首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
Several approaches were explored for obtaining high sequence coverage in protein modification studies performed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Human serum albumin (HSA, 66.5kDa) was used as a model protein for this work. Experimental factors considered in this study included the type of matrix used for MALDI-TOF MS, the protein digestion method, and the use of fractionation for peptide digests prior to MALDI-TOF MS analysis. A mixture of alpha-cyano-4-hydroxycinnamic acid and 2,5-dihydroxybenzoic acid was employed as the final matrix for HSA. When used with a tryptic digest, this gave unique information on only half of the peptides in the primary structure of HSA. However, the combined use of three enzyme digests based on trypsin, endoproteinase Lys-C, and endoproteinase Glu-C increased this sequence coverage to 72.8%. The use of a ZipTip column to fractionate peptides in these digests prior to analysis increased the sequence coverage to 97.4%. These conditions made it possible to examine unique peptides from nearly all of the structure of HSA and to identify specific modifications to this protein (e.g., glycation sites). For instance, Lys199 was confirmed as a glycation site on normal HSA, whereas Lys536 and Lys389 were identified as additional modification sites on minimally glycated HSA.  相似文献   

2.
Methods for on-chip protein analysis   总被引:7,自引:0,他引:7  
The unambiguous identification of peptides/proteins is crucial for the definition of the proteome. Using ProteinChip Array technology also known as surface-enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF MS), we developed experimental protocols and probed test conditions required for the protein identification on ProteinChip surfaces. We were able to directly digest peptides/proteins on-chip surfaces by specific proteases, such as trypsin, and to obtain the peptide mass fingerprint of the sample under investigation by its direct analysis on a simple laser desorption/ionization mass spectrometer. Furthermore, tandem mass spectrometry was performed on several of the resulting tryptic peptides by using collision quadrupole time of flight (Qq-TOF) MS/MS via the ProteinChip interface, thus allowing the unambiguous identification of the protein(s) within the sample. In addition, we were able to identify the C-terminal sequence of peptides by their digestion with carboxypeptidase Y directly on ProteinChip surfaces coupled with SELDI-TOF MS analysis of the resulting peptide mass ladders employing the instrument's protein ladder sequence software. Moreover, the removal of up to nine amino acid residues from the C-terminal end of a peptide extends the functional range of Qq-TOF MS/MS sequence determination to over 3000 m/z. The utility of these procedures for the proteome exploration are discussed.  相似文献   

3.
Merkel D  Rist W  Seither P  Weith A  Lenter MC 《Proteomics》2005,5(11):2972-2980
Bronchoalveolar lavage fluid (BALF) is an important diagnostic source to investigate cellular and molecular changes in the course of lung disorders. The pattern of soluble proteins in BALF obtained from patients at different stages of respiratory disorders may provide deeper insights in the molecular mechanisms of the disease. We used surface-enhanced laser desorption/ionization mass spectrometry (MS) for differential protein display combined with reversed-phase chromatography and subsequent matrix-assisted laser desorption/ionization-MS or nanoliquid chromatography MS/MS analysis for protein identification to compare the protein pattern of BALF samples obtained from ten smokers suffering from chronic obstructive pulmonary disease (COPD), eight clinically asymptomatic smokers, and eight nonsmokers without pulmonary disease. In this context, we were able to identify small proteins and peptides, either differentially expressed or secreted in the course of COPD or in a direct response to cigarette smoke. The concentrations of neutrophil defensins 1 and 2, S100A8 (calgranulin A), and S100A9 (calgranulin B) were elevated in BALFs of smokers with COPD when compared to asymptomatic smokers. Increased concentrations in S100A8 (Calgranulin A), salivary proline-rich peptide P-C, and lysozyme C were detected in BALFs of asymptomatic smokers when compared to nonsmokers, whereas salivary proline-rich peptide P-D and Clara cell phospholipid-binding protein (CC10) were reduced in their concentration. The identified proteins and peptides might be useful in the future as diagnostic markers for smoke-induced lung irritations and COPD.  相似文献   

4.
Structural characterization of peptides in the range of 500–5000 Da, using fast atom bombardment (FAB) and Cs+ ion liquid secondary ion mass spectrometry (SIMS), is reviewed. These include syntheitc peptides Kemptamide (mol wt 1516); GIF-C15 (mol wt 1875), an isolated natural product as an acylated pentapeptide; and polypeptides generated from enzymatic digests of proteins. MS data is shown to reveal molecular weight and sequence information as well as determine disulfide bonds between cysteine residues and glycosylation sites in the case of a glycopeptide. The complementarity of MS technique to classical biochemical methods for peptide characterization is highlighted. The reader is briefly acquainted with two newer ionization techniques namely, electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). Synthetic chemists and biochemists can refer to the in-depth review articles that are cited throughout this article.  相似文献   

5.
Aberrant production of amyloid-beta peptides by processing of the beta-amyloid precursor protein leads to the formation of characteristic extracellular protein deposits which are thought to be the cause of Alzheimer's disease. Therefore, inhibiting the key enzymes responsible for amyloid-beta peptide generation, beta- and gamma-secretase may offer an opportunity to intervene with the progression of the disease. In human brain and cell culture systems a heterogeneous population of amyloid-beta peptides with various truncations is detected and at present, it is unclear how they are produced. We have used a combination of surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) and a specific inhibitor of gamma-secretase to investigate whether the production of all amyloid-beta peptide species requires the action of gamma-secretase. Using this approach, we demonstrate that the production of all truncated amyloid-beta peptides except those released by the action of the nonamyloidogenic alpha-secretase enzyme or potentially beta-site betaAPP cleaving enzyme 2 depends on gamma-secretase activity. This indicates that none of these peptides are generated by a separate enzyme entity and a specific inhibitor of the gamma-secretase enzyme should havethe potential to block the generation of all amyloidogenicpeptides. Furthermore in the presence of gamma-secretase inhibitors, the observation of increased cleavage of the membrane-bound betaAPP C-terminal fragment C99 by alpha-secretase suggests that during its trafficking C99 encounters compartments in which alpha-secretase activity resides.  相似文献   

6.
蛋白质芯片SELDI-TOFMS技术的研究进展及其在临床中的应用   总被引:8,自引:0,他引:8  
蛋白质芯片为新一代的蛋白质组研究技术,由美国Ciphergen生物系统公司引进,表面增强激光解吸电离-飞行时间质谱(SELDI-TOFMS)提供一个高通量和高灵敏度的检测平台。投放至今虽短短10来年,但卓越的成果已广为医学科学界重视,尤其在恶性肿瘤的早期诊断、监控和预后研究上。蛋白质是细胞内执行生物功能的最终分子,蛋白质组学研究让人类更深入了解疾病和生命的本源,不断发现的特异性肿瘤标志物更为攻克癌症带来新希望。这里除对表面增强激光解吸电离_飞行时间质谱作较详尽的介绍外,更重点阐述其近年来蛋白质芯片近期的研究进展和在临床中的应用,并就其优劣和发展前景作出评估。  相似文献   

7.
Plasma HDL-cholesterol and apolipoprotein A-I (apoA-I) levels are strongly inversely associated with cardiovascular disease. However, the structure and protein composition of HDL particles is complex, as native and synthetic discoidal and spherical HDL particles can have from two to five apoA-I molecules per particle. To fully understand structure-function relationships of HDL, a method is required that is capable of directly determining the number of apolipoprotein molecules in heterogeneous HDL particles. Chemical cross-linking followed by SDS polyacrylamide gradient gel electrophoresis has been previously used to determine apolipoprotein stoichiometry in HDL particles. However, this method yields ambiguous results due to effects of cross-linking on protein conformation and, subsequently, its migration pattern on the gel. Here, we describe a new method based on cross-linking chemistry followed by MALDI mass spectrometry that determines the absolute mass of the cross-linked complex, thereby correctly determining the number of apolipoprotein molecules in a given HDL particle. Using well-defined, homogeneous, reconstituted apoA-I-containing HDL, apoA-IV-containing HDL, as well as apoA-I/apoA-II-containing HDL, we have validated this method. The method has the capability to determine the molecular ratio and molecular composition of apolipoprotein molecules in complex reconstituted HDL particles.  相似文献   

8.
There is a great desire to relate the patterns of endogenous peptides in blood to human disease and drug response. The best practices for the preparation of blood fluids for analysis are not clear and also relatively few of the peptides in blood have been identified by tandem mass spectrometry. We compared a number of sample preparation methods to extract endogenous peptides including C18 reversed phase, precipitation, and ultrafiltration. We examined the results of these sample preparation methods by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and liquid chromatography-tandem mass spectrometry (MS/MS) using MALDI-TOF/TOF and electrospray ionization-ion trap. Peptides from solid-phase extraction with C18 in the range of hundreds of femtomoles per spot were detected from the equivalent of 1 μL of serum by MALDI-TOF. We observed endogenous serum peptides from fibrinogen α- and β-chain, complement C3, α-2-HS-glycoprotein, albumin, serine (or cysteine) proteinase inhibitor, factor VIII, plasminogen, immunoglobulin, and other abundant blood proteins. However, we also recorded significant MS/MS spectra from tumor necrosis factor-α-, major histocompatibility complex-, and angiotensin-related peptides, as well as peptides from collagens and other low-abundance proteins. Amino acid substitutions were detected and a phosphorylated peptide was also observed. This is the first time the endogenous peptides of fetal serum have been examined by MS and where peptides from low-abundance proteins, phosphopeptides, and amino acid substitutions were detected.  相似文献   

9.
Human saliva contains a large number of proteins and peptides (salivary proteome) that help maintain homeostasis in the oral cavity. Global analysis of human salivary proteome is important for understanding oral health and disease pathogenesis. In this study, large-scale identification of salivary proteins was demonstrated by using shotgun proteomics and two-dimensinal gel electrophoresis-mass spectrometry (2-DE-MS). For the shotgun approach, whole saliva proteins were prefractionated according to molecular weight. The smallest fraction, presumably containing salivary peptides, was directly separated by capillary liquid chromatography (LC). However, the large protein fractions were digested into peptides for subsequent LC separation. Separated peptides were analyzed by on-line electrospray tandem mass spectrometry (MS/MS) using a quadrupole-time of flight mass spectrometer, and the obtained spectra were automatically processed to search human protein sequence database for protein identification. Additionally, 2-DE was used to map out the proteins in whole saliva. Protein spots 105 in number were excised and in-gel digested; and the resulting peptide fragments were measured by matrix-assisted laser desorption/ionization-mass spectrometry and sequenced by LC-MS/MS for protein identification. In total, we cataloged 309 proteins from human whole saliva by using these two proteomic approaches.  相似文献   

10.
11.
The interaction between the bovine prion protein (bPrP) and a monoclonal antibody, 1E5, was studied with high-mass matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and surface plasmon resonance (SPR). In the case of MS a cross-linking stabilization was used prior to the analysis, whereas for SPR the antibody was immobilized and bPrP was injected. We compared the determination of parameters such as the epitope, the kinetics and binding strength, and the capacity of the antigen to bind two different antibodies. The two methods are highly complementary. SPR measurements require a lower amount of sample but are more time-consuming due to all of the necessary side steps (e.g., immobilization, regeneration). High-mass MALDI MS needs a higher overall amount of sample and cannot give direct access to the kinetic constants, but the analysis is faster and easier compared with SPR.  相似文献   

12.
Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a relatively new laser desorption/ionization technique for mass spectrometry without employing an organic matrix. This present study was carried to survey the experimental factors to improve the efficiency of DIOS-MS through electrochemical etching condition in structure and morphological properties of the porous silicon. The porous structure of silicon structure and its properties are crucial for the better performance of DIOS-MS and they can be controlled by the suitable selection of electrochemical conditions. The fabrication of porous silicon and ion signals on DIOS-MS were examined as a function of silicon orientation, etching time, etchant, current flux, irradiation, pore size, and pore depth. We have also examined the effect of pre- and post-etching conditions for their effect on DIOS-MS. Finally, we could optimize the electrochemical conditions for the efficient performance of DIOS-MS in the analysis of small molecule such as amino acid, drug and peptides without any unknown noise or fragmentation.  相似文献   

13.
Black spot disease in poplar is a disease of the leaf caused by fungus. The major pathogen is Marssonina brunnea f. sp. multigermtubi. To date, little is known about the molecular mechanism of poplar (M. brunnea) interaction. In order to identify the proteins related to disease resistance and understand its molecular basis, the clone "NL895" (P. euramericana CL"NL895"), which is highly resistant to M. brunnea f. sp. multigermtubi, was used in this study. We used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to identify the proteins in poplar leaves that were differentially expressed in response to black spot disease pathogen, M. brunnea f. sp. multigermtubi. Proteins extracted from poplar leaves at 0, 12, 24, 48, and 72 h after pathogen-inoculation were separated by 2-DE, About 500 reproducible protein spots were detected, of which 40 protein spots displayed differential expression in levels and were subjected to Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) followed by database searching. According to the function, the identified proteins were sorted into five categories, that is, protein synthesis, metabolism, defense response and unclassified proteins.  相似文献   

14.
N6-Methyladenosine 1618 of Escherichia coli 23 S rRNA is located in a cluster of modified nucleotides 12 Å away from the nascent peptide tunnel of the ribosome. Here, we describe the identification of gene ybiN encoding an enzyme responsible for methylation of A1618. Knockout of the ybiN gene leads to loss of modification at A1618. The modification is restored if ybiN knock-out strain has been co-transformed with a plasmid expressing the ybiN gene. On the basis of these results we suggest that ybiN gene should be renamed to rlmF in accordance with the accepted nomenclature for rRNA methyltransferases. Recombinant YbiN protein is able to methylate partially deproteinized 50 S ribosomal subunit, so-called 3.5 M LiCl core particle in vitro, but neither the completely assembled 50 S subunits nor completely deproteinized 23 S rRNA. Both lack of the ybiN gene and it's over-expression leads to growth retardation and loss of cell fitness comparative to the parental strain. It might be suggested that A1618 modification could be necessary for the exit tunnel interaction with some unknown regulatory peptides.  相似文献   

15.
Since personal and verbal reporting of alcohol use is not necessarily accurate, objective markers to assess alcohol consumption are required. The currently available markers, however, are limited in sensitivity and specificity for screening of excessive alcohol drinkers. Therefore, searches for novel markers are warranted. Recently, surface enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS) has been successfully used to detect disease-associated proteins in complex biological specimens. We used the ProteinChip SELDI technology to generate comparative protein profiles of the consecutive serum samples obtained during abstinence from a total of 16 chronic alcoholic patients hospitalized for a rehabilitation program. We recognized two peaks (5.9 and 7.8 kDa), both of which had been downregulated on admission, the expression level of which significantly increased after a one-week abstinence. These changes were also seen in nonresponders of gamma-glutamyltransferase. These two proteins were partially purified and subjected to amino acid sequencing. The 5.9 kDa protein was identified as a fragment of fibrinogen alphaE chain and the 7.8 kDa was a fragment of apoprotein A-II. These novel protein fragments may be promising biomarkers for excessive alcohol drinking.  相似文献   

16.
Multifactorial diseases such as respiratory disease call for a global analysis of such disorders. Recent advances in protein profiling techniques may allow for early diagnosis of respiratory disease, which is crucial for intervention and treatment. In order to reduce false-positive rates, clinical diagnosis requires a high degree of sensitivity and specificity to be an effective screening tool. Protein profiles identified by ProteinChip® (Ciphergen Biosystems) technology coupled with mass spectrometry affords a global analysis of clinical samples and is beginning to reach acceptable levels of sensitivity and specificity. Combining the profile with another diagnostic tool enhances the effectiveness of protein profiles to classify disease. Although current efforts have centered on serum protein profiling, the local environment of the lung may be better reflected in proteins of bronchoalveolar lavage or sputum. Identification of biomarkers of disease by protein profiling anaylses may lead to an understanding of the mechanisms of this disease and contribute to the discovery of new therapeutics for the prevention and treatment of disease. Advancing these analyses are techniques such as ProteinChip mass spectrometry, laser capture microdissection, tissue microarrays and fluorescently labeled antibody bead arrays, which enable the direct global analysis of complex mixtures. Effective high-throughput and ease of use of clinical testing will arrive with improvements in bioinformatics and decreases in instrumentation costs.  相似文献   

17.
Rapid identification of microorganisms in urine is essential for patients with urinary tract infections (UTIs). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been proposed as a method for the direct identification of urinary pathogens. Our purpose was to compare centrifugation-based MALDI-TOF MS and short-term culture combined with MALDI-TOF MS for the direct identification of pathogens in urine specimens. We collected 965 urine specimens from patients with suspected UTIs, 211/965 isolates were identified as positive by conventional urine culture. Compared with the conventional method, the results of centrifugation-based MALDI-TOF MS were consistent in 159/211 cases (75.4%), of which 135/159 (84.9%) had scores ≥ 2.00; 182/211 cases (86.3%) were detected using short-term culture combined with MALDI-TOF MS, of which 153/182 (84.1%) had scores ≥ 2.00. There were no apparent differences among the three methods (p = 0.135). MALDI-TOF MS appears to accelerate the microbial identification speed in urine and saves at least 24 to 48 hours compared with the routine urine culture. Centrifugation-based MALDI-TOF MS is characterized by faster identification speed; however, it is substantially affected by the number of bacterial colonies. In contrast, short-term culture combined with MALDI-TOF MS has a higher detection rate but a relatively slow identification speed. Combining these characteristics, the two methods may be effective and reliable alternatives to traditional urine culture.  相似文献   

18.
蛋白质组学技术及其在生物医学上的应用   总被引:7,自引:0,他引:7  
蛋白质组学部分承用了创立于二十多年前的二维电泳技术。基于其高分辩能力 ,二维电泳主要用于分离和检测复杂混合物中的蛋白质。虽然没有获得更多的改进 ,但是二维电泳结合了通过质谱测定蛋白质的最新进展而成为蛋白质组学中的一项重要技术。随着人类基因组计划项目的完成及由此而产生的大量基因数据库和使用这些数据的生物信息技术 ,科学家们的下一个目标是解析生物体的完整蛋白质组 ,把蛋白质组学数据与基因组学数据关联起来并有机地结合而成为一项有力的工具以阐明病理学中的蛋白质功能、衰老的过程及发现新药目标蛋白质和疾病标识物等。文章综述了蛋白质组学技术的最新知识及其在生物医学研究中的潜在应用  相似文献   

19.
紫芝免疫调节蛋白基因的原核表达与功能分析   总被引:1,自引:0,他引:1  
以紫芝(Ganodermasinense)真菌免疫调节蛋白基因(FIP-gsi)为材料,采用原核表达技术进行蛋白表达,利用基质辅助激光解吸附质谱技术(MALDI-MS)鉴定表达的蛋白,通过体外诱导细胞因子表达技术分析细胞因子基因的表达模式,为真菌免疫调节蛋白生物活性及作用机制的研究奠定基础。结果表明:紫芝真菌免疫调节蛋白基因(FIP-gsi)可在原核细胞中表达,表达出的重组蛋白FIP-gsi约占大肠杆菌总蛋白的46.1%;基质辅助激光解吸附质谱技术鉴定显示表达的蛋白为FIP-gsi,与灵芝(G.lucidum)真菌免疫调节蛋白LZ-8有88.6%的一致性;重组蛋白FIP-gsi能够诱导细胞因子IL(interleukin)-2、IL-4、IFN(interferon)-γ,TNF(tumor necrosis factor)-α,LT(lymphotoxin)及IL-2 R(IL-2 receptor)表达,并且呈现一定的剂量关系。  相似文献   

20.
Separation and identification of hydrophobic membrane proteins is a major challenge in proteomics. Identification of such sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)-separated proteins by peptide mass fingerprinting (PMF) via matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) is frequently hampered by the insufficient amount of peptides being generated and their low signal intensity. Using the seven helical transmembrane-spanning proton pump bacteriorhodopsin as model protein, we demonstrate here that SDS removal from hydrophobic proteins by ion-pair extraction prior to in-gel tryptic proteolysis leads to a tenfold higher sensitivity in mass spectrometric identification via PMF, with respect to initial protein load on SDS-PAGE. Furthermore, parallel sequencing of the generated peptides by electrospray ionization-mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) was possible without further sample cleanup. We also show identification of other membrane proteins by this protocol, as proof of general applicability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号