首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spiller H 《Plant physiology》1980,66(3):446-450
Spheroplasts from Anabaena 7119 (formerly designated Nostoc muscorum) were prepared in the presence of serum albumin in 0.5 molar sucrose. Electron transport and photophosphorylation were preserved (> 70% of the maximum rate for 1 week). The pH profile of electron transport and photophosphorylation in the reactions H2O → NADP, H2O → methyl viologen, and H2O → ferricyanide shows that uncoupling by ammonia is small throughout and increases slightly with higher pH. ADP + Pi increased NADP reduction from H2O by 2.5-fold. The ratios of ATP formed per electron pair transported ranged from 0.9 to 1.5. Effects of catalase and superoxide dismutase on the overall O2 balance implicate pseudocyclic electron transport and phosphorylation. The quenching of 9-aminoacridine fluorescence indicates the formation of a Δ pH from 2 to 2.6 during illumination. This pH gradient is abolished by uncouplers; however, complete uncoupling is achieved only by 3-chlorocarbonyl cyanide phenylhydrazone or valinomycin + NH4+. In the presence of NH4+ alone, the membrane potential may act as the driving force for photophosphorylation.  相似文献   

2.
The polarity and stoichiometry of respiration-driven proton translocation was studied by electrometric and spectrophotometric techniques inMicrococcus denitrificans in the context of the energy transduction mechanism in bacterial oxidative phosphorylation.
  1. Protons are ejected through the plasma membrane during respiratory pulses and thereafter diffuse slowly back.
  2. In presence of ionic species mobile across the membrane (K+-valinomycin, K+-gramicidin, or SCN?), limiting→H+/O quotients of 8 were obtained with endogenous respiratory substrates, and the rate of translocation (14·3 μg ions of H+/sec g cell dry weight) was commensurate with that of respiration optimally stimulated by FCCP at an →H+/O quotient of 8.
  3. The rate of decay of the proton pulses was greatly increased by FCCP, but there was little or no effect on the →H+/O quotient characteristic of the respiratory system.
  4. Various interpretations of the observations are discussed, and it is concluded that respiration is probably coupled directly or indirectly to electrogenic proton translocation. The observations are compatible with the chemiosmotic hypothesis of coupling between respiration and phosphorylation.
  相似文献   

3.
Membrane‐bound pyrophosphatase (mPPase) found in microbes and plants is a membrane H+ pump that transports the H+ ion generated in coupled pyrophosphate hydrolysis out of the cytoplasm. Certain bacterial and archaeal mPPases can in parallel transport Na+ via a hypothetical “billiard‐type” mechanism, also involving the hydrolysis‐generated proton. Here, we present the functional evidence supporting this coupling mechanism. Rapid‐quench and pulse‐chase measurements with [32P]pyrophosphate indicated that the chemical step (pyrophosphate hydrolysis) is rate‐limiting in mPPase catalysis and is preceded by a fast isomerization of the enzyme‐substrate complex. Na+, whose binding is a prerequisite for the hydrolysis step, is not required for substrate binding. Replacement of H2O with D2O decreased the rates of pyrophosphate hydrolysis by both Na+‐ and H+‐transporting bacterial mPPases, the effect being more significant than with a non‐transporting soluble pyrophosphatase. We also show that the Na+‐pumping mPPase of Thermotoga maritima resembles other dimeric mPPases in demonstrating negative kinetic cooperativity and the requirement for general acid catalysis. The findings point to a crucial role for the hydrolysis‐generated proton both in H+‐pumping and Na+‐pumping by mPPases.  相似文献   

4.
A. L. Moore  S. B. Wilson 《Planta》1978,141(3):297-302
The permeability of the inner membrane of turnip mitochondria to H+ and OH- ions has been investigated using an acid pulse technique. The rate of decay of a H+ pulse across the inner membrane is exponential having first-order kinetics and gives t 1/2 values of approx 54 s at neutral pH and at 25° C. Valinomycin or 1799 alone have little effect on t 1/2 values, whereas in combination, values of <15 s are observed. Nigericin produces a similar effect. The effective proton conductance of the inner membrane near pH 7 at 25° C is 0.27 nmol H+ min-1 mg protein-1 mV-1. The results suggest that at neutral pH, the inner membrane of plant mitochondria is relatively impermeable to H+ and OH- ions.  相似文献   

5.
The effects of indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellic acid (GA3) and kinetin on the hydrolytic activity of proton pumps (adenosine triphosphatase, H+-ATPase, pyrophosphatase, H+-PPase) of tonoplasts isolated from stored red beet (Beta vulgaris L. cv. Bordo) roots were studied. Results suggest that the phytohormones can regulate the hydrolytic activities of H+-ATPase and H+-PPase of the vacuolar membrane. Each of the proton pumps of the tonoplast has its own regulators in spite of similar localization and functions. IAA and kinetin seem to be regulators of the hydrolytic activity for H+-PPase whereas for H+-ATPase it may be GA3. Stimulation of enzyme activity by all hormones occurred at concentrations of 10–6 to 10–7 M.Abbreviations IAA indole-3-acetic acid - ABA abscisic acid - GA3 gibberellic acid - H+-ATPase adenosine triphosphatase - H+-PPase pyrophosphatase - ATP adenosine triphosphate - Tris Tris (hydroxymethyl)-aminomethane - MES (2[N-Morpholino]) ethane sulfonic acid - EDTA ethylene diamine tetraacetic acid - Pi inorganic phosphate  相似文献   

6.
E.Hilary Evans  Antony R. Crofts 《BBA》1973,292(1):130-139
1. The induction kinetics of delayed fluorescence have been studied in isolated chloroplasts and compared with the kinetics of H+ uptake. The slow phase of the delayed fluorescence rise, after replotting on a logarithmic scale, had the same half-rise time as H+ uptake.2. The kinetics of decay of the “state” filled during the slow phase of delayed fluorescence induction have been investigated by following the reappearance of the slow phase with increasing dark time after a prior period of illumination.3. The decay of the “state” filled during the slow phase was found to parallel the decay of H+ uptake under a variety of conditions in which the ionic environment was varied, or in the presence of ionophores or uncoupling agents.4. It is suggested that the slow phase of the delayed fluorescence induction occurs as a pH gradient develops across the thylakoid membrane, and that the pH gradient is equivalent to the “state”, the decay of which gave rise to a reappearance of the slow phase.  相似文献   

7.
Hormone action on transmembrane electron and h transport   总被引:4,自引:4,他引:0       下载免费PDF全文
A possible involvement of two different systems in proton translocation was investigated by simultaneous measurement of transmembrane electron flow and proton secretion in a pH-stat combined with a redoxstat. The pH gradient between cytoplasm and apoplast is probably maintained by an H+ -pumping ATPase and by a second proton extrusion system, which seems to be linked to a redox chain with NAD(P)H as electron donor. Indole acetic acid inhibits both e and H+ efflux, but only if the `electron draw' from the outside is not too high. The electron draw depends on the hexacyanoferrate level at the plasmalemma surface and on the Ca2+ concentration. The inhibiting effect of auxin on e and H+ efflux in the presence of hexacyanoferrate can be only detected at low levels of bivalent cations and of the artificial electron acceptor. The inhibition of e and H+ efflux by auxin requires high oxygen levels. The influence of auxin on both e and H+ transfer disappears below 2 kilopascals O2, a level which does not influence respiration. Ethanol and fusicoccin do not increase the e flux, probably because the electron transfer from the plasma membrane to HCF III is the limiting step. If electron transfer is reduced by IAA pretreatment, ethanol increases e flux. Fusicoccin decreases e and increases H+ efflux if the rates have been lowered previously by indole acetic acid pretreatment. This effect depends on high oxygen levels and is reversible by lowering oxygen pressure. Auxin and Ca2+ change e flow and H+ ejection in a 1:1 ratio.  相似文献   

8.
Iron deficiency in dwarf bean (Phaseolus vulgaris L.) induces an increased activity of a system in the rhizodermal cells, which reduces extracellular ferric salts, and an active proton efflux from the roots, which is coupled to accumulation of citrate and malate in the roots and subsequent export of these compounds in the xylem. During reduction of extracellular ferricyanide by Fe-deficient plants, the stoichiometry of electron transport to proton efflux is 2e/1H+, and citrate and malate levels in the roots are strongly decreased. Reduction of ferricyanide by Fe-sufficient plants has no influence on root and shoot levels of citrate and malate, but in such plants the process is characterized by a e/H+ efflux stoichiometry close to unity. Apparently, organic acid metabolism and transport are closely associated with the e/H+ efflux ratio. To assess the significance of organic acid metabolism as one of the direct intracellular components of the induced unbalanced e/H+ efflux by roots, we studied NO3 reduction in shoots and roots of Fe-deficient and Fe-sufficient plants. Nitrate reductase activity in the roots was positively correlated with the level of citrate and malate, whereas the enzyme activity in the leaves responded positively to the import of these organic acid anions.  相似文献   

9.
Initial and steady state rates of proton transport at low light intensity have been measured and compared with steady state rates of electron transport in the pH range of 6.0–7.6 in envelope-free spinach chloroplasts. At pH 6–7, the H+/e- values computed using the initial rate of proton transport varied with light intensity, from a value of 2 at low light to almost 5 at high light. In contrast, the H+/e- values computed using the steady state rate of proton transport did not show a dependence on light intensity, having a constant value of 1.7±0.2. Likewise, at pH 7.6, the H+/e- ratio, computed using either the initial or steady state rates of proton transport did not vary with light intensity but was constant at H+/e-=1.7±0.1. Analysis of the light dependence of electron and proton transport allowed determination of (a) the quantam requirements of transport, (b) the rates of transport at light saturation, and (c) H+/e- ratios for initial and steady state proton transport. Extrapolating the initial proton transport to zero light, we found that both H+/photon and H+/e- values were not strongly dependent on pH, approaching a near constant value of 2.0. Using the initial rate of proton transport extrapolated to saturating light intensity we found the H+/e- ratio to be strongly pH-dependent. We suggest that internal pH controls electron transport at high light intensities. The true stoichiometry is reflected only in measurements taken at low light using the initial proton transport data. Our findings and interpretation reconcile some conflicting data in the literature regarding the pH-dependence of the H+/e- ratio and support the concept that internal pH controls noncyclic electron transport.Abbreviations Bicine N, N-bis [2-hydroxyethyl] glycine - HEPES N-2-hydroxy-ethylpiperazine-N-2-ethansulfonic acid - MES 2-(N-morpholino) ethanesulfonic acid  相似文献   

10.
The NO reductase from Paracoccus denitrificans reduces NO to N2O (2NO + 2H+ + 2e → N2O + H2O) with electrons donated by periplasmic cytochrome c (cytochrome c-dependent NO reductase; cNOR). cNORs are members of the heme-copper oxidase superfamily of integral membrane proteins, comprising the O2-reducing, proton-pumping respiratory enzymes. In contrast, although NO reduction is as exergonic as O2 reduction, there are no protons pumped in cNOR, and in addition, protons needed for NO reduction are derived from the periplasmic solution (no contribution to the electrochemical gradient is made). cNOR thus only needs to transport protons from the periplasm into the active site without the requirement to control the timing of opening and closing (gating) of proton pathways as is needed in a proton pump. Based on the crystal structure of a closely related cNOR and molecular dynamics simulations, several proton transfer pathways were suggested, and in principle, these could all be functional. In this work, we show that residues in one of the suggested pathways (denoted pathway 1) are sensitive to site-directed mutation, whereas residues in the other proposed pathways (pathways 2 and 3) could be exchanged without severe effects on turnover activity with either NO or O2. We further show that electron transfer during single-turnover reduction of O2 is limited by proton transfer and can thus be used to study alterations in proton transfer rates. The exchange of residues along pathway 1 showed specific slowing of this proton-coupled electron transfer as well as changes in its pH dependence. Our results indicate that only pathway 1 is used to transfer protons in cNOR.  相似文献   

11.
12.
Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) is indispensable for many organisms in maintaining organellar pH homeostasis. This unique proton pump couples the hydrolysis of PPi to proton translocation across the membrane. H+-PPase consists of 14–16 relatively hydrophobic transmembrane domains presumably for proton translocation and hydrophilic loops primarily embedding a catalytic site. Several highly conserved polar residues located at or near the entrance of the transport pathway in H+-PPase are essential for proton pumping activity. In this investigation single molecule FRET was employed to dissect the action at the pathway entrance in homodimeric Clostridium tetani H+-PPase upon ligand binding. The presence of the substrate analog, imidodiphosphate mediated two sites at the pathway entrance moving toward each other. Moreover, single molecule FRET analyses after the mutation at the first proton-carrying residue (Arg-169) demonstrated that conformational changes at the entrance are conceivably essential for the initial step of H+-PPase proton translocation. A working model is accordingly proposed to illustrate the squeeze at the entrance of the transport pathway in H+-PPase upon substrate binding.  相似文献   

13.
The surface pH shift induced by active H+ excretion in corn (Zea mays L.) roots was estimated using acetic acid influx as a pH probe (H Sentenac, C Grignon 1987 Plant Physiol 84: 1367-1372). At constant bulk pH, buffering the medium strongly reduced the magnitude of the surface pH shift. This was used to study the effect of surface pH shift on H+ cotransports. In the absence of buffers, the surface pH shift increased with the bulk pH. Buffers decreased 32Pi influx and this effect was stronger at pH 7.2 than at pH 5.8, and stronger in the absence than in the presence of an inhibitor of the proton pump (vanadate). Buffers exerted a similar depressive and pH-dependent effect on net NO3 uptake. They hyperpolarized the cell membrane, and stimulated 86Rb+ influx, K+:H+ net exchange, and malate accumulation. These results are consistent with the hypothesis that H+ accumulation at the cell surface is effective in driving H+ reentry. We concluded that the surface pH shift due to proton pump activity is involved in the energetic coupling of H+ cotransports.  相似文献   

14.
We present evidence strongly suggesting that a proton gradient (acid inside) is used to drive an electroneutral, substrate-specific, K+/H+ antiport in both tonoplast and plasma membrane-enriched vesicles obtained from oilseed rape (Brassica napus) hypocotyls. Proton fluxes into and out of the vesicles were monitored both by following the quenching and restoration of quinacrine fluorescence (indicating a transmembrane pH gradient) and of oxonol V fluorescence (indicating membrane potential.) Supply of K+ (with Cl or SCN) after a pH gradient had been established across the vesicle membrane by provision of ATP to the H+-ATPase dissipated the transmembrane pH gradient but did not depolarize the positive membrane potential. Evidence that the K+/H+ exchange thus indicated could not be accounted for by mere electric coupling included the findings that, first, no positive potential was generated when KSCN or KCl was supplied, even in the absence of 100 millimolar Cl and, second, efflux of K+ from K+-loaded vesicles drives intravesicular accumulation of H+ against the electrochemical potential gradient. Neither was the exchange due to competition between K+ and quinacrine for membrane sites, nor to inhibition of the H+-ATPase. Thus, it is likely that it was effected by a membrane component. The exchanger utilized primarily K+ (at micromolar concentrations); Na+/H+ antiport was detected only at concentrations two orders of magnitude higher. Rb+, Li+, or Cs+ were ineffective. Dependence of tonoplast K+/H+ antiport on K+ concentration was complex, showing saturation at 10 millimolar K+ and inhibition by concentrations higher than 25 millimolar. Antiport activity was associated both with tonoplast-enriched membrane vesicles (where the proton pump was inhibited by more than 80% by 50 millimolar NO3 and showed no sensitivity to vanadate or oligomycin) and with plasma membrane-enriched fractions prepared by phase separation followed by separation on a sucrose gradient (where the proton pump was vanadate and diethylstilbestrol-sensitive but showed no sensitivity to NO3 or oligomycin). The possible physiological role of such a K+/H+ exchange mechanism is discussed.  相似文献   

15.
Isolated spinach chloroplasts have been used as a model system for studying the interaction of ozone, a component of photochemical smog, with plant membranes. Ozone bubbled into a suspension of isolated chloroplasts inhibits electron transport in both photosystems without uncoupling ATP production. Photosystem I (reduced 2,6-dichlorophenolindolphenol → NADP+) is a little more sensitive than photosystem II (H2O → 2,6-dichlophenolindolphenol). Ozone does not act as an energy transfer inhibitor, since the drop in ATP production and high energy intermediate (measured by amine-induced swelling) is nearly parallel to the decline in electron transport. A reasonable hypothesis is that ozone disrupts the normal pathway of energy flow from light-excited chlorophyll into the photoacts by a disruption of the components of the membrane but not a general disintegration of the membrane. In addition, ozone does not seem to penetrate into the grana region through the outer membrane of intact plastids, since ozone lowers the bicarbonate-supported O2 evolution but does not affect the rate of ferricyanide reduction in the same plastids after osmotic disruption. This would indicate that the effect of ozone on green plants, at low concentrations, may be due to the interaction of ozone with the first membrane it contacts and not directly with internal metabolic processes.  相似文献   

16.
《BBA》2006,1757(9-10):1133-1143
In cytochrome c oxidase, oxido-reductions of heme a/CuA and heme a3/CuB are cooperatively linked to proton transfer at acid/base groups in the enzyme. H+/e cooperative linkage at Fea3/CuB is envisaged to be involved in proton pump mechanisms confined to the binuclear center. Models have also been proposed which involve a role in proton pumping of cooperative H+/e linkage at heme a (and CuA). Observations will be presented on: (i) proton consumption in the reduction of molecular oxygen to H2O in soluble bovine heart cytochrome c oxidase; (ii) proton release/uptake associated with anaerobic oxidation/reduction of heme a/CuA and heme a3/CuB in the soluble oxidase; (iii) H+ release in the external phase (i.e. H+ pumping) associated with the oxidative (R  O transition), reductive (O  R transition) and a full catalytic cycle (R  O  R transition) of membrane-reconstituted cytochrome c oxidase. A model is presented in which cooperative H+/e linkage at heme a/CuA and heme a3/CuB with acid/base clusters, C1 and C2 respectively, and protonmotive steps of the reduction of O2 to water are involved in proton pumping.  相似文献   

17.
The sodium ion gradient and the membrane potential were found to be the driving forces of sulfate accumulation in the marine sulfate reducer Desulfovibrio salexigens. The protonmotive force of –158 mV, determined by means of radiolabelled membrane-permeant probes, consisted of a membrane potential of –140 mV and a pH gradient (inside alkaline) of 0.3 at neutral pHout. The sodium ion gradient, as measured with silicone oil centrifugation and atomic absorption spectroscopy, was eightfold ([Na+]out/[Na+]in) at an external Na+ concentration of 320 mM. The resulting sodium ionmotive force was –194 mV and enabled D. salexigens to accumulate sulfate 20000-fold at low external sulfate concentrations (<0.1 M). Under these conditions high sulfate accumulation occurred electrogenically in symport with three sodium ions (assuming equilibrium with the sodium ion-motive force). With increasing external sulfate concentrations sulfate accumulation decreased sharply, and a second, low-accumulating system symported sulfate electroneutrally with two sodium ions. The sodium-ion gradient was built up by electrogenic Na+/H+ antiport. This was demonstrated by (i) measuring proton translocation upon sodium ion pulses, (ii) studying uptake of sodium salts in the presence or absence of the electrical membrane potential, and (iii) the inhibitory effect of the Na+/H+ antiport inhibitor propylbenzilylcholin-mustard HCl (PrBCM). With resting cells ATP synthesis was found after proton pulses (changing the pH by three units), but neither after pulses of 500 mM sodium ions, nor in the presence of the uncoupler tetrachorosalicylanilide (TCS). It is concluded that the energy metabolism of the marine strain D. salexigens is based primarily on the protonmotive force and a protontranslocating ATPase.Abbreviations MOPS morpholinopropanesulfonic acid - TCS tetrachlorosalicylanilide - PrBCM propylbenzilylcholin-mustard HCl - Tris tris(hydroxymethyl)aminomethane - TPP+ bromide tetraphenylphosphonium bromide  相似文献   

18.
The proton translocation coupled to the electron flux from succinate, exogenous NADH, and NAD+-linked substrates (malate and isocitrate) to cytochrome c and to oxygen was studied in purified potato (Solanum tuberosum) mitochondria using oxygen and ferricyanide pulse techniques. In the presence of valinomycin plus K+ (used as a charge compensating cation), optimum values of H+/2 e were obtained when low amounts of electron acceptors (oxygen or ferricyanide) were added to the mitochondria (1-2 nanogram [2 e] equivalents per milligram protein). The stoichiometry of proton translocation to electron flux was unaffected in the presence of N-ethylmaleimide, an inhibitor of the Pi/H+ symport. With succinate as substrate, H+/2 e ratios were 4.0 ± 0.2 and 3.7 ± 0.3 with oxygen and ferricyanide as electron acceptors, respectively. With exogenous NADH, H+/2e ratios were 4.1 ± 0.9 and 3.4 ± 0.2, respectively. The proton translocation coupled to the oxidation of NAD+-linked substrates (malate, isocitrate) was dependent upon the presence of adenylates (ADP, AMP, or ATP). For malate (+ glutamate) oxidation the observed H+/2 e ratios were increased from 3.6 ± 2.2 to 6.5 ± 0.5 in the presence of 20 micromolar ADP.  相似文献   

19.
Diclofop-methyl (methyl ester of 2-[4-(2′,4′-dichlorophenoxy)phenoxy]propionate; 100 micromolar) and diclofop (100 micromolar) inhibited both ATP- and PPi-dependent formation of H+ gradients by tonoplast vesicles isolated from oat (Avena sativa L., cv Dal) roots. Diclofop-methyl (1 micromolar) significantly reduced the steady-state H+ gradient generated in the presence of ATP. The ester (diclofop-methyl) was more inhibitory than the free acid (diclofop) at pH 7.4, but this relative activity was reversed at pH 5.7. Neither compound affected the rate of ATP or PPi hydrolysis by the proton-pumping enzymes. Diclofop-methyl (50, 100 micromolar), but not diclofop (100 micromolar), accelerated the decay of nonmetabolic H+ gradients established across vesicle membranes. Diclofop-methyl (100 micromolar) did not collapse K+ gradients across vesicle membranes. Both the (+)- and (−)-enantiomers of diclofop-methyl dissipated nonmetabolic H+ gradients established across vesicle membranes. Diclofop-methyl, but not diclofop (each 100 micromolar), accelerated the decay of H+ gradients imposed across liposomal membranes. These results show that diclofop-methyl causes a specific increase in the H+ permeability of tonoplast.  相似文献   

20.
Brauer D  Tu SI 《Plant physiology》1991,95(3):707-710
Certain carboxylic acid groups within the primary structure of proton translocating proteins are thought to be involved in the proton pathway. In this report, the effects of a lipophilic carboxylic acid reactive reagent, N-cyclo-N′(4-dimethylamino-α-naphthyl)carbodiimide (NCD-4), on the two types of proton pumps in maize (Zea mays L.) root microsomes were investigated. NCD-4 was found to inhibit the vacuolar-type H+-ATPase in microsomal preparations; however, the plasma membrane-type H+-ATPase was unaffected. The H+-ATPase in highly purified tonoplast vesicles was also inhibited by NCD-4. Inhibition was dependent on the concentration and length of exposure to the reagent. However, there was little, if any, increase in the fluorescence of treated vesicles, indicating few carboxylic acid residues were reacting. Inhibition of the tonoplast H+-ATPase by NCD-4 was examined further with a partially purified preparation. The partially purified H+-ATPase also showed sensitivity to the NCD-4, supporting the hypothesis that this carboxylic acid reagent is an inhibitor of the tonoplast ATPase from maize roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号