共查询到20条相似文献,搜索用时 15 毫秒
1.
Blockade of IRS1 in isolated rat pancreatic islets improves glucose-induced insulin secretion 总被引:7,自引:0,他引:7
Araujo EP Amaral ME Souza CT Bordin S Ferreira F Saad MJ Boschero AC Magalhães EC Velloso LA 《FEBS letters》2002,531(3):437-442
Several neural, hormonal and biochemical inputs actively participate in the balance of insulin secretion induced by blood glucose fluctuations. The exact role of insulin as an autocrine and paracrine participant in the control of its own secretion remains to be determined, mostly due to insufficient knowledge about the molecular phenomena that govern insulin signaling in pancreatic islets. In the present experiments we demonstrate that higher insulin receptor and insulin receptor substrates-1 and -2 (IRS1 and IRS2) concentrations are predominantly encountered in cells of the periphery of rat pancreatic islets, as compared to centrally located cells, and that partial blockade of IRS1 protein expression by antisense oligonucleotide treatment leads to improved insulin secretion induced by glucose overload, which is accompanied by lower steady-state glucagon secretion and blunted glucose-induced glucagon fall. These data reinforce the inhibitory role of insulin upon its own secretion in isolated, undisrupted pancreatic islets. 相似文献
2.
Panetta D Biedi C Repetto S Cordera R Maggi D 《Biochemical and biophysical research communications》2004,316(1):240-243
Caveolae are hot spots in IGF-I signalling as suggested by the facts that IGF-I receptors localize in caveolae, directly interact with and tyrosine phosphorylate caveolin 1, the major caveolar protein. Also a number of IGF-IR substrates reside in caveolae, supporting a role of these organelles in the regulation of IGF-I action. Recently, we have demonstrated that IGF-I could specifically regulate Shc phosphorylation in caveolae. Here we show that also IRS1 localizes in this region where it is tyrosine phosphorylated in the presence of IGF-I. Moreover, IRS1 co-immunoprecipitates with caveolin 1 and the specific phosphocaveolin 1-IRS1 interaction is increased by IGF-I. 相似文献
3.
Jun Zhou 《Archives of biochemistry and biophysics》2009,488(1):1-8
Accumulating evidence suggests that enhanced peroxynitrite formation occurs during diabetes. This report describes the effect of peroxynitrite on insulin receptor (IR) function. Addition of peroxynitrite to purified IR resulted in concentration-dependent tyrosine nitration and thiol oxidation. Interestingly, the basal and insulin-stimulated IR autophosphorylation and tyrosine kinase activity were upregulated at low peroxynitrite concentrations, but downregulated at high peroxynitrite concentrations. Concomitantly, peroxynitrite dramatically reduced 125I-insulin binding capacity and phosphotyrosine phosphatase activity of IR preparations. Moreover, SIN-1 administration decreased blood glucose levels in normal mice via upregulation of IR/IRS-1 tyrosine phosphorylation. In contrast, SIN-1 markedly increased blood glucose levels in diabetic mice concomitant with downregulation of IR/IRS-1 tyrosine phosphorylation. Taken together, these data provide new insights regarding how peroxynitrite influences IR function in vitro and in vivo, suggesting that peroxynitrite plays a dual role in regulation of IR autophosphorylation and tyrosine kinase activity, and SIN-1 has hyperglycemic effect in diabetic mice. 相似文献
4.
Nomiyama T Igarashi Y Taka H Mineki R Uchida T Ogihara T Choi JB Uchino H Tanaka Y Maegawa H Kashiwagi A Murayama K Kawamori R Watada H 《Biochemical and biophysical research communications》2004,320(3):639-647
Inducible nitric oxide synthetase plays an essential role in insulin resistance induced by a high-fat diet. The reaction of nitric oxide with superoxide leads to the formation of peroxynitrite (ONOO-), which can modify several proteins. In this study, we investigated whether peroxynitrite impairs insulin-signalling pathway. Our experiments showed that 3-(4-morpholinyl)sydnonimine hydrochloride (SIN-1), a constitutive producer of peroxynitrite, dose-dependently inhibited insulin-stimulated glucose uptake. While SIN-1 did not affect the insulin receptor protein level and tyrosine phosphorylation, it reduced the insulin receptor substrate-1 (IRS-1) protein level, and IRS-1 associated phosphatidylinositol-3 kinase (PI-3 kinase) activity. Although SIN-1 did not induce Ser307 phosphorylation of IRS-1, tyrosine nitration of IRS-1 was detected in SIN-1-treated-Rat1 fibroblasts expressing human insulin receptors. Mass spectrometry showed that peroxynitrite induced at least four nitrated tyrosine residues in rat IRS-1, including Tyr939, which is critical for association of IRS-1 with the p85 subunit of PI-3 kinase. Our results suggest that peroxynitrite reduces the IRS-1 protein level and decreases phosphorylation of IRS-1 concurrent with nitration of its tyrosine residues. 相似文献
5.
Polycystic ovary syndrome is associated with genetic polymorphism in the insulin signaling gene IRS-1 but not ENPP1 in a Japanese population 总被引:1,自引:0,他引:1
Baba T Endo T Sata F Honnma H Kitajima Y Hayashi T Manase K Kanaya M Yamada H Minakami H Kishi R Saito T 《Life sciences》2007,81(10):850-854
Recent studies indicate that insulin resistance resulting from altered post-receptor signaling is associated with polycystic ovary syndrome (PCOS). We hypothesized that insulin receptor substrate-1 (IRS-1) Gly972Arg polymorphism and/or ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) Lys121Gln polymorphism predisposes women to PCOS and that these polymorphisms also affect anthropometric variables, glucose metabolism and androgen synthesis. To test those ideas, we studied the genotypes, indexes of insulin resistance, and hormone profiles in 123 Japanese women with PCOS and 380 healthy Japanese controls. We found that there were significantly more IRS-1 972Arg carriers among the PCOS patients than among the healthy controls (10.6% vs. 4.8%, p=0.029), which is consistent with our finding that women carrying the IRS-1 972Arg allele had a significantly increased risk of developing PCOS (odds ratio: 3.31, 95% confidence interval: 1.49-7.35). By contrast, the ENPP1 Lys121Arg polymorphism was distributed equally among PCOS patients and controls. In addition, neither of these polymorphisms studied affected the anthropometric variables, metabolic parameters or androgen levels of women with PCOS. We conclude that the IRS-1 Gly972Arg polymorphism is associated with PCOS in the Japanese population. 相似文献
6.
MicroRNAs (miRNAs) play an important role in insulin signaling and insulin secretion, but the role of miRNAs in the association between obesity and hepatic insulin resistance is largely unknown. This study reports that saturated fatty acid (SFA) and high fat diet (HFD) significantly induce miR-195 expression in hepatocytes, and that the insulin receptor (INSR), not insulin receptor substrate-1 (IRS-1), is a direct target of miR-195. Furthermore, the ectopic expression of miR-195 suppresses the expression of INSR, thereby impairing the insulin signaling cascade and glycogen synthesis in HepG2 cells. These findings suggest that the dysregulation of miR-195 by SFA is a detrimental factor for hepatic insulin sensitivity. 相似文献
7.
Satoshi Ugi Hiroshi Maegawa Jerrold M. Olefsky Yukio Shigeta Atsunori Kashiwagi 《FEBS letters》1994,340(3):216-220
To clarify the role of protein tyrosine phosphatase containing Src homology 2 (SH2) regions on insulin signaling, we investigated the interactions among the insulin receptor, a pair of SH2 domains of SH-PTP2 coupled to glutathione-S-transferase (GST) and insulin receptor substrate-1 (IRS-1)-GST fusion proteins (amino-portion, IRS-1N; carboxyl portion, IRS-1C). GST-SH2 protein of SH-PTP2 bound to the wild type insulin receptor, but not to that with a carboxyl-terminal mutation (Y/F2). Furthermore, even though Y/F2 receptors were used, the SH2 protein was also co-immunoprecipitated with IRS-1C, but not with IRS-1N. These results indicate that SH2 domains of SH-PTP2 can directly associate with the Y1322TXM motif on the carboxyl terminus of insulin receptors and also may bind to the carboxyl portion of IRS-1, possibly via the V1172IDL motif in vitro. 相似文献
8.
Maggi D Biedi C Segat D Barbero D Panetta D Cordera R 《Biochemical and biophysical research communications》2002,295(5):1085-1089
Caveolin 1, a component of caveolae, regulates signalling pathways compartmentalization interacting with tyrosine kinase receptors and their substrates. The role of caveolin 1 in the Insulin Receptor (IR) signalling has been well investigated. On the contrary, the functional link between caveolin 1 and IGF-I Receptor (IGF-IR) remains largely unknown. Here we show that (1) IGF-IR colocalizes with caveolin 1 in the lipid rafts enriched fractions on plasmamembrane in R-IGF-IR(WT) cells, (2) IGF-I induces caveolin 1 phosphorylation at the level of tyrosine 14, (3) this effect is rapid and results in the translocation of caveolin 1 and in the formation of membrane patches on cell surface. These actions are IGF-I specific since we did not detect caveolin 1 redistribution in insulin stimulated R(-) cells overexpressing IRs. 相似文献
9.
Barreiro GC Prattali RR Caliseo CT Fugiwara FY Ueno M Prada PO Velloso LA Saad MJ Carvalheira JB 《Biochemical and biophysical research communications》2004,320(3):992-997
Whole body insulin resistance has been demonstrated in septic patients and in infected animals. In this study, we demonstrate that sepsis induces insulin resistance and that pretreatment with aspirin inhibits sepsis-induced insulin resistance. Sepsis was observed to lead to serine phosphorylation of IRS-1, a phenomenon which was reversed by aspirin in muscle and WAT, in parallel with a reduction in JNK activity. In addition, our data show an impairment of insulin activation of IR and IRS-1 tyrosine phosphorylation in septic rats and, consistent with the reduction of IRS-1 serine phosphorylation observed in septic animals pretreated with aspirin, there was an increase in IRS-1 protein levels and tyrosine phosphorylation in muscle and WAT. Overall, these results provide important new insights into the mechanism of sepsis-induced insulin resistance. 相似文献
10.
Proteasome inhibitors regulate tyrosine phosphorylation of IRS-1 and insulin signaling in adipocytes
Insulin rapidly stimulates the tyrosine kinase activity of its receptor, resulting in the phosphorylation of insulin receptor substrates (IRS), which in turn associates and activates PI 3-kinase, leading to an increase in glucose uptake. Phosphorylation of IRS proteins and activation of downstream kinases by insulin are transient and the mechanisms for the subsequent downregulation of their activity are largely unknown. We report here that the insulin-induced IRS-1 tyrosine phosphorylation and PI 3-kinase association to IRS-1 were strongly sustained by the proteasome inhibitors, MG132 and lactacystin. In contrast, no effect was detected on the insulin receptor and IRS-2 tyrosine phosphorylation. Interestingly, lactacystin also preserved PKB activation and insulin-induced glucose uptake. In contrast, calpeptin, a calpain inhibitor, was ineffective. Tyrosine phosphatase assays were also performed, showing that lactacystin was not functioning directly as a tyrosine phosphatase inhibitor "in vitro." In conclusion, proteasome inhibitors can regulate the tyrosine phosphorylation of IRS-1 and the downstream insulin signaling pathway, leading to glucose transport. 相似文献
11.
Sato T Nagafuku M Shimizu K Taira T Igarashi Y Inokuchi J 《Cell biology international》2008,32(11):1397-1404
Visceral adipose tissue, particularly mesenteric adipose tissue, is important in the pathogenesis of metabolic syndrome. Here, we present a physiologically relevant differentiation system of rat mesenteric-stromal vascular cells (mSVC) to mesenteric-visceral adipocytes (mVAC). We optimized the insulin concentration at levels comparable to those in vivo ( approximately 0.85 ng/ml) by including physiological concentrations of IGF-1. We found that the insulin-like growth factor (IGF-1) and insulin worked synergistically, since IGF-1 alone could induce CCAAT/enhancer binding protein alpha (C/EBPalpha) and adipocyte lipid binding protein (aP2) mRNA expression but not lipid droplet accumulation associated with maturation. Using real-time PCR analyses on 180 adipocyte-related genes, we identified a dramatic effect by IGF-1 plus insulin. We also demonstrated the state of insulin resistance at pathologically high insulin concentrations. This culture system will contribute to understanding the physiological differentiation process and the patho/physiology of mVAC. 相似文献
12.
Phosphorylation and activation of protein tyrosine phosphatase (PTP) 1B by insulin receptor 总被引:16,自引:0,他引:16
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state. 相似文献
13.
Mansour Djedaini Milou-Daniel Drici Perla Saint-Marc Annie Ladoux 《Biochemical and biophysical research communications》2009,386(1):96-100
HIV-protease inhibitors (PIs) markedly decreased mortality of HIV-infected patients. However, their use has been associated with occurence of metabolic abnormalities the causes of which are not well understood. We report here that lopinavir, one of the most prescribed PI, dose-dependently co-induced insulin resistance and ER stress in human adipocytes obtained from differentiation of precursor cells.Insulin resistance was subsequent to IRS1 phosphorylation defects and resulted in a concentration-dependent decrease of glucose uptake. The major ER stress pathway involved was the phosphorylation of eIF2-α. Salubrinal, a selective eIF2-α dephosphorylation inhibitor, induced insulin resistance by targeting IRS1 phosphorylation at serine 312 and acted synergistically with LPV when both drugs were used in combination.This study points out the key role of eIF2-α phosphorylation in the development of PI-associated insulin resistance and ER stress. Thus, this protein represents a promising therapeutic target for development of new PIs devoid of adverse metabolic effects. 相似文献
14.
Xue Xu Qiong Zhang Jiong-yu Hu Dong-xia Zhang Xu-pin Jiang jie-zhi Jia Jing-ci Zhu Yue-sheng Huang 《Molecules and cells》2013,36(4):322-332
Hypoxia-induced microtubule disruption and mitochondrial permeability transition (mPT) are crucial events leading to fatal cell damage and recent studies showed that microtubules (MTs) are involved in the modulation of mitochondrial function. Dynein light chain Tctex-type 1 (DYNLT1) is thought to be associated with MTs and mitochondria. Previously we demonstrated that DYNLT1 knockdown aggravates hypoxia-induced mitochondrial permeabilization, which indicates a role of DYNLT1 in hypoxic cytoprotection. But the underlying regulatory mechanism of DYNLT1 remains illusive. Here we aimed to investigate the phosphorylation alteration of DYNLT1 at serine 82 (S82) in hypoxia (1% O2). We therefore constructed recombinant adenoviruses to generate S82E and S82A mutants, used to transfect H9c2 and HeLa cell lines. Development of hypoxia-induced mPT (MMP examining, Cyt c release and mPT pore opening assay), hypoxic energy metabolism (cellular viability and ATP quantification), and stability of MTs were examined. Our results showed that phosph-S82 (S82-P) expression was increased in early hypoxia; S82E mutation (phosphomimic) aggravated mitochondrial damage, elevated the free tubulin in cytoplasm and decreased the cellular viability; S82A mutation (dephosphomimic) seemed to diminish the hypoxia-induced injury. These data suggest that DYNLT1 phosphorylation at S82 is involved in MTs and mitochondria regulation, and their interaction and cooperation contribute to the cellular hypoxic tolerance. Thus, we provide new insights into a DYNLT1 mechanism in stabilizing MTs and mitochondria, and propose a potential therapeutic target for hypoxia cytoprotective studies. 相似文献
15.
Bhaskarjyoti Gogoi Priyajit Chatterjee Sandip Mukherjee Alak Kumar Buragohain Samir Bhattacharya Suman Dasgupta 《Biochemical and biophysical research communications》2014
Skeletal muscle and adipose tissues are known to be two important insulin target sites. Therefore, lipid induced insulin resistance in these tissues greatly contributes in the development of type 2 diabetes (T2D). Ferulic acid (FRL) purified from the leaves of Hibiscus mutabilis, showed impressive effects in preventing saturated fatty acid (SFA) induced defects in skeletal muscle cells. Impairment of insulin signaling molecules by SFA was significantly waived by FRL. SFA markedly reduced insulin receptor β (IRβ) in skeletal muscle cells, this was affected due to the defects in high mobility group A1 (HMGA1) protein obtruded by phospho-PKCε and that adversely affects IRβ mRNA expression. FRL blocked PKCε activation and thereby permitted HMGA1 to activate IRβ promoter which improved IR expression deficiency. In high fat diet (HFD) fed diabetic rats, FRL reduced blood glucose level and enhanced lipid uptake activity of adipocytes isolated from adipose tissue. Importantly, FRL suppressed fetuin-A (FetA) gene expression, that reduced circulatory FetA level and since FetA is involved in adipose tissue inflammation, a significant attenuation of proinflammatory cytokines occurred. Collectively, FRL exhibited certain unique features for preventing lipid induced insulin resistance and therefore promises a better therapeutic choice for T2D. 相似文献
16.
Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling 总被引:6,自引:0,他引:6
Zinc is an effector of insulin/IGF-1 signaling and has insulinomimetic effects, the molecular basis of which is not understood. The present study establishes the capacity of zinc to inhibit protein tyrosine phosphatases (PTPs) as a cause for these effects and, moreover, demonstrates modulation of the insulin response by changes in intracellular zinc. The inhibition of PTPs by zinc occurs at significantly lower concentrations than previously reported. In vitro, zinc inhibits PTPs 1B and SHP-1 with IC(50) values of 17 and 93 nM, respectively. A fluorescent probe with a similar binding constant [FluoZin-3, K(D)(Zn) = 15 nM] detects corresponding concentrations of zinc within cells. Increase of cellular zinc after incubation with both zinc and the ionophore pyrithione augments protein tyrosine phosphorylation, and in particular the phosphorylation of three activating tyrosine residues of the insulin/IGF-1 receptor. Vice versa, specific chelation of cellular zinc with the membrane-permeable N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine suppresses insulin- and IGF-1-stimulated phosphorylation. In the context of the emerging concept that intracellular zinc is tightly regulated and fluctuates dynamically, these results suggest that a pool of cellular zinc modulates phosphorylation signaling. 相似文献
17.
Kumar N Afeyan R Sheppard S Harms B Lauffenburger DA 《Biochemical and biophysical research communications》2007,354(1):14-20
The protein kinase Akt is a critical regulator of cell function and its overexpression and activation have been functionally linked to numerous pathologies such as cancer. Previous reports regarding the mechanism-regulating Akt's activation have revealed two phosphorylation events, at threonine 308 (T308) and serine 473 (S473), as necessary for the full activation of the kinase in response to insulin. For this reason and because of the availability of phospho-specific antibodies to both T308 and S473, many studies that focus on Akt's role in governing cell function rely on the measurement of these two sites to understand changes in kinase activity. Recent evidence, however, suggests the involvement of other phosphorylation sites; for example, in Src-transformed and epidermal growth factor (EGF)-treated cells, tyrosine phosphorylation has been found important for full kinase activation. In this study, we probed the quantitative reliability of using S473 and/or T308 phosphorylation as surrogates for Akt kinase activity across diverse treatment conditions. We performed quantitative Western blots and kinase activity assays on lysates generated during a 2h time course from two cell lines treated with either EGF or insulin. From the resulting approximately 250 quantitative measurements of phosphorylation and activity, we found that both T308 and S473 phosphorylation accurately captured quantitative changes in EGF-stimulated cells, but not in insulin-stimulated cells. Moreover, in all but one condition studied, we found a tight correlation between the onset of phosphorylation and dephosphorylation for both sites, despite the fact that they do not share common kinase- or phosphatase-mediated regulation. In sum, using a quantitative approach to study Akt activation identified ligand-dependent limits for the use of T308 or S473 as proxies for kinase activity and suggests the coregulation of Akt phosphorylation and dephosphorylation. 相似文献
18.
Klammt J Barnikol-Oettler A Kiess W 《Biochemical and biophysical research communications》2004,325(1):183-190
The SH2/SH3 adapter proteins of the Crk family are potent signal transducers after receptor tyrosine kinase stimulation with insulin or IGF-1. We have employed a yeast two-hybrid approach and mutational analysis to dissect the capabilities of the insulin receptor and the IGF-I receptor to directly associate with Crk isoforms. Insulin receptor stably recruits full length Crk by association with its SH2 domain in an auto-phosphorylation dependent manner. In contrast, interaction of the IGF-I receptor with the Crk-IISH2 domain was only detectable when Crk-II was truncated in its C-terminal part, indicating the transient nature of this interaction. From these data it can be concluded that members of the insulin receptor family activate Crk proteins in a differential manner. 相似文献
19.
We studied the effect of high-fat diet on the expression and activation of the three caveolins in rat skeletal muscle and their association with the insulin signalling cascade. Initial response was characterized by increased signalling through Cav-1 and Cav-3 phosphorylation, suggesting that both participate in an initial acute response to the calorie surplus. Afterwards, Cav-1 signalling was slightly reduced, whereas Cav-3 remained active. Late chronic phase signalling through both proteins was impaired inducing a prediabetic state. Summarizing, caveolins seem to mediate a time-dependent regulation of insulin cascade in response to high-fat diet in muscle. 相似文献
20.
Conditioned medium obtained from in vitro differentiated adipocytes and resistin induce insulin resistance in human hepatocytes 总被引:1,自引:0,他引:1
Adipocyte-derived factors might play a role in the development of hepatic insulin resistance. Resistin was identified as an adipokine linking obesity and insulin resistance. Resistin is secreted from adipocytes in rodents but in humans it was proposed to originate from macrophages and its impact for insulin resistance has remained elusive. To analyze the role of adipokines in general and resistin as a special adipokine, we cultured the human liver cell line HepG2 with adipocyte-conditioned medium (CM) containing various adipokines such as IL-6 and MCP-1, and resistin. CM and resistin both induce insulin resistance with a robust decrease in insulin-stimulated phosphorylation of Akt and GSK3. Insulin resistance could be prevented by co-treatment with troglitazone but not by co-stimulation with adiponectin. As human adipocytes do not secrete resistin, HepG2 cells were also treated with resistin added into CM. CM with resistin addition induced stronger insulin resistance than CM alone pointing to a specific role of resistin in the initiation of hepatic insulin resistance in humans. 相似文献