首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quasielastic light scattering (QLS) and laser diffractometry (LD) are relatively novel nondestructive procedures for estimating the sizes of bacterial spores in suspension. This study for the first time directly compared the two with a destructive procedure, namely, scanning electron microscopy (SEM), for quasispherical spores of Bacillus sphaericus. Because of the different physical aspect measured, the sizes derived by QLS and LD are, as could be expected for spores with an exosporium, significantly different. The larger estimates obtained by QLS (1.70, 1.58, and 1.14 (mu)m for spores produced at 15(deg)C [BS15], 20(deg)C [BS20], and 30(deg)C [BS30], respectively) than by LD (0.56 [BS15], 0.58 [BS20], and 0.52 [BS30] (mu)m) and SEM (0.64 [BS15], 0.58 [BS20], and 0.70 [BS30] (mu)m) are explained in terms of the detection by QLS, LD, and SEM of different spore layers and the degree of nonsphericity of the latter.  相似文献   

2.
Quasi-elastic light scattering (QLS) was used to determine relative epitope specificities of a group of anti-bovine serum albumin (BSA) monoclonal antibodies (MAb). QLS is a non-invasive technique which can determine the mean size and size distributions of macromolecular scatterers by analysis of the fluctuations in the intensity of laser light scattering. When two MAbs are mixed together with antigen, QLS detects the complex formation which results from the Ag-Ab reaction, and can easily distinguish between the large complexes formed by interaction of non-competitive MAbs and the smaller complexes formed by competitive MAbs. In this report, the competitive or non-competitive behavior of six anti-BSA MAbs were assessed by radioimmunoassay (RIA) and QLS analysis. The results obtained by QLS analysis confirmed the RIA findings indicating that the six MAbs examined can be categorized into three distinct, non-interacting groups. QLS analysis represents a simple, and extremely rapid technique for epitope mapping studies.  相似文献   

3.
A convenient method for the determination of size and charge distributions of polydisperse samples is described. It includes three steps: (a) band transport to disperse the components of the sample in a scattering cell; (b) total intensity scattering to determine the concentration and mobility at each location; and (c) quasi-elastic light scattering (QLS) to characterize the hydrodynamic sizes. Combining the results of (b) and (c) yields size and charge distributions. Since complete resolution of the various components of the sample cannot occur in step (a), a method is described to estimate the average form factor, from the local mean size and the local degree of polydispersity obtained by QLS. The potential of this method is demonstrated by the results of its application to two radiocolloids which have broad size distribution (50- to 600-nm diameters).  相似文献   

4.
The method of quasi-elastic laser light scattering (QLS), particularly at low forward scattering angles, has been complicated by the transient presence of Mie or large Rayleigh scattering particles which contaminate the scattering volume. These large contaminating particles have substantial effects on photon correlation spectroscopy because the presence of these larger scatterers tends to decrease the value of the apparent diffusion coefficient of the particle of interest. A method is presented which yields more accurate diffusion constants by autocorrelation of selected photon count periods representative of minimal Mie or large Rayleigh particle contamination. This method was applied to the determination of the apparent diffusion constant for four proteins—ovalbumin, chymotrypsinogen-A, bovine serum albumin, and ribonuclease-A.  相似文献   

5.
T Handa  H Saito  K Miyajima 《Biochemistry》1990,29(11):2884-2890
Interfacial tensions of phospholipid monolayer at the triolein (TO)-saline interface were measured. The adsorption isotherms and the interfacial pressure-molecular area curves were evaluated on the basis of the measurements. Phosphatidylcholine (PC) forms a highly condensed monolayer, with a large lateral attractive interaction; phosphatidylethanolamine (PE) and phosphatidylserine (PS) form expanded monolayers with smaller lateral interaction energies. At the lowest interfacial tension (the highest interfacial pressure), the mole fractions of PC, PE, and PS in the monolayers are estimated as 0.95, 0.73, and 0.88, respectively. Therefore, PC forms the most stable monolayer at the interface. These results are consistent with the finding that the stable TO particles in aqueous solution were produced by using PC as an emulsifier, and PE and PS did not stabilize the particles. The phase diagram of TO and PC mixtures in saline obtained from theoretical considerations predicts the equilibrium conversion of the monolayers on TO particles to bilayers. This process may be closely related to the transformations of very low density lipoproteins and chylomicrons to high-density lipoproteins in plasma. The particle sizes of the emulsion are calculated theoretically as a function of PC mole fraction in the TO-PC mixture and compared with the experimental values obtained from quasi-elastic light scattering (QLS) measurements.  相似文献   

6.
The effect of loperamide, a drug belonging to the opiate family, on dimyristoyl phosphatidylcholine large unilamellar vesicles (DMPC LUV) was investigated by quasielastic light scattering (QLS) and Fourier transform infrared spectroscopy (FT-IR). Both techniques show that, in the presence of loperamide, DMPC LUV undergoes a two step transition in cooling: one step around the transition point of pure lipid vesicles, the other at a lower temperature. The temperature of the latter step transition is different for the head and tail regions of the drug-containing vesicles: FT-IR spectra demonstrate that the hydrophobic acyl chains transition starts at a temperature well above that of the interfacial region whereas the transition of the entire vesicle, explored by QLS, is broad and covers both temperature ranges. These transitions are thermally reversible in the FT-IR which measures local order but aggregation effects prevent the thermal reversibility of the QLS results. The nature of the drug-lipid interaction is also discussed.  相似文献   

7.
We investigated the optimal gold particle size for use with polarized incident light (epi polarization) microscopy with immunogold immunohistological preparation in both immunogold indirect (IGS) and silver-enhanced immunogold-silver staining (IGSS) techniques. A range of gold particle sizes from 5 nm-40 nm was used along with tissue of known immunoreactivity with a well-characterized primary monoclonal antibody. Checkerboard titrations were carried out for each technique and for each particle size. The preparations were viewed using a standard polarized incident light microscope and assessed in a semi-quantitative manner. Adequate visualization of gold particles was achieved using the indirect staining method only with a particle size of 40 nm. With silver enhancement (IGSS), particles of all sizes were clearly seen. However, 5-nm particles were considered optimal for this method because of reduced background staining, high titration of antisera possible, and crisp localization of the visual signal.  相似文献   

8.
The concentrations of glucose and total reducing sugars obtained by chemical hydrolysis of three different lignocellulosic feedstocks were maximized. Two response surface methodologies were applied to model the amount of sugars produced: (1) classical quadratic least-squares fit (QLS), and (2) artificial neural networks based on radial basis functions (RBF). The results obtained by applying RBF were more reliable and better statistical parameters were obtained. Depending on the type of biomass, different results were obtained. Improvements in fit between 35% and 55% were obtained when comparing the coefficients of determination (R2) computed for both QLS and RBF methods. Coupling the obtained RBF models with particle swarm optimization to calculate the global desirability function, allowed to perform multiple response optimization. The predicted optimal conditions were confirmed by carrying out independent experiments.  相似文献   

9.
Following the feeding of a triacylglycerol-rich meal to healthy adult human beings, duodenal contents were aspirated for ex vivo chemical and physical-chemical analyses. The aspirates were collected during established lipid digestion and absorption into a "cocktail" of chemical inhibitors that rapidly inhibited ex vivo lipolysis. Following ultracentrifugation, the lipids separated into a floating oil layer, several interfacial layers, a "clear" or turbid "subphase", and a precipitated "pellet". By chemical and phase analyses, the floating layer was composed of oil-in-water emulsion particles with cores of triacylglycerol (TG), diacylglycerols (DG), and cholesteryl esters (CE) emulsified with a surface coat of partially ionized fatty acids (FA), monoacylglycerols (MG), diacylphosphatidylcholine (PL), and bile salts (BS). The interfacial layers contained similar emulsion particles dispersed among excess emulsifier which adopted a lamellar liquid-crystalline structure. Precipitated pellets were composed principally of emulsifying lipids, with smaller amounts of crystalline calcium soaps and BS. Relative lipid compositions of all but three subphases fell within a two-phase region of the condensed ternary phase diagram (Staggers et al., 1990, companion paper) where saturated mixed micelles composed of BS, FA "acid-soaps", MG, PL, cholesterol (Ch), and traces of DG (and TG) coexisted with unilamellar liquid-crystalline vesicles composed of the same lipids. Attempts to achieve clean separation of vesicles from micelles by repeat ultracentrifugation failed. Compared with the structure and sizes of lipid particles in equilibrated model systems (Staggers et al., 1990), quasielastic light scattering (QLS) analysis revealed that ex vivo micellar sizes (mean hydrodynamic radii, Rh) were similar (less than or equal to 40 A), whereas unilamellar vesicle sizes (Rh = 200-600 A) were appreciably smaller. Two-component QLS analysis of the subphases showed that much larger proportions of lipids were solubilized by micelles than were dispersed as unilamellar vesicles. When followed as functions of time, vesicles frequently dissolved spontaneously into mixed micelles, indicating that, in the nonequilibrium in vivo conditions, the constituent micellar phase was often unsaturated with lipids. These results are consistent with the hypothesis that, during hydrolysis of emulsified DG and TG by luminal lipases, unilamellar vesicles originate in lamellar liquid crystals that form at emulsion-water interfaces in the upper small intestine. In a BS-replete environment, unilamellar vesicles probably represent the primary dispersed product phase of human fat digestion and facilitate the dissolution of lipolytic products into unsaturated mixed micelles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The aggregation of biotin-modified phospholipid vesicles (liposomes) induced by binding the protein avidin in solution is analyzed experimentally and theoretically. Avidin has four binding sites that can recognize biotin specifically, and is able to cross-link the liposomes to form large aggregates. The aggregation kinetics were followed using quasi-elastic light scattering (QLS) to measure the mean particle size, and by measuring the solution turbidity. The rate and extent of aggregation were determined as a function of vesicle concentration, protein concentration, and the biotin density on the surface of the liposomes. A model based on Smoluchowski kinetics, fractal concepts, and Rayleigh and Mie light scattering theory was developed to analyze the experimental observations. Small aggregates (<7800 A diameter) may be treated as globular; however, the fractal nature of larger particles must be taken into account. Parameters in the model are taken from molecular simulations, or fit to the experimental observations. The aggregation kinetics are primarily determined by the biotin density on the liposome surface, the stoichiometric ratio of avidin molecules to liposomes, and the liposome concentration. Good agreement is found between the model and the experimental results. (c) 1996 John Wiley & Sons, Inc.  相似文献   

11.
The gel-like liquid phase transition of dimyristoylphosphatidylcholine (DMPC) large unilamellar vesicles prepared by reverse phase evaporation has been investigated in buffers containing ethanol by quasi-elastic light scattering (QLS) and vibrational (infrared and Raman) spectroscopy. With the QLS technique, the relative change in the vesicles area (which is related to the molecular cross-sectional area of lipid molecules) was followed versus both temperature and ethanol concentration. When the latter was low, the depression of the transition point was a linear function of the alcohol concentration, c, but the vesicles area was practically unmodified. At alcohol concentration 10% v/v, an abrupt change of the vesicles area was observed and for c greater than 10% the depression of the transition point was a non-linear function of c. The infrared and Raman spectra showed a perturbation of the hydrophobic regions, including the terminal methyl groups of the acyl tails.  相似文献   

12.
M A Long  E W Kaler    S P Lee 《Biophysical journal》1994,67(4):1733-1742
Small-angle neutron scattering (SANS) and dynamic light scattering (QLS) are used to characterize the aggregates found upon dilution of mixed lecithin-bile salt micelles. Molar ratios of lecithin (L) to taurocholate (TC) studied varied from 0.1 to 1, and one series contained cholesterol (Ch). Mixed aggregates of L and taurodeoxycholate (TDC) at ratios of 0.4 and 1 were also examined. In all cases the micelles are cylindrical or globular and elongate upon dilution. The radius of the mixed micelles varies only slightly with the overall composition of lecithin and bile salt which indicates that the composition of the cylindrical micelle body is nearly constant. The transition from micelles to vesicles is a smooth transformation involving a region where micelles and vesicles coexist. SANS measurements are more sensitive to the presence of two aggregate populations than QLS. Beyond the coexistence region the vesicle size and degree of polydispersity decrease with dilution. Incorporation of a small amount of cholesterol in the lipid mixture does not affect the sequence of observed aggregate structures.  相似文献   

13.
Human health risk estimates for sites with contaminated soils are often based on the assumption that the bulk concentration of substances in outdoor soil samples is a reasonable predictor of exposures via incidental soil ingestion, soil particle inhalation, and dermal absorption. Most underlying conceptual models are grossly simplistic, however, when considered in light of (i) biases in the distribution of contaminants across soil particle sizes, (ii) the size range of particles in soils and dusts that is environmentally available, and (iii) factors that influence desorption from particles and uptake into humans. The available studies indicate that contaminant distribution across soil particle size fractions varies widely between different soil types and contaminant delivery mechanisms, and it cannot be assumed that higher masses of contaminants per unit mass of soil are correlated with smaller particles sizes. Soil data gathered in support of detailed human health risk assessments, therefore, should allow for the examination of distribution across particle sizes of contaminants of concern, and consider those size fractions most critical to human exposure. Soil evaluations for health risk assessments of metals/metalloids should also consider mineralogical characterization.  相似文献   

14.
A rapid, silicone polymer film uptake method was used to determine the cholesterol (Ch) thermodynamic activity (A(T)) in taurocholate (TC)-lecithin (L) and taurochenodeoxycholate (TCDC)-L model biles supersaturated with Ch. Also, time-dependent quasielastic light scattering (QLS) measurements and microscopic observations were made to determine the nature of particle species and the Ch nucleation times. In all cases in which Ch-L vesicles were present, a linear relationship between the logarithm of Ch nucleation times and Ch A(T) was found. These findings support that Ch A(T) is the appropriate parameter that represents the Ch nucleation tendency and that vesicles are catalytic sites in the Ch nucleation process. When Ca2+, a nucleation promoter ion, was present in the supersaturated model biles, the increased values of Ch A(T) quantitatively correlated with shorter Ch nucleation times. These latter findings further demonstrate that Ch A(T) is the dominant factor in explaining the Ch nucleation tendencies in supersaturated model biles.  相似文献   

15.
Summary .  We propose a new statistical method for obtaining information about particle size distributions from sectional data without specific assumptions about particle shape. The method utilizes recent advances in local stereology. We show how to estimate separately from sectional data the variance due to the local stereological estimation procedure and the variance due to the variability of particle sizes in the population. Methods for judging the difference between the distribution of estimated particle sizes and the distribution of true particle sizes are also provided.  相似文献   

16.
To avoid problems related to unknown population substructure, association studies may be conducted in founder populations. In such populations, however, the relatedness among individuals may be considerable. Neglecting such correlations among individuals can lead to seriously spurious associations. Here, we propose a method for case-control association studies of binary traits that is suitable for any set of related individuals, provided that their genealogy is known. Although we focus here on large inbred pedigrees, this method may also be used in outbred populations for case-control studies in which some individuals are relatives. We base inference on a quasi-likelihood score (QLS) function and construct a QLS test for allelic association. This approach can be used even when the pedigree structure is far too complex to use an exact-likelihood calculation. We also present an alternative approach to this test, in which we use the known genealogy to derive a correction factor for the case-control association chi2 test. We perform analytical power calculations for each of the two tests by deriving their respective noncentrality parameters. The QLS test is more powerful than the corrected chi2 test in every situation considered. Indeed, under certain regularity conditions, the QLS test is asymptotically the locally most powerful test in a general class of linear tests that includes the corrected chi2 test. The two methods are used to test for associations between three asthma-associated phenotypes and 48 SNPs in 35 candidate genes in the Hutterites. We report a highly significant novel association (P=2.10-6) between atopy and an amino acid polymorphism in the P-selectin gene, detected with the QLS test and also, but less significantly (P=.0014), with the transmission/disequilibrium test.  相似文献   

17.
A texture profile panel was developed for measuring textural properties of restructured beef steaks differing in meat particle size. For steaks of different particle sizes, considerable differences existed in the type of sample breakdown and shape of chewed pieces after just two chews. Panelists also found restructured steaks made from large meat particle sizes to be visually more distorted and to contain more gristle than steaks made from small meat particle sizes. Several characteristics (chunkiness after two chews, coarseness of chewed mass at 15 chews) were dropped from the profile over time, while several characteristics (type of sample breakdown and shape of chewed pieces at two chews, size of chewed pieces at 10 chews) not used initially, were added. The texture profile panel approach appears suitable for discerning the textural differences in restructured steaks that can arise from using different meat particle sizes during processing.  相似文献   

18.
The aggregation of biotinylated phospholipid vesicles (liposomes) cross-linked by antibiotin IgG was studied experimentally and theoretically. The liposomes were either low density liposomes that contained 0.4 mol% biotinylated phospholipid ( approximately 100 exposed biotin molecules per liposome), or high density liposomes that contained 2.7 mol% biotinylated phospholipid ( approximately 1000 exposed biotin molecules per liposome). The solution turbidity and mean particle size measured by quasi-elastic light scattering (QLS) were monitored throughout the aggregation. Three different lots of antibiotin antibodies, each with different association constants and binding heterogeneities, were used. The antibody binding characteristics affected the aggregation rates. The aggregation kinetics were analyzed using a model based on the Smoluchowski theory of aggregation, fractal concepts of aggregate microstructure, and Rayleigh and Mie light scattering theory. The experimental conditions of liposome concentration, protein concentration, and ligand density under which aggregation occurred correlated well with calculated sticking probabilities based on isotherms describing the adsorption of antibiotin antibody to the liposomes. These results are compared with prior observations made when avidin was used as the cross-linking protein. (c) 1996 John Wiley & Sons, Inc.  相似文献   

19.
Sonicated calf-thymus DNA (200 ± 30 base pairs) spontaneously forms viscoelastic gels over a wide range of concentration, temperature, and buffer conditions. Quasielastic light scattering (QLS) can be used to monitor this process, because the ratio of dynamic-to-static scattering intensity decreases dramatically as gelation occurs. Using QLS, we have explored the effects of DNA concentration and mono- and divalent cations on the thermal stability of DNA gels. We found that the gel–sol transition temperature (Tgel) varies linearly with [DNA] from 7.5 to 17 mg/mL. Both Na+ and Mg2+ strongly stabilize the gel state. The sharpness of the transition increases with increasing ionic and DNA concentrations. Analysis of the Na+-dependent gelation indicates that the process requires the association of one Na+ per 118 base pairs. Mg2+ effectively stabilizes the gel at concentrations 10-fold below those required for Na+. The unexpectedly large effect of Mg2+ suggests that ion-specific interactions may play an important role in determining gel stability.  相似文献   

20.
Water-soluble β-cyclodextrin grafted with chitosan (CD-g-CS) was carried out by quaternizing the CD-g-CS with glycidyltrimethyl ammonium chloride (GTMAC) under mild acidic condition, corresponding to the quaternized CD-g-CS (QCD-g-CS). The degrees of substitution (DS) and quaternization (DQ), ranging from 5% to 23% and 66% to 80%, respectively, were determined by (1)H NMR spectroscopy. Self-aggregates formation of all QCD-g-CSs were investigated in water using dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM) techniques. The result revealed that all QCD-g-CSs are able to form self-aggregates in water. Large particle sizes ranged from 800 to 3000nm were obtained by DLS while zeta-potentials were ranging from 25 to 40mV. AFM and TEM depicted a spherical shape with particle sizes ranging from 100 to 900nm. Mucoadhesive and cytotoxic properties of all QCD-g-CSs were evaluated using a mucin particle method and MTT assay compared to quaternized chitosan (QCS). It was found that the mucoadhesive property increased with decreasing DS due to less quaternary ammonium moiety into the chitosan backbone. On the other hand, the cytotoxicity increased with increasing DS even though the DQ is decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号