities, we observed two main well‐supported mitochondrial lineages, west and east. Phylogeographic modelling in the context of the Cabrera vole's detailed fossil record supports a demographic scenario of isolation of two populations during the Last Glacial Maximum from a single focus in the southern part of the Iberian Peninsula. In addition, our data suggest subsequent divergence within the east, and secondary contact and introgression of the expanding western population, during the late Holocene. This work emphasizes that refugial endemics may have a phylogeographic history as rich as that of more widespread species, and conservation of such endemics includes the preservation of that genetic legacy.  相似文献   

19.
Of the four species encompassing the genus Pelobates, only two overlap along a narrow contact zone, i.e., Pelobates fuscus and Pelobates syriacus. Our study investigated the shifts in niche similarity of these two closely related species from the Last Interglacial towards the end of the twenty-first century. We computed climatic suitability models using Maxent and projected them onto future and past climates. We used fossil occurrences to test the predictive accuracy of past projections. Niche similarity was assessed between the studied species using Schoener’s D index and a background similarity test. Finally, we evaluated niche differentiation by contrasting the species occurrences using a logistic regression analysis. The ecological niches are slightly extended outside the present geographical ranges in the Caucasus and the Balkans, south for P. fuscus and north and west for P. syriacus, suggesting that their present distribution is not at equilibrium with the climate. The Last Interglacial distribution of P. fuscus included British Isles and broad areas in western, central, and northern Europe, while P. syriacus extended northwards in the Balkans. The validation with fossil records revealed good predictive performance (omission error?=?4.1 % for P. fuscus and 16.6 % for P. syriacus). During the Last Glacial Maximum, climatic suitability persisted in refugia in southern Europe, Pannonian Basin, and Caucasus for P. fuscus, and Israel, southern Balkans, and Caucasus for P. syriacus. Present potential distributions revealed a low similarity of species’ ecological niches, comparable with Last Interglacial, but projections towards 2080 revealed a sharp increase.  相似文献   

20.
K He  N-Q Hu  X Chen  J-T Li  X-L Jiang 《Heredity》2016,116(1):23-32
The mountains of southwest China (MSC) harbor extremely high species diversity; however, the mechanism behind this diversity is unknown. We investigated to what degree the topography and climate change shaped the genetic diversity and diversification in these mountains, and we also sought to identify the locations of microrefugia areas in these mountains. For these purposes, we sampled extensively to estimate the intraspecific phylogenetic pattern of the Chinese mole shrew (Anourosorex squamipes) in southwest China throughout its range of distribution. Two mitochondrial genes, namely, cytochrome b (CYT B) and NADH dehydrogenase subunit 2 (ND2), from 383 archived specimens from 43 localities were determined for phylogeographic and demographic analyses. We used the continuous-diffusion phylogeographic model, extensive Bayesian skyline plot species distribution modeling (SDM) and approximate Bayesian computation (ABC) to explore the changes in population size and distribution through time of the species. Two phylogenetic clades were identified, and significantly higher genetic diversity was preserved in the southern subregion of the mountains. The results of the SDM, continuous-diffusion phylogeographic model, extensive Bayesian skyline plot and ABC analyses were congruent and supported that the Last Interglacial Maximum (LIG) was an unfavorable period for the mole shrews because of a high degree of seasonality; A. squamipes survived in isolated interglacial refugia mainly located in the southern subregion during the LIG and rapidly expanded during the last glacial period. These results furnished the first evidence for major Pleistocene interglacial refugia and a latitudinal effect in southwest China, and the results shedding light on the higher level of species richness in the southern subregion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号