首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In eukaryotes, mitochondria execute a central task in the assembly of cellular iron-sulfur (Fe/S) proteins. The organelles synthesize their own set of Fe/S proteins, and they initiate the generation of extramitochondrial Fe/S proteins. In the present study, we identify the mitochondrial matrix protein Isa1p of Saccharomyces cerevisiae as a new member of the Fe/S cluster biosynthesis machinery. Isa1p belongs to a family of homologous proteins present in prokaryotes and eukaryotes. Deletion of the ISA1 gene results in the loss of mitochondrial DNA precluding the use of the Deltaisa1 strain for functional analysis. Cells in which Isa1p was depleted by regulated gene expression maintained the mitochondrial DNA, yet the cells displayed retarded growth on nonfermentable carbon sources. This finding indicates the importance of Isa1p for mitochondrial function. Deficiency of Isa1p caused a defect in mitochondrial Fe/S protein assembly. Moreover, Isa1p was required for maturation of cytosolic Fe/S proteins. Two cysteine residues in a conserved sequence motif characterizing the Isa1p protein family were found to be essential for Isa1p function in the biogenesis of both intra- and extramitochondrial Fe/S proteins. Our findings suggest a function for Isa1p in the binding of iron or an intermediate of Fe/S cluster assembly.  相似文献   

2.
Iron-sulfur (Fe/S) proteins play an important role in electron transfer processes and in various enzymatic reactions. In eukaryotic cells, known Fe/S proteins are localised in mitochondria, the cytosol and the nucleus. The biogenesis of these proteins has only recently become the focus of investigations. Mitochondria are the major site of Fe/S cluster biosynthesis in the cell. The organelles contain an Fe/S cluster biosynthesis apparatus that resembles that of prokaryotic cells. This apparatus consists of some ten proteins including a cysteine desulfurase producing elemental sulfur for biogenesis, a ferredoxin involved in reduction, and two chaperones. The mitochondrial Fe/S cluster synthesis apparatus not only assembles mitochondrial Fe/S proteins, but also initiates formation of extra-mitochondrial Fe/S proteins. This involves the export of sulfur and possibly iron from mitochondria to the cytosol, a reaction performed by the ABC transporter Atm1p of the mitochondrial inner membrane. A possible substrate of Atm1p is an Fe/S cluster that may be stabilised for transport. Constituents of the cytosol involved in the incorporation of the Fe/S cluster into apoproteins have not been described yet. Many of the mitochondrial proteins involved in Fe/S cluster formation are essential, illustrating the central importance of Fe/S proteins for life. Defects in Fe/S protein biogenesis are associated with the abnormal accumulation of iron within mitochondria and are the cause of an iron storage disease.  相似文献   

3.
The role of tumor suppressor protein p53 in cell cycle control depends on its flexible and partially unstructured conformation, which makes it crucial to understand its folding landscape. Here we report an intermediate structure of the core domain of the tumor suppressor protein p53 (p53C) during equilibrium and kinetic folding/unfolding transitions induced by guanidinium chloride. This partially folded structure was undetectable when investigated by intrinsic fluorescence. Indeed, the fluorescence data showed a simple two-state transition. On the other hand, analysis of far ultraviolet circular dichroism in 1.0 M guanidinium chloride demonstrated a high content of secondary structure, and the use of an extrinsic fluorescent probe, 4,4'-dianilino-1,1' binaphthyl-5,5'-disulfonic acid, indicated an increase in exposure of the hydrophobic core at 1 M guanidinium chloride. This partially folded conformation of p53C was plagued by aggregation, as suggested by one-dimensional NMR and demonstrated by light-scattering and gel-filtration chromatography. Dissociation by high pressure of these aggregates reveals the reversibility of the process and that the aggregates have water-excluded cavities. Kinetic measurements show that the intermediate formed in a parallel reaction between unfolded and folded structures and that it is under fine energetic control. They are not only crucial to the folding pathway of p53C but may explain as well the vulnerability of p53C to undergo departure of the native to an inactive state, which makes the cell susceptible to malignant transformation.  相似文献   

4.
Most eukaryotes contain iron-sulfur cluster (ISC) assembly proteins related to Saccharomyces cerevisiae Isa1 and Isa2. We show here that Isa1 but not Isa2 can be functionally replaced by the bacterial relatives IscA, SufA, and ErpA. The specific function of these "A-type" ISC proteins within the framework of mitochondrial and bacterial Fe/S protein biogenesis is still unresolved. In a comprehensive in vivo analysis, we show that S. cerevisiae Isa1 and Isa2 form a complex that is required for maturation of mitochondrial [4Fe-4S] proteins, including aconitase and homoaconitase. In contrast, Isa1-Isa2 were dispensable for the generation of mitochondrial [2Fe-2S] proteins and cytosolic [4Fe-4S] proteins. Targeting of bacterial [2Fe-2S] and [4Fe-4S] ferredoxins to yeast mitochondria further supported this specificity. Isa1 and Isa2 proteins are shown to bind iron in vivo, yet the Isa1-Isa2-bound iron was not needed as a donor for de novo assembly of the [2Fe-2S] cluster on the general Fe/S scaffold proteins Isu1-Isu2. Upon depletion of the ISC assembly factor Iba57, which specifically interacts with Isa1 and Isa2, or in the absence of the major mitochondrial [4Fe-4S] protein aconitase, iron accumulated on the Isa proteins. These results suggest that the iron bound to the Isa proteins is required for the de novo synthesis of [4Fe-4S] clusters in mitochondria and for their insertion into apoproteins in a reaction mediated by Iba57. Taken together, these findings define Isa1, Isa2, and Iba57 as a specialized, late-acting ISC assembly subsystem that is specifically dedicated to the maturation of mitochondrial [4Fe-4S] proteins.  相似文献   

5.
Bacterial sepsis is a major global cause of death. However, the pathophysiology of sepsis has remained poorly understood. In industrialized nations, Staphylococcus aureus represents the pathogen most commonly associated with mortality due to sepsis. Because of the alarming spread of antibiotic resistance, anti-virulence strategies are often proposed to treat staphylococcal sepsis. However, we do not yet completely understand if and how bacterial virulence contributes to sepsis, which is vital for a thorough assessment of such strategies. We here examined the role of virulence and quorum-sensing regulation in mouse and rabbit models of sepsis caused by methicillin-resistant S. aureus (MRSA). We determined that leukopenia was a predictor of disease outcome during an early critical stage of sepsis. Furthermore, in device-associated infection as the most frequent type of staphylococcal blood infection, quorum-sensing deficiency resulted in significantly higher mortality. Our findings give important guidance regarding anti-virulence drug development strategies for the treatment of staphylococcal sepsis. Moreover, they considerably add to our understanding of how bacterial sepsis develops by revealing a critical early stage of infection during which the battle between bacteria and leukocytes determines sepsis outcome. While sepsis has traditionally been attributed mainly to host factors, our study highlights a key role of the invading pathogen and its virulence mechanisms.  相似文献   

6.
ETHYLENE OVERPRODUCER1 (ETO1), ETO1-LIKE1 (EOL1), and EOL2 are members of the Broad complex, Tramtrack, Bric-a-brac (BTB) protein family that collectively regulate type-2 1-aminocyclopropane-1-carboxylic acid synthase (ACS) activity in Arabidopsis thaliana. Although ETO1 and EOL1/EOL2 encode structurally related proteins, genetic studies suggest that they do not play an equivalent role in regulating ethylene biosynthesis. The mechanistic details underlying the genetic analysis remain elusive. In this study, we reveal that ETO1 collaborates with EOL1/2 to play a key role in the regulation of type-2 ACS activity via protein–protein interactions. ETO1, EOL1, and EOL2 exhibit overlapping but distinct tissue-specific expression patterns. Nevertheless, neither EOL1 nor EOL2 can fully complement the eto1 phenotype under control of the ETO1 promoter, which suggests differential functions of ETO1 and EOL1/EOL2. ETO1 forms homodimers with itself and heterodimers with EOLs. Furthermore, CULLIN3 (CUL3) interacts preferentially with ETO1. The BTB domain of ETO1 is sufficient for interaction with CUL3 and is required for homodimerization. However, domain-swapping analysis in transgenic Arabidopsis suggests that the BTB domain of ETO1 is essential but not sufficient for a full spectrum of ETO1 function. The missense mutation in eto1-5 generates a substitution of phenylalanine with an isoleucine in ETO1F466I that impairs its dimerization and interaction with EOLs but does not affect binding to CUL3 or ACS5. Overexpression of ETO1F466I in Arabidopsis results in a constitutive triple response phenotype in dark-grown seedlings. Our findings reveal the mechanistic role of protein–protein interactions of ETO1 and EOL1/EOL2 that is crucial for their biological function in ethylene biosynthesis.  相似文献   

7.
8.
We examined the role of zebrafish (Danio rerio) Jak2a, a homolog of mammalian Jak2, in the developing embryo by injecting in vitro synthesized Jak2a shRNA into zebrafish zygotes. Blood circulation was suppressed in Jak2a shRNA-injected embryos from 24 hours post fertilization (hpf) and all embryos died with enlarged pericardium, shortened body lengths, and defects in some vasculature within 8 days post fertilization. O-dianisidine staining of red blood cells revealed normal blood island formation with no circulating red blood cells. As in Jak2−/− transgenic mice, expression of definitive Ba1 globin was significantly reduced in Jak2a knockdown embryos at 36 hpf, whereas expression of other hematopoietic markers, primitive be1 globin, gata-1, and scl, were unaffected. More importantly, blood vessel formation was disturbed in Jak2a knockdown embryos as revealed by alkaline phosphatase staining at 72 hpf. Thus, our data indicate that zebrafish Jak2a is important in both definitive hematopoiesis and blood vessel formation.  相似文献   

9.
The activation of Nef-associated kinase (NAK) by Nef from human and simian immunodeficiency viruses is critical for efficient viral replication and pathogenesis. This induction occurs via the guanine nucleotide exchange factor Vav and the small GTPases Rac1 and Cdc42. In this study, we identified NAK as p21-activated kinase 1 (PAK1). PAK1 bound to Nef in vitro and in vivo. Moreover, the induction of cytoskeletal rearrangements such as the formation of trichopodia, the activation of Jun N-terminal kinase, and the increase of viral production were blocked by an inhibitory peptide that targets the kinase activity of PAK1 (PAK1 83-149). These results identify NAK as PAK1 and emphasize the central role its kinase activity plays in cytoskeletal rearrangements and cellular signaling by Nef.  相似文献   

10.
11.
Murine double minute 2 (MDM2) binding protein (MTBP) has been implicated in tumor cell proliferation, but the underlying mechanisms remain unclear. The results of MTBP expression analysis during cell cycle progression demonstrated that MTBP protein was rapidly degraded during mitosis. Immunofluorescence studies revealed that a portion of MTBP was localized at the kinetochores during prometaphase. MTBP overexpression delayed mitotic progression from nuclear envelope breakdown (NEB) to anaphase onset and induced abnormal chromosome segregation such as lagging chromosomes, chromosome bridges, and multipolar chromosome segregation. Conversely, MTBP downmodulation caused an abbreviated metaphase and insufficient mitotic arrest, resulting in abnormal chromosome segregation, aneuploidy, decreased cell proliferation, senescence, and cell death, similar to that of Mad2 (mitotic arrest-deficient 2) downmodulation. Furthermore, MTBP downmodulation inhibited the accumulation of Mad1 and Mad2, but not BubR1 (budding uninhibited by benzimidazoles related 1), on the kinetochores, whereas MTBP overexpression inhibited the release of Mad2 from the metaphase kinetochores. These results may imply that MTBP has an important role in recruiting and/or retaining the Mad1/Mad2 complex at the kinetochores during prometaphase, but its degradation is required for silencing the mitotic checkpoint. Together, this study indicates that MTBP has a crucial role in proper mitotic progression and faithful chromosome segregation, providing new insights into regulation of the mitotic checkpoint.  相似文献   

12.
13.
The ICOS molecule stimulates production of the immunoregulatory cytokine IL-10, suggesting an important role for ICOS in controlling IL-10-producing regulatory T cells and peripheral T cell tolerance. In this study we investigate whether ICOS is required for development of oral, nasal, and high dose i.v. tolerance. Oral administration of encephalitogenic myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide to ICOS-deficient (ICOS-/-) mice did not inhibit experimental autoimmune encephalomyelitis (EAE), T cell proliferation, or IFN-gamma production, in striking contrast to wild-type mice. Similarly, intranasal administration of MOG(35-55) before EAE induction suppressed EAE and T cell responses in wild-type, but not in ICOS-/-, mice. In contrast, ICOS-/- mice were as susceptible as wild-type mice to high dose tolerance. These results indicate that ICOS plays an essential and specific role in mucosal tolerance and that distinct costimulatory pathways differentially regulate different forms of peripheral tolerance. Surprisingly, CD4+ cells from MOG-fed wild-type and ICOS-/- mice could transfer suppression to wild-type recipients, indicating that functional regulatory CD4+ cells can develop in the absence of ICOS. However, CD4+ T cells from MOG-fed wild-type mice could not transfer suppression to ICOS-/- recipients, suggesting that ICOS may have a key role in controlling the effector functions of regulatory T cells. These results suggest that stimulating ICOS may provide an effective therapeutic approach for promoting mucosal tolerance.  相似文献   

14.
Diabetic nephropathy is the leading cause of end-stage renal disease in the United States. Despite several studies indicating a role for mitochondrial oxidative stress and mitochondrial dysfunction in the development of diabetic complications, the precise mechanisms underlying renal mitochondrial dysfunction and renal cell injury remain unclear. The hypothesis of the current study was that high-glucose-mediated generation of mitochondrial superoxide is a key early event that leads to mitochondrial injury in renal proximal tubular cells. To ascertain the role of mitochondrial superoxide we have tested whether overexpression of the primary mitochondrial antioxidant, manganese superoxide dismutase (MnSOD), protects against hyperglycemia-induced renal injury using normal rat renal proximal tubular cells (NRK). NRK cells were exposed to high glucose (25 mM) and the changes in the mitochondrial membrane potential, ATP levels, and superoxide generation and the loss of cell viability were measured at 24 and 48 h after high glucose exposure. Our results indicate that high glucose first induced superoxide generation and hyperpolarization in the mitochondria, followed by a secondary event, which involved a decline in ATP levels, partial Complex III inactivation, and loss of cell viability. These high-glucose-induced changes were completely prevented by overexpression of MnSOD in NRK cells. However, MnSOD activity was not changed after high glucose exposure in vitro or during the early stages of diabetes using the streptozotocin rat model. These findings show for the first time that hyperglycemic induction of superoxide production within the mitochondria initiates specific mitochondrial injury (i.e., Complex III) via a mechanism independent of MnSOD inactivation.  相似文献   

15.
The relevance of NADH-cytochrome b(5) reductase to the NADH-dependent reduction of D-erythroascorbyl free radical was investigated in Saccharomyces cerevisiae. MCR1, which is known to encode NADH-cytochrome b(5) reductase in S. cerevisiae, was disrupted by the insertion of URA3 gene into the gene of MCR1. In the mcr1 disruptant cells, the activity of NADH-D-erythroascorbyl free radical reductase almost disappeared and the intracellular level of D-erythroascorbic acid was about 11% of that of the congenic wild-type strain. In the transformant cells carrying MCR1 in multicopy plasmid, the intracellular level of D-erythroascorbic acid and the activity of NADH-D-erythroascorbyl free radical reductase increased up to 1.7-fold and 2.1-fold, respectively. Therefore, it indicated that the MCR1 product, mitochondrial NADH-cytochrome b(5) reductase, plays a key role in the NADH-dependent reduction of D-erythroascorbyl free radical in S. cerevisiae. On the other hand, the mcr1 disruptant cells were hypersensitive to hydrogen peroxide and menadione, and overexpression of MCR1 made the cells more resistant against oxidative stress. These results suggested that the mitochondrial NADH-cytochrome b(5) reductase functions as NADH-D-erythroascorbyl free radical reductase and plays an important role in the response to oxidative damage in S. cerevisiae.  相似文献   

16.
17.
Mitochondria are the major site of cellular iron utilization for the synthesis of essential cofactors such as iron-sulfur clusters and haem. In the present study, we provide evidence that GTP in the mitochondrial matrix is involved in organellar iron homoeostasis. A mutant of yeast Saccharomyces cerevisiae lacking the mitochondrial GTP/GDP carrier protein (Ggc1p) exhibits decreased levels of matrix GTP and increased levels of matrix GDP [Vozza, Blanco, Palmieri and Palmieri (2004) J. Biol. Chem. 279, 20850-20857]. This mutant (previously called yhm1) also manifests high cellular iron uptake and tremendous iron accumulation within mitochondria [Lesuisse, Lyver, Knight and Dancis (2004) Biochem. J. 378, 599-607]. The reason for these two very different phenotypic defects of the same yeast mutant has so far remained elusive. We show that in vivo targeting of a human nucleoside diphosphate kinase (Nm23-H4), which converts ATP into GTP, to the matrix of ggc1 mutants restores normal iron regulation. Thus the role of Ggc1p in iron metabolism is mediated by effects on GTP/GDP levels in the mitochondrial matrix.  相似文献   

18.
19.
Plants are sessile organisms, and their ability to adapt to stress is crucial for survival in natural environments. Many observations suggest a relationship between stress tolerance and heat shock proteins (HSPs) in plants, but the roles of individual HSPs are poorly characterized. We report that transgenic Arabidopsis plants expressing less than usual amounts of HSP101, a result of either antisense inhibition or cosuppression, grew at normal rates but had a severely diminished capacity to acquire heat tolerance after mild conditioning pretreatments. The naturally high tolerance of germinating seeds, which express HSP101 as a result of developmental regulation, was also profoundly decreased. Conversely, plants constitutively expressing HSP101 tolerated sudden shifts to extreme temperatures better than did vector controls. We conclude that HSP101 plays a pivotal role in heat tolerance in Arabidopsis. Given the high evolutionary conservation of this protein and the fact that altering HSP101 expression had no detrimental effects on normal growth or development, one should be able to manipulate the stress tolerance of other plants by altering the expression of this protein.  相似文献   

20.
Phosphorylation of adducin by Rho-kinase plays a crucial role in cell motility   总被引:16,自引:0,他引:16  
Adducin is a membrane skeletal protein that binds to actin filaments (F-actin) and thereby promotes the association of spectrin with F-actin to form a spectrin-actin meshwork beneath plasma membranes such as ruffling membranes. Rho-associated kinase (Rho- kinase), which is activated by the small guanosine triphosphatase Rho, phosphorylates alpha-adducin and thereby enhances the F-actin-binding activity of alpha-adducin in vitro. Here we identified the sites of phosphorylation of alpha-adducin by Rho-kinase as Thr445 and Thr480. We prepared antibody that specifically recognized alpha-adducin phosphorylated at Thr445, and found by use of this antibody that Rho-kinase phosphorylated alpha-adducin at Thr445 in COS7 cells in a Rho-dependent manner. Phosphorylated alpha-adducin accumulated in the membrane ruffling area of Madin-Darby canine kidney (MDCK) epithelial cells and the leading edge of scattering cells during the action of tetradecanoylphorbol-13-acetate (TPA) or hepatocyte growth factor (HGF). The microinjection of Botulinum C3 ADP-ribosyl-transferase, dominant negative Rho-kinase, or alpha-adducinT445A,T480A (substitution of Thr445 and Thr480 by Ala) inhibited the TPA-induced membrane ruffling in MDCK cells and wound-induced migration in NRK49F cells. alpha-AdducinT445D,T480D (substitution of Thr445 and Thr480 by Asp), but not alpha-adducinT445A,T480A, counteracted the inhibitory effect of the dominant negative Rho-kinase on the TPA-induced membrane ruffling in MDCK cells. Taken together, these results indicate that Rho-kinase phosphorylates alpha-adducin downstream of Rho in vivo, and that the phosphorylation of adducin by Rho-kinase plays a crucial role in the regulation of membrane ruffling and cell motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号