首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our recent data suggested that tissue eosinophils may be relatively insensitive to anti-IL-5 treatment. We examined cross-regulation and functional consequences of modulation of eosinophil cytokine receptor expression by IL-3, IL-5 GM-CSF, and eotaxin. Incubation of eosinophils with IL-3, IL-5, or GM-CSF led to reduced expression of IL-5R alpha, which was sustained for up to 5 days. Eosinophils incubated with IL-5 or IL-3 showed diminished respiratory burst and mitogen-activated protein kinase kinase phosphorylation in response to further IL-5 stimulation. In contrast to these findings, eosinophil expression of IL-3R alpha was increased by IL-3, IL-5, and GM-CSF, whereas GM-CSF receptor alpha was down-regulated by GM-CSF, but was not affected by IL-3 or IL-5. CCR3 expression was down-regulated by IL-3 and was transiently reduced by IL-5 and GM-CSF, but rapidly returned toward baseline. Eotaxin had no effect on receptor expression for IL-3, IL-5, or GM-CSF. Up-regulation of IL-3R alpha by cytokines was prevented by a phosphoinositol 3-kinase inhibitor, whereas this and other signaling inhibitors had no effect on IL-5R alpha down-regulation. These data suggest dynamic and differential regulation of eosinophil receptors for IL-3, IL-5, and GM-CSF by the cytokine ligands. Since these cytokines are thought to be involved in eosinophil development and mobilization from the bone marrow and are present at sites of allergic inflammation, tissue eosinophils may have reduced IL-5R expression and responsiveness, and this may explain the disappointing effect of anti-IL-5 therapy in reducing airway eosinophilia in asthma.  相似文献   

2.
3.
Human interleukin (IL)-5 receptors were characterized by means of binding studies using bioactive 125I-labeled IL-5. Of purified primary myeloid cells, eosinophils and basophils but not neutrophils or monocytes expressed surface receptors for IL-5. Binding studies showed that eosinophils expressed a single class of high affinity receptors (Ka = 1.2 x 10(10) M-1) with the number of receptors being small (less than 1000 receptors/cell) and varying between individuals. Among several cell lines examined only HL-60 cells showed detectable IL-5 receptors which were small in numbers (200 receptors/cell) and also bound 125I-IL-5 with high affinity. The binding of IL-5 was rapid at 37 degrees C while requiring several hours to reach equilibrium at 4 degrees C. Specificity studies revealed that the two other human eosinophilopoietic cytokines IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF) inhibited the binding of 125I-IL-5 to eosinophils. No competition was observed by other eosinophil activating or nonactivating cytokines. The inhibition of 125I-IL-5 binding by IL-3 and GM-CSF was partial up to a concentration of competitor of 10(-7) M with GM-CSF consistently being the stronger competitor. Converse experiments using IL-5 as a competitor revealed that this cytokine inhibited the binding of 125I-IL-3 and of 125I-GM-CSF in some but not all the individuals tested, perhaps reflecting eosinophil heterogeneity in vivo. Cross-linking experiments on HL-60 cells demonstrated two IL-5-containing complexes of Mr 150,000 and Mr 80,000 both of which were inhibited by GM-CSF. The competition between IL-5, IL-3, and GM-CSF on the surface of mature eosinophils may represent a unifying mechanism that may help explain the common biological effects of these three eosinophilopoietic cytokines on eosinophil function. This unique pattern of competition may also be beneficial to the host by preventing excessive eosinophil stimulation.  相似文献   

4.
5.
Interleukin-5 (IL-5) drives the terminal differentiation of myeloid progenitors to the eosinophil lineage; blocks eosinophil apoptosis; and primes eosinophils for enhanced functional activities in allergic, parasitic, and other eosinophil-associated diseases. Here we describe a novel signaling pathway activated by the IL-5 receptor in eosinophils involving the CrkL adapter protein. We determined whether IL-5 induces activation of CrkL and STAT5 in eosinophils using both the human eosinophil-differentiated AML14.3D10 cell line and purified peripheral blood eosinophils from normal donors. Stimulation of AML14.3D10 cells or blood eosinophils with IL-5 induced rapid tyrosine phosphorylation of the CrkL adapter and STAT5 and the association of CrkL and STAT5 in vivo as evidenced by the detection of STAT5 in anti-CrkL immunoprecipitates. The resulting CrkL.STAT5 complexes translocated to the nucleus and bound STAT5 consensus DNA-binding sites present in the promoters of IL-5-regulated genes, as shown in gel mobility and antibody supershift assays. IL-5 also induced marked activity of an 8X-GAS (interferon gamma-activated site)-luciferase reporter construct in transient transfections of AML14.3D10 eosinophils, demonstrating that these complexes play a functional role in IL-5 signaling. CrkL was also found to interact, via its N-terminal SH3 domain, with C3G, a guanine exchange factor for the small G-protein Rap1, which was also rapidly activated in an IL-5-dependent manner in these cells, establishing that CrkL mediates downstream activation of at least two signaling cascades in IL-5-stimulated eosinophils. Thus, the CrkL adapter plays an important role in IL-5 signaling in the eosinophil, acting as a nuclear adapter for STAT5 and as an upstream regulator of the C3G-Rap1 signaling pathway.  相似文献   

6.
7.
IL-27, a member of the IL-6/IL-12 family, activates both STAT1 and STAT3 through its receptor, which consists of WSX-1 and gp130 subunits, resulting in augmentation of Th1 differentiation and suppression of proinflammatory cytokine production. In the present study, we investigated the role of STAT3 in the IL-27-mediated immune functions. IL-27 induced phosphorylation of STAT1, -2, -3 and -5 in wild-type naive CD4+ T cells, but failed to induce that of STAT3 and STAT5 in STAT3-deficient cohorts. IL-27 induced not only proinflammatory responses including up-regulation of ICAM-1, T-box expressed in T cells, and IL-12Rbeta2 and Th1 differentiation, but also anti-inflammatory responses including suppression of proinflammatory cytokine production such as IL-2, IL-4, and IL-13 even in STAT3-deficient naive CD4+ T cells. In contrast, IL-27 augmented c-Myc and Pim-1 expression and induced cell proliferation in wild-type naive CD4+ T cells but not in STAT3-deficient cohorts. Moreover, IL-27 failed to activate STAT3, augment c-Myc and Pim-1 expression, and induce cell proliferation in pro-B BaF/3 transfectants expressing mutant gp130, in which the putative STAT3-binding four Tyr residues in the YXXQ motif of the cytoplasmic region was replaced by Phe. These results suggest that STAT3 is activated through gp130 by IL-27 and is indispensable to IL-27-mediated cell proliferation but not to IL-27-induced Th1 differentiation and suppression of proinflammatory cytokine production. Thus, IL-27 may be a cytokine, which activates both STAT1 and STAT3 through distinct receptor subunits, WSX-1 and gp130, respectively, to mediate its individual immune functions.  相似文献   

8.
IL-27 induces stronger proliferation of naive than memory human B cells and CD4(+) T cells. In B cells, this differential response is associated with similar levels of IL-27 receptor chains, IL-27Rα and gp130, in both subsets and stronger STAT1 and STAT3 activation by IL-27 in naive B cells. Here, we show that the stronger proliferative response of CD3-stimulated naive CD4(+) T cells to IL-27 is associated with lower levels of IL-27Rα but higher levels of gp130 compared with memory CD4(+) T cells. IL-27 signaling differs between naive and memory CD4(+) T cells, as shown by more sustained STAT1, -3, and -5 activation and weaker activation of SHP-2 in naive CD4(+) T cells. In the latter, IL-27 increases G0/G1 to S phase transition, cell division and, in some cases, cell survival. IL-27 proliferative effect on naive CD4(+) T cells is independent of MAPK, but is dependent on c-Myc and Pim-1 induction by IL-27 and is associated with induction of cyclin D2, cyclin D3, and CDK4 by IL-27 in a c-Myc and Pim-1-dependent manner. In BCR-stimulated naive B cells, IL-27 only increases entry in the S phase and induces the expression of Pim-1 and of cyclins A, D2, and D3. In these cells, inhibition of Pim-1 inhibits IL-27 effect on proliferation and cyclin induction. Altogether, these data indicate that IL-27 mediates proliferation of naive CD4(+) T cells and B cells through induction of both common and distinct sets of cell cycle regulators.  相似文献   

9.
10.
11.
The mainstay of asthma therapy, glucocorticoids (GCs) exert their therapeutic effects through the inhibition of inflammatory signaling and induction of eosinophil apoptosis. However, laboratory and clinical observations of GC-resistant asthma suggest that GCs’ effects on eosinophil viability may depend on the state of eosinophil activation. In the present study we demonstrate that eosinophils stimulated with IL-5 show impaired pro-apoptotic response to GCs. We sought to determine the contribution of GC-mediated transactivating (TA) and transrepressing (TR) pathways in modulation of activated eosinophils’ response to GC by comparing their response to the selective GC receptor (GR) agonist Compound A (CpdA) devoid of TA activity to that upon treatment with Dexamethasone (Dex). IL-5-activated eosinophils showed contrasting responses to CpdA and Dex, as IL-5-treated eosinophils showed no increase in apoptosis compared to cells treated with Dex alone, while CpdA elicited an apoptotic response regardless of IL-5 stimulation. Proteomic analysis revealed that both Nuclear Factor IL-3 (NFIL3) and Map Kinase Phosphatase 1 (MKP1) were inducible by IL-5 and enhanced by Dex; however, CpdA had no effect on NFIL3 and MKP1 expression. We found that inhibiting NFIL3 with specific siRNA or by blocking the IL-5-inducible Pim-1 kinase abrogated the protective effect of IL-5 on Dex-induced apoptosis, indicating crosstalk between IL-5 anti-apoptotic pathways and GR-mediated TA signaling occurring via the NFIL3 molecule. Collectively, these results indicate that (1) GCs’ TA pathway may support eosinophil viability in IL-5-stimulated cells through synergistic upregulation of NFIL3; and (2) functional inhibition of IL-5 signaling (anti-Pim1) or the use of selective GR agonists that don’t upregulate NFIL3 may be effective strategies for the restoring pro-apoptotic effect of GCs on IL-5-activated eosinophils.  相似文献   

12.
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 play a key role in allergic inflammation. They mediate their effect via receptors that consist of two distinct subunits, a cytokine-specific alpha subunit and a common beta subunit (betac) that transduces cell signaling. We sought to down-regulate the biologic activities of GM-CSF, IL-3, and IL-5 simultaneously by inhibiting betac mRNA expression with antisense technology. Experiments were performed with TF-1 cells (a human erythroleukemia cell line expressing GM-CSF, IL-3, and IL-5 receptors, which proliferates in response to these cytokines), monocytic U937 cells, which require these cytokines for differentiation, and purified human eosinophils. Cells were treated with antisense phosphorothioate oligodeoxynucleotides (ODN) targeting betac mRNA. In contrast to nontreated cells and cells treated by sense or mismatched ODN, antisense ODN inhibited betac mRNA expression and significantly decreased the level of cell surface betac protein expression on TF-1 and U937 cells. Receptor function was also affected. Antisense ODN were able to inhibit TF-1 cell proliferation in vitro in the presence of GM-CSF, IL-3, or IL-5 in the culture medium and eosinophil survival. We suggest that antisense ODN against betac may provide a new therapeutic alternative for the treatment of neoplastic or allergic diseases associated with eosinophilic inflammation.  相似文献   

13.
The eosinophil is a central effector cell in allergic asthma. Differentiation and function of eosinophils are regulated by the CD4 Th2 cytokines IL-3, IL-5, and GM-CSF, which all signal through a common beta receptor subunit (betac). Recent therapeutic approaches targeting IL-5 alone have not ablated tissue accumulation of eosinophils and have had limited effects on disease progression, suggesting important roles for IL-3 and GM-CSF. By using a mouse model of allergic airways inflammation, we show that allergen-induced expansion and accumulation of eosinophils in the lung are abolished in betac-deficient (betac-/-) mice. Moreover, betac deficiency resulted in inhibition of hallmark features of asthma, including airways hypersensitivity, mucus hypersecretion, and production of Ag-specific IgE. Surprisingly, we also identified a critical role for this receptor in regulating type 2 immunity. Th2 cells in the lung of allergen-challenged betac-/- mice were limited in their ability to proliferate, produce cytokines, and migrate to effector sites, which was attributed to reduced numbers of myeloid dendritic cells in the lung compartment. Thus, the betac plays a critical role in allergen-induced eosinophil expansion and infiltration and is pivotal in regulating molecules that promote both early and late phases of allergic inflammation, representing a novel target for therapy.  相似文献   

14.
Interleukin-9 (IL-9) activates three distinct STAT proteins: STAT1, STAT3, and STAT5. This process depends on one tyrosine of the IL-9 receptor, which is necessary for proliferation, gene induction, and inhibition of apoptosis induced by glucocorticoids. By introduction of point mutations in amino acids surrounding this tyrosine, we obtained receptors that activated either STAT5 alone or both STAT1 and STAT3, thus providing us with the possibility to study the respective roles of these factors in the biological activities of IL-9. Both mutant receptors were able to prevent apoptosis, but only the mutant that activated STAT1 and STAT3 was able to support induction of granzyme A and L-selectin. In line with these results, constitutively activated STAT5 blocked glucocorticoid-induced apoptosis. In Ba/F3 cells, significant proliferation and pim-1 induction were observed with both STAT-restricted mutants, though proliferation was lower than with the wild-type receptor. These results suggest that survival and cell growth are redundantly controlled by multiple STAT factors, whereas differentiation gene induction is more specifically correlated with individual STAT activation by IL-9.  相似文献   

15.
16.
Evidence has suggested that STAT3 functions as an oncogene in gliomagenesis. As a consequence, changes in the inflammatory microenvironment are thought to promote tumor development. Regardless of its origin, cancer-related inflammation has many tumor-promoting effects, such as the promotion of cell cycle progression, cell proliferation, cell migration and cell survival. Given that IL-6, a major cancer-related inflammatory cytokine, regulates STAT3 activation and is upregulated in glioblastoma, we sought to investigate the inhibitory effects of the chemopreventive flavonoid quercetin on glioblastoma cell proliferation and migration triggered by IL-6, and to determine the underlying mechanisms of action. In this study, we show that quercetin is a potent inhibitor of the IL-6-induced STAT3 signaling pathway in T98G and U87 glioblastoma cells. Exposure to quercetin resulted in the reduction of GP130, JAK1 and STAT3 activation by IL-6, as well as a marked decrease of the proliferative and migratory properties of glioblastoma cells induced by IL-6. Interestingly, quercetin also modulated the expression of two target genes regulated by STAT3, i.e. cyclin D1 and matrix metalloproteinase-2 (MMP-2). Moreover, quercetin reduced the recruitment of STAT3 at the cyclin D1 promoter and inhibited Rb phosphorylation in the presence of IL-6. Overall, these results provide new insight into the role of quercetin as a blocker of the STAT3 activation pathway stimulated by IL-6, with a potential role in the prevention and treatment of glioblastoma.  相似文献   

17.
IL-2 responses are susceptible to suppression by TGFbeta, a cytokine widely implicated in suppression of inflammatory responses and secreted by many different tumor cell types. There have been conflicting reports regarding inhibition of IL-2-induced STAT3 and STAT5 phosphorylation by TGFbeta and subsequent suppression of immune responses. Using TGFbeta-producing multiple myeloma tumor cells we demonstrate that tumor-derived TGFbeta can block IL-2-induced proliferation and STAT3 and STAT5 phosphorylation in T cells. High affinity IL-2R expression was required for the suppression of IL-2 responses as a novel CD25(-) T cell line proliferated and phosphorylated STAT3 when cultured with tumor cells or rTGFbeta1. Activating T cells with IL-15, which does not use the high affinity IL-2R, completely restored the ability of T cells to phosphorylate STAT3 and STAT5 when cultured with tumor cells. IL-15-treated T cells proliferated normally when cocultured with tumor cells or rTGFbeta1, whereas IL-2 responses were consistently inhibited. Preincubation with IL-15 also restored the ability of T cells to respond to IL-2 by phosphorylating STAT3 and STAT5, and proliferating normally in the presence of tumor cells. IL-2 pretreatment did not restore T cell function. IL-15 also restored T cell responses by T cells from multiple myeloma patients, and against freshly isolated bone marrow tumor samples. Thus, activation of T cells by IL-15 renders T cells resistant to suppression by TGFbeta1-producing tumor cells and rTGFbeta1. This finding may be exploited in the design of new immunotherapy approaches that will rely on T cells avoiding tumor-induced suppression.  相似文献   

18.
Wang W  Hansbro PM  Foster PS  Yang M 《PloS one》2011,6(3):e17766

Background

Enhanced eosinophil responses have critical roles in the development of allergic diseases. IL-5 regulates the maturation, migration and survival of eosinophils, and IL-5 and eotaxins mediate the trafficking and activation of eosinophils in inflamed tissues. CD4+ Th2 cells are the main producers of IL-5 and other cells such as NK also release this cytokine. Although multiple signalling pathways may be involved, STAT6 critically regulates the differentiation and cytokine production of Th2 cells and the expression of eotaxins. Nevertheless, the mechanisms that mediate different parts of the eosinophilic inflammatory process in different tissues in allergic airway diseases remain unclear. Furthermore, the mechanisms at play may vary depending on the context of inflammation and microenvironment of the involved tissues.

Methodology/Principal Findings

We employed a model of allergic airway disease in wild type and STAT6-deficient mice to explore the roles of STAT6 and IL-5 in the development of eosinophilic inflammation in this context. Quantitative PCR and ELISA were used to examine IL-5, eotaxins levels in serum and lungs. Eosinophils in lung, peripheral blood and bone marrow were characterized by morphological properties. CD4+ T cell and NK cells were identified by flow cytometry. Antibodies were used to deplete CD4+ and NK cells. We showed that STAT6 is indispensible for eosinophilic lung inflammation and the induction of eotaxin-1 and -2 during allergic airway inflammation. In the absence of these chemokines eosinophils are not attracted into lung and accumulate in peripheral blood. We also demonstrate the existence of an alternate STAT6-independent pathway of IL-5 production by CD4+ and NK cells that mediates the development of eosinophils in bone marrow and their subsequent movement into the circulation.

Conclusions

These results suggest that different points of eosinophilic inflammatory processes in allergic airway disease may be differentially regulated by the activation of STAT6-dependent and -independent pathways.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号