首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 859 毫秒
1.
辽河源自然保护区油松群落结构及物种多样性   总被引:1,自引:0,他引:1  
采用样方调查方法,对河北辽河源自然保护区油松(Pinus tabuliformis)天然次生林的物种组成、群落结构及物种多样性进行研究,结果表明:研究样地内共有维管束植物42科、92属、146种。4个龄组群落垂直结构明显,乔木层、灌木层、草本层的优势种分别为油松、土庄绣线菊(Spiraea pubescens)+蒙古栎(Quercus mongolica)、薹草(Carex tristachya)。4个龄组的丰富度指数和多样性指数均为草本层灌木层,幼龄林均匀度指数表现为灌木层草本层,其他龄组的均匀度指数为草本层灌木层。林下物种多样性表现为:灌木层的物种丰富度指数、Shannon多样性指数均为幼龄林成熟林中龄林近熟林,Simpson多样性指数为成熟林幼龄林中龄林近熟林,而均匀度指数为近熟林中龄林成熟林幼龄林;草本层的物种丰富度指数为幼龄林近熟林成熟林中龄林,Shannon多样性指数、Simpson多样性指数和均匀度指数均为近熟林成熟林中龄林幼龄林。  相似文献   

2.
不同林龄麻栎林地下部分生物量与碳储量研究   总被引:1,自引:0,他引:1  
王霞  胡海波  张世豪  卢洪霖 《生态学报》2019,39(22):8556-8564
探讨不同林龄麻栎林地下部分根系的生物量与碳储量,为麻栎林的经营管理及碳汇管理等提供科学依据。以江苏省句容市不同林龄(幼龄林、中龄林、近熟林、成熟林)的麻栎林为研究对象,采用全根挖掘法获取麻栎各级根系及灌草层根系,并测定其生物量、碳含量,构建麻栎根系生物量模型,估算麻栎林地下部分根系碳储量及麻栎林群落碳储量。通过11种数学回归模型的比较,构建麻栎各级根系生物量幂回归模型,计算得到幼龄林、中龄林、近熟林、成熟林麻栎根系生物量分别为14.81t/hm~2、41.15t/hm~2、50.36t/hm~2、53.75t/hm~2,各级根系生物量大小顺序是:根桩粗根大根细根;灌木与草本植物根系生物量分别为0.48—1.71t/hm~2、0.13—0.60t/hm~2;不同林龄麻栎林群落根系生物量为15.42—56.06t/hm~2,且随林龄的增大而增大。麻栎根系碳含量大小顺序为:根桩粗根大根细根,且碳含量差异显著;灌木与草本植物根系碳含量分别为41.84%—43.79%、34.03%—38.48%,随林龄变化均无明显变化规律。麻栎林乔木根系碳储量随林龄增大而增大,幼龄林、中龄林、近熟林、成熟林根系碳储量分别为6.01t/hm~2、17.41t/hm~2、21.79t/hm~2、21.99t/hm~2;灌木与草本植物根系碳储量均随林龄增大而增大;幼龄林、中龄林、近熟林、成熟林群落根系碳储量分别为6.26t/hm~2、17.74t/hm~2、22.37t/hm~2、22.94t/hm~2,且乔木层灌木层草本层。麻栎林地下部分根系生物量与碳储量随林龄的增大而增大,幼龄林到近熟林生长过程中生物量与碳储量增加快速,近熟林后生物量与碳素积累缓慢,且与成熟林接近。  相似文献   

3.
大兴安岭5种典型林型森林生物碳储量   总被引:6,自引:0,他引:6  
森林生态系统是陆地生态系统的重要碳库,森林生态系统的生物碳储量作为森林生态系统碳库的重要组成部分,对全球碳循环与碳平衡产生重要作用。以大兴安岭5种典型林型为研究对象,结合森林资源清查资料,采用地理信息技术(GIS),将5种林型分龄组分别对乔木层、林下的灌木层、草本层和凋落物层各组分的单位面积生物量、含碳率和生物碳储量进行测定和计量估算,并从林分水平上,采用分龄组的方法,计量估算了生物碳储量。结果表明:大兴安岭5种典型林型不同龄组的生物碳储量分别为:兴安落叶松幼龄林、中龄林、近熟林和成熟林的生物碳储量分别为15.20、50.96、95.80t/hm2和109.33t/hm2;白桦幼龄林、中龄林、近熟林和成熟林的生物碳储量分别为15.36、30.67、41.62t/hm2和64.35t/hm2;樟子松幼龄林、中龄林、近熟林和成熟林的生物碳储量分别为29.89、59.92、90.01t/hm2和117.08t/hm2;蒙古栎幼龄林、中龄林、近熟林和成熟林的生物碳储量分别为11.17、11.90、34.94t/hm2和59.49t/hm2;山杨幼龄林、中龄林、近熟林和成熟林的生物碳储量分别为21.81、28.58、42.84t/hm2和64.39t/hm2。研究发现:5种典型林型不同龄组的森林生物碳储量均随着林龄(幼龄林、中龄林、近熟林和成熟林)的增长而增加,但不同林型的碳汇功能存在差异,同一种林型在不同林龄的生物碳储量增幅差异亦较大。尤其是大兴安岭目前林分质量比较差,幼龄林和中龄林所占的比重较大,若能对现有林分加以更好地抚育和管理,该区森林植被仍具有较大的碳汇潜力,碳汇功能将进一步增强,大兴安岭在国家的生态功能区建设中将发挥更重要的碳汇功能,对此提出了森林生态系统碳增汇管理策略与管理路径。研究结果为正确认识森林生物碳储量对区域碳平衡及生态环境的影响具有重要意义,以及在未来营林、造林活动中充分发挥人工林碳汇效应提供参考依据。  相似文献   

4.
从凋落物和根系生物量角度对三峡库区不同年龄马尾松人工林土壤理化性质进行测定.结果表明:马尾松成熟林凋落物的年产量分别比近熟林、中龄林高19.4%和65.7%,凋落物现存量大小为成熟林>中龄林>近熟林,周转系数为近熟林(0.51)>成熟林(0.40)>中龄林(0.36);根系总生物量、活根及死根生物量均为中龄林最高、近熟林最低;中龄林土壤总孔隙度最大,容重最小;土壤有机质和总氮含量均是成熟林>中龄林>近熟林;近熟林土壤中硝态氮含量比重较大,中龄林和成熟林铵态氮含量比重较大.近熟林凋落物产量适中、周转系数最大,土壤养分最低;中龄林根系生物量和总孔隙度最大,土壤容重最小;成熟林土壤养分含量最高,根系生物量较低.根系生物量增加可以改善土壤的物理性质.  相似文献   

5.
基于野外调查与室内实测数据,结合第八次全国森林资源清查资料,分析了甘肃省5种典型人工林生态系统(刺槐、杨树、油松/华山松、落叶松及云杉林)森林生态系统碳密度、碳储量,并估算了乔木层固碳潜力.结果表明: 5种典型人工林生态系统平均碳密度和总碳储量分别为139.65 t·hm-2和85.78 Tg,不同人工林类型之间差异较大.不同龄组间碳密度表现为近熟林(250.70 t·hm-2)最大,其次是成熟林(175.97 t·hm-2)和中龄林(156.92 t·hm-2),幼龄林(117.56 t·hm-2)最低.碳储量表现为幼龄林(45.47 Tg)>中龄林(19.54 Tg)>成熟林(11.84 Tg)>近熟林(8.93 Tg),幼中龄林碳储量占总碳储量的75.9%.5种典型人工林乔木层现实固碳潜力合计为7.27 Tg,刺槐林(2.49 Tg)和杨树林(2.10 Tg)最大;各龄组中,幼龄林现实固碳潜力最大(3.78 Tg),其次是中龄林(2.04 Tg),近熟林最小(0.45 Tg).5种典型人工林乔木层最大固碳潜力达27.55 Tg,表现为刺槐林(9.42 Tg)>落叶松林(6.22 Tg)≈云杉林(6.36 Tg)>杨树林(3.18 Tg)>油松/华山松林(2.37 Tg);其中,幼、中龄林最大固碳潜力分别为18.48和6.89 Tg,占总最大固碳潜力的92%.  相似文献   

6.
森林生态系统是最重要的陆地生态系统碳库,人工林生态系统碳储量在森林碳储量中所占比重越来越大。本研究选取天津平原地区不同林龄杨树人工林,通过野外调查和室内分析,估算了杨树人工林乔木、草本、凋落物和土壤碳储量。结果表明:人工杨树幼龄林、中龄林和成熟林的乔木生物量分别为43.65、56.18和121.59 t·hm-2,乔木各组分生物量所占比例在幼龄林和中龄林中表现为干根枝叶,在成熟林中表现为干枝根叶。3个林龄段杨树人工林的草本层生物量分别为4.60、2.92和1.58 t·hm-2,凋落物生物量分别为0.46、0.35和0.66 t·hm-2。人工杨树幼龄林、中龄林和成熟林生态系统碳储量分别为84.34、121.03和121.72 t C·hm-2,其中群落碳储量分别占25.85%、22.25%和46.58%,土壤碳储量分别占74.15%、77.75%和53.42%。群落碳储量中乔木碳储量分别为20.04、25.78和55.95 t C·hm-2;草本碳储量分别为1.63、1.05和0.57 t C·hm-2;凋落物碳储量分别为0.14、0.10和0.19 t C·hm-2。3个林龄段杨树人工林土壤有机碳储量(0~100 cm)依次为62.53、94.10和65.03 t C·hm-2,其中0~30 cm土壤有机碳储量所占比例分别为33.91%、37.64%和44.16%,随林龄的增加而增加。结果表明,杨树人工林生态系统碳储量随林龄的增加显著增加,而目前天津杨树人工林以幼龄林为主,未来天津杨树人工林存在巨大的碳储存空间。  相似文献   

7.
基于广西喀斯特地区45块1000 m2样地的调查,研究幼龄林、中龄林、近熟林、成熟林、过熟林5个林龄阶段喀斯特森林植被与土壤碳储量的分配格局.结果表明: 广西不同林龄喀斯特森林总碳储量表现为幼龄林(86.03 t·hm-2)<近熟林(110.63 t·hm-2)<中龄林(112.11 t·hm-2)<成熟林(149.1 t·hm-2)<过熟林(244.38 t·hm-2);各林龄阶段植被不同层碳储量分配均不同,乔木层所占比例占绝对优势,达到92.3%~98.7%,随林龄的增加而增长,灌木层、草本层、凋落物层所占比例分别为0.3%~1.9%、0.3%~1.2%和0.3%~2.5%,细根所占比例为0.3%~3.3%.土壤有机碳密度随土层深度的增加而递减,土壤层碳储量为51.75~81.21 t·hm-2,所占生态系统比例为33.2%~66.2%,其随林龄的增大呈减小趋势.生态系统地上、地下部分碳储量分别为22.80~141.72和62.30~102.66 t·hm-2,除过熟林外均为地下部分>地上部分,地上碳储量随林龄的增大呈逐渐增加的趋势,地下碳储量的变化规律与土壤碳储量变化趋势一致.土壤层和乔木层为生态系统的主要碳库,二者所占比例达到了96%以上.  相似文献   

8.
基于8~56 a长白落叶松人工林样地生物量调查数据,建立了长白落叶松林各器官生物量模型,探讨了不同林龄长白落叶松人工林干材、树皮、树枝、树叶、树根的生物量分布与变化规律及单木与林分乔木层的固碳能力。结果表明:随着林龄的增大,长白落叶松人工林林木及各器官生物量均呈现不同程度的增加趋势,单株木生物量由8 a时的0.174 kg增加至56 a时的328.196 kg,林分乔木层生物量由8 a时的0.519 t·hm-2增加至56 a时的251.39 t·hm-2,其中树干所占比例最大,且增幅最大。长白落叶松人工林单木平均碳储量为74.822 kg,56 a林分乔木层碳密度为130.455 t·hm-2,平均碳密度达63.113 t·hm-2,各器官碳储量变化规律明显。长白落叶松人工林幼龄林、中龄林、近熟林、成熟林林分乔木层的年平均固碳量分别为0.087、1.193、1.703、2.124 t·hm-2,固碳量年平均增长率排序为中龄林幼龄林成熟林近熟林。研究认为,长白落叶松人工林单株木及林分各器官生物量随林龄增加具有明显的变化规律,成熟林分固碳水平最高,中龄林分后期固碳潜力最大。  相似文献   

9.
中国南方3种主要人工林生物量和生产力的动态变化   总被引:2,自引:0,他引:2  
基于中国南方杉木、马尾松、桉树3种主要人工林的幼龄林、中龄林、近熟林、成熟林、过熟林5个不同年龄各3块1000 m2样地(共计45块)的建立和调查,采用样木回归分析法(乔木层)和样方收获法(灌木层、草本层、地上凋落物)获取不同林型不同林龄径级样木和其它基本数据,探讨了3种人工林各组分各层次林分生物量和生产力的分配特征及随林龄的变化规律,结果表明,林分生物量和生产力与林龄密切相关,增长模型的拟合度均较高,相关显著;杉木、马尾松、桉树人工林的生物量随林龄的增长呈增加趋势,成熟林的生物量分别为192.30、191.53、105.77 Mg/hm2,其中活体植物分别占95.76%—98.39%、75.01%—99.14%、85.60%—97.61%;生物量的层次分配乔木层占绝对优势,并随年龄而增加,其它层次所占比例较小,总体趋势为凋落物草本层灌木层;乔木层的器官分配以干所占比例最高,杉木、马尾松、桉树分别占54.89%—75.97%、49.93%—83.10%、51.07%—98.48%,随年龄的增加而增加,根的比例次之,枝叶所占比例较小,随林龄而下降;灌木层器官分配以枝的相对生物量较大,草本层的地上和地下分配规律不明显;与其它森林类型相比,杉木和马尾松的生物量处于中上游水平,桉树的生物量较低,但3种人工林的生产力均很高,分别为12.37、8.98、21.10 Mg hm-2a-1,均是光合效率高、固碳潜力大的中国南方速生丰产优良造林树种。  相似文献   

10.
杉木林年龄序列地下碳分配变化   总被引:5,自引:0,他引:5       下载免费PDF全文
  森林地下碳分配在森林碳平衡和碳吸存中具有重要作用, 而揭示人工林生长过程中地下碳分配变化对于人工林碳汇估算和碳汇管理等有重要意义。通过采用年龄序列方法研究了杉木(Cunninghamia lanceolata)林生长过程中地下碳分配变化特点。年龄序列为福建省南平7 a生(幼龄林)、16 a生(中龄林)、21 a生(近熟林)、41 a生(成熟林)和88 a生(老龄林)的杉木林。细根净生产力测定采用连续土芯法, 根系呼吸测定采用壕沟法, 生物量增量测定采用异速生长方程, 地上年凋落物量采用凋落物收集框测定。结果表明: 杉木林细根净生产力在中龄林前没有显著差异, 维持在较高水平; 但此后则显著下降。细根净生产力/地上凋落物量比值随林龄增加而显著下降。老龄林的根系呼吸显著低于其它林龄林分, 根系呼吸与细根生物量间呈显著线性相关。中龄林和近成熟林的地下碳分配(Total belouground carbon allocation, TBCA)显著高于幼龄林和成熟林, 而老龄林的则最低。中龄林、近成熟林和成熟林的地上部分净生产力/TBCA比值显著高于幼龄林和老龄林, 而杉木林的根系碳利用效率(RCUE)则呈现出随林龄增加而降低的趋势。  相似文献   

11.
黄土丘陵区退耕还林地刺槐人工林碳储量及分配规律   总被引:4,自引:0,他引:4  
申家朋  张文辉 《生态学报》2014,34(10):2746-2754
采用样地调查与生物量实测方法,研究了甘肃黄土丘陵区不同坡向(阳坡、阴坡)和退耕年限(退耕5a、8a和11a)刺槐人工林乔木不同器官、灌草层、枯落物层和土壤层的碳含量,以及刺槐人工林乔木层、灌草层、枯落物层和土壤层碳储量及其分配特征。结果表明:刺槐不同器官碳含量均值变化范围为43.02%—50.89%%,从高到低排列顺序为树干细枝中枝粗枝叶根桩大根粗根小根中根树皮细根;灌木层碳含量为35.76%—42.74%;草本层碳含量为35.83%—43.64%;枯落物层碳含量为39.55%—41.77%;土壤层(0—100 cm)碳含量均值变化范围0.22%—0.99%,随退耕年限增加而增大,土壤深度的增加而逐渐下降。刺槐人工林生态系统碳库空间分布序列为土壤层(0—100 cm)植被层枯落物层。阳坡和阴坡退耕5a、8a、11a刺槐林生态系统碳储量分别为52.52、58.93、73.72 t/hm2和49.95、61.83、79.03 t/hm2。退耕年限和坡向是影响刺槐人工林碳储量增加的主要因素。刺槐人工林具有良好的固碳效益,是黄土丘陵区的理想树种。  相似文献   

12.
黄土丘陵区油松人工林生态系统碳密度及其分配   总被引:2,自引:0,他引:2  
杨玉姣  陈云明  曹扬 《生态学报》2014,34(8):2128-2136
以子午岭林区油松(Pinus tabulaeformis)人工林为研究对象,通过野外调查与室内分析,探讨了幼龄9a、中龄23a、近熟33a和成熟47a等不同林龄林分的生物量、含碳率、碳密度及其时空分布特征。结果表明:(1)油松林各群落平均生物量大小排序为:乔木层(76.12 t/hm2)枯落物层(14.56 t/hm2)林下植被层(3.66 t/hm2)。乔木层生物量随林龄增大而持续增加,各器官中树干所占比例最大(38%—46%),其次为叶和根,枝和皮所占比例最小;林下植被层生物量随林龄增大呈先降低后增加趋势;枯落物层生物量随林龄增大则明显增加。(2)油松乔木、林下灌木、草本、枯落物平均含碳率依次为50.2%、44.5%、43.8%和40.6%。林龄对乔木各器官含碳率无显著影响,不同器官之间含碳率存在显著性差异,具体表现为叶(53.3%)枝(51.4%)皮(50.6%)干(49.8%)根(47.3%);灌木各器官含碳率表现为枝(46.0%)叶(44.8%)根(42.5%),草本则是地上(45.2%)地下(40.2%)。土壤(0—100 cm)含碳率在0.3%—2.7%之间,且具有明显的垂直分布特征:表层含碳率高,并随土壤深度的增加逐渐降低。(3)9、23、33和47年生油松林生态系统碳密度分别为70.49、100.48、167.71和144.26 t/hm2,其空间分布序列表现为土壤层植被层枯落物层,且植被层和土壤层是油松人工林的主要碳库。林龄是影响油松林木及群落碳密度积累的主导因子之一。随林龄增加,土壤碳密度所占生态系统碳密度份额逐渐降低,乔木层和枯落物层则逐渐增加。  相似文献   

13.
广西马山岩溶次生林群落生物量和碳储量   总被引:1,自引:0,他引:1  
岩溶植被在岩溶生态系统碳循环和全球碳平衡中具有重要的作用。通过对马山县岩溶次生林年龄序列(幼龄林、中龄林和老龄林)3个演替阶段9个样地(20 m×50 m)的系统取样调查,研究了停止人为干扰后岩溶次生林生物量和碳储量的变化。结果表明:沿幼林、中林和老林群落的顺向演替发展,群落生物量显著增加(P0.05),从幼林群落的48.17 t/hm2、到中林群落113.47 t/hm2,再到老林群落242.59 t/hm2。老林生态系统的碳储量较高,平均为236.69 t/hm2,中林和幼林较低且非常相近,分别为225.17 t/hm2和224.76 t/hm2,各次生林生态系统的碳储量差异不显著(P0.05)。土壤碳储量的大小顺序为幼林(198.44 t/hm2)中林(167.39 t/hm2)老林(113.43 t/hm2)。沿群落正向演替,各次生林生态系统中植物碳储量和土壤碳储量的比例发生明显的变化。幼林的土壤碳储量占生态系统碳储量的88.29%,植物碳储量只占11.71%;中林相应为74.34%和25.66%;而老林为47.92%和52.08%。可见,随着岩溶植被的正向演替,土壤碳转变为植物碳的趋势十分明显,这是岩溶森林不同于酸性土森林的一个显著特征。  相似文献   

14.
连栽杉木林林下植被生物量动态格局   总被引:8,自引:5,他引:3  
杨超  田大伦  胡曰利  闫文德  方晰  梁小翠 《生态学报》2011,31(10):2737-2747
用空间一致时间连续的定位研究方法,在湖南会同杉木林生态系统国家野外科学观测研究站试验基地的第2集水区,对连栽杉木林林下植被生物量进行了12 a的监测,研究了林下植被种类的变化、生物量动态特征、生物量的组成与分布变化格局。结果表明:连栽杉木林在14a生长发育过程中,林下植物种类呈现波动性的减少趋势,其中木本植物物种数下降率为40.0%,草本植物物种数下降率为47.1%。林下植被生物量由杉木林3年生29.48 t/hm2下降至14年生的2.53 t/hm2,其中木本植物生物量由7.07 t/hm2,下降至1.25 t/hm2,下降了82.3%;草本植物由22.41 t/hm2,下降至1.28 t/hm2,下降了94.3%。在此期间,木本与草本植物生物量的高低均出现波动现象。3年生杉木林下木本植物以乔木树种生物量6068.97 kg/hm2最高,占总生物量85.88%,藤本植物生物量736.97 kg/hm2为次,占10.44%,灌木植物生物量259.87 kg/hm2最低,仅占3.68%。14年生杉木林下木本植物以灌木植物生物量881.87 kg/hm2为首,占总生物量70.73%,藤本植物生物量247.07 kg/hm2为次,占19.82%,乔木树种生物量117.87 kg/hm2最少,只占9.45%。3年生杉木林下草本植物以蕨类植物生物量8391.44 kg/hm2最高,占总生物量的37.44%,过路黄生物量36.77 kg/hm2最低,仅占0.16%。杉木14年生时,以芒生物量573.00 kg/hm2最大,占总生物量44.78%,金毛耳草生物量2.93 kg/hm2最小,仅占0.23%。研究结果,可为研究杉木林养分循环、碳平衡、维护和提高林地地力及可持续经营管理提供科学依据。  相似文献   

15.
长白落叶松林龄序列上的生物量及碳储量分配规律   总被引:6,自引:0,他引:6  
巨文珍  王新杰  孙玉军 《生态学报》2011,31(4):1139-1148
由于多年来的过量采伐和重采轻育,伊春东折棱河林场人工长白落叶松林分质量普遍下降,森林生态功能严重衰退。结合对该研究地同一立地类型的人工长白落叶松林(Larix ologensis)林木各组分生物量垂直分配规律的分析,研究了其生物量在年龄序列上的分布及分配规律,为提高其林分生物量及碳储量采取相应的抚育管理措施提供一定的理论基础。结果表明,处于中龄、近熟及成熟林中的林木树干、树皮及活枝生物量所占比例受年龄影响较小,而叶生物量随林龄增大呈现明显递减变化;不同年龄长白落叶松的垂直分布规律基本一致:其树皮及树干生物量随树高增大呈现递减规律,其活枝及叶生物量主要集中分布于树冠中部,而其死枝生物量未呈现明显分布规律;长白落叶松根系生物量随着林分年龄的增大,其粗根、中根及细根所占比例呈现递减规律,而其大根所占比例随年龄的增大基本呈增大趋势。通过统计分析得出,长白落叶松生物量与林分蓄积的最优模型为:W=0.4909M+9.6624(R2=0.8893),进而估算得出:研究区域幼龄长白落叶松林分生物量为1273.72 t/hm2,碳储量为656.98 t/hm2;中龄长白落叶松林分生物量为15480.13 t/hm2,碳储量为7984.65 t/hm2;近熟、成熟龄长白落叶松林分生物量为7684.41 t/hm2,碳储量为3963.62 t/hm2。随林分结构的改善以及中龄、近熟及成熟林分的不断增加,生物量及碳储量会相应增加。  相似文献   

16.
采用皆伐法对南岭小坑750m2天然藜蒴栲群落的生物量进行了实测,该群落有43个树种,其中藜蒴栲为优势种,获得了胸径2.0 cm以上的267株树的树干、枝、叶烘干重数据以及实测的胸径(D)、树高(H)数据。揭示了该森林群落地上部分总生物量(AGB)在森林各层次、各树种及乔木层各器官中的分配规律,并建立了该群落的生物量模型。结果表明,南岭小坑流域藜蒴栲群落地上部分总生物量是131.149 t.hm-2,其中乔木层是129.895 t.hm-2,下木层是1.563 t.hm-2,层间植物是0.267 t.hm-2,凋落物层是2.424 t.hm-2。树干、树枝、树叶生物量分别是乔木层地上部分总生物量的85.0%、10.6%和4.4%。优势树种藜蒴栲和小红栲生物量是乔木层地上部分总生物量的46.3%和9.8%,这说明在早期演替的森林群落中生物量主要集中分布在少数的几个优势种。乔木各径阶(DBH<5,5~10,10~15,15~20,20~25,≥25cm)的生物量占乔木层地上部分总生物量的百分比分别是1.0%, 13.1%,52.2%,26.4%,4.6%和2.7%。天然次生藜蒴栲群落以D为自变量的模型是Wtagb=0.116D2.384,R2=0.934,模型估算值比皆伐实测值低5.0%;以D2H为自变量的总生物量模型是Wtagb=184.274(D2H)0.881,R2=0.952,模型估算值比皆伐实测值低6.9%;这说明针对天然藜蒴栲群落,采用以D为自变量的总生物量模型更为实用。  相似文献   

17.
韩畅  宋敏  杜虎  曾馥平  彭晚霞  王华  陈莉  苏樑 《生态学报》2017,37(7):2282-2289
为了解不同林龄杉木、马尾松人工林地地下根系生物量及碳储量特征,以广西杉木、马尾松主产区5个不同林龄阶段(幼龄林、中龄林、近熟林、成熟林、过熟林)的人工林为研究对象,采用全根挖掘法和土钻法获取标准木根系生物量、灌草根系生物量和林分细根生物量,并测定其碳含量,分析其不同林龄阶段地下根系生物量和碳储量分配特征。结果表明:杉木、马尾松林地下根系总生物量分别在9.06—31.40Mg/hm~2和7.91—53.40Mg/hm~2之间,各林龄阶段根系总生物量总体上呈现随林龄增加而增加的趋势,杉木林细根生物量随林龄的增加呈现出先减后增的趋势,马尾松呈现出逐渐减小的趋势;林分各层次根系碳含量表现为乔木灌木草本、细根;杉木、马尾松地下根系碳储量变化趋势与生物量变化趋势相同,杉木、马尾松林不同林龄阶段各层次根系和土壤细根总碳储量分别在7.56—21.97Mg/hm~2和8.86—29.95Mg/hm~2之间;地下根系碳储量总体上以乔木根系占优势,且随林龄的增大其比例呈增加的趋势。  相似文献   

18.
不同林龄尾巨桉人工林的生物量及其分配特征   总被引:2,自引:0,他引:2  
根据1,2,3,5,8a共5个不同年龄的15块1000 m2尾巨桉样地(3次重复)调查资料,利用18株不同年龄和径阶的样木数据,建立以胸径(D)为单变量的生物量回归方程。采用样木回归分析法(乔木层)和样方收获法(灌木层、草本层、地上凋落物)获取不同林龄尾巨桉人工林的生物量,分析了其组成、分配及不同林龄生物量的变化趋势。结果表明:林分总生物量随林龄而增加,1,2,3,5年生和8年生尾巨桉人工林生物量分别为12.49,47.75,64.51,105.77和137.51 t/hm2,其中活体植物占85.60%—97.61%,地上凋落物占2.39%—14.40%;层次分配方面乔木层占绝对优势,占54.80%—91.56%,且随林龄的增加而增大,其次为凋落物,灌木层和草本层生物量较小,分别占1.02%—6.47%和0.28%—24.33%,均随林龄的增加呈递减趋势;乔木层以干所占比例最高,占51.07%—98.48%,且随林龄而增加,枝、叶、根分别占5.76%—11.80%,2.17%—21.01%和6.72%—14.87%,均随林龄而下降;灌木层以枝所占比例最高,为37.89%—56.79%,叶和根分别占16.35%—34.24%和19.52%—39.52%,随林龄的变化均不大;草本层分配1—5年生以地上所占比例较大,8年生地下所占比例高达63.87%;尾巨桉人工林乔木层各器官、地上凋落物及总生物量具有良好的优化增长模型,其总生物量的增长模型为Y=-1.693×104+3.337×104X-1.761X2;8年生尾巨桉人工林总生物量与30年生的木莲人工林持平,低于热带雨林,但其年均净生产量高达17.19 t/hm2,是一个光合效率高、固碳潜力大的速生丰产优良造林树种。  相似文献   

19.
西南桦纯林与西南桦×红椎混交林碳贮量比较   总被引:1,自引:0,他引:1  
何友均  覃林  李智勇  邵梅香  梁星云  谭玲 《生态学报》2012,32(23):7586-7594
用乡土树种培育优质大径材已成为南亚热带满足林产品需求和生态保护的重要途径,如何通过优化森林经营模式提高人工林生态系统碳储量已成为关注的重点.对广西凭祥伏波林场13年生西南桦纯林、12年生西南桦×红椎混交林生态系统的碳素密度、碳贮量及其分布特征进行了比较研究.结果表明:(1)西南桦与红椎不同器官碳素密度变化范围分别为481.11-600.79 g/kg和451.24-543.42 g/kg,与中国南亚热带地区其他树种的碳素密度接近.相同树种不同器官之间以及不同树种相同器官之间的碳素密度差异显著(P<0.05).西南桦纯林与西南桦×红椎混交林灌木层的平均碳素密度分别为437.15 g/kg和436.98g/kg,混交林草本层平均碳素密度比纯林高,差异性显著(P<0.05).西南桦纯林土壤各层碳素密度均高于西南桦×红椎混交林,但差异不显著(P>0.05).(2)西南桦×红椎混交林乔木层碳贮量(29.144 t/hm2)略高于西南桦纯林(28.541 t/hm2),混交林生态系统碳储量(276.486 t/hm2)比纯林生态系统碳储量(305.514 t/hm2)低.西南桦纯林、西南桦×红椎混交林植被层碳贮量分别占其生态系统碳贮量的9.64%和10.58%,凋落物层分别占生态系统碳储量的0.19%和0.56%.(3)西南桦纯林和西南桦×红椎混交林土壤碳贮存主要集中在0-20cm土层,且随土层深度增加而减少.西南桦纯林土壤层(0-60cm)碳贮量(275.488 t/hm2)明显高于西南桦×红椎混交林土壤层(0-60cm)碳贮量(245.688 t/hm2),分别占其生态系统碳贮量的90.17%和88.86%.(4)西南桦×红椎混交林乔木层碳素年净固定量(2.428 t·hm-2·a-1)高于西南桦纯林乔木层碳素年净固定量(2.196 t·hm-2·a-1),表明混交林比纯林的碳固定速度快.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号