首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The specificity of tropomyosin (Tm) exon 6b for interaction with and functioning of troponin (Tn) has been studied using recombinant fibroblast Tm isoforms 5a and 5b. These isoforms differ internally by exons 6a/6b and possess non-muscle exons 1b/9d at the termini, hence they lack the primary TnT(1)-tropomyosin interaction, allowing study of exon 6 exchange in isolation from this. Using kinetic techniques to measure regulation of myosin S1 binding to actin and fluorescently labeled Tm to directly measure Tn binding, we show that binding of Tn to both isoforms is similar (0.1-0.5 microm) and both produce well regulated systems. Calcium has little effect on Tn binding to the actin.Tm complex and both exons produce a 3-fold reduction in the S1 binding rate to actin.Tm.Tn in its absence. This confirms previous results that show exon 6 has little influence on Tn affinity to actin.Tm or its ability to fully inhibit the acto-myosin interaction. Thin filaments reconstituted with Tn and Tm5a or skeletal Tm (containing exon 6b) show nearly identical calcium dependence of acto-myosin regulation. However, Tm5b produces a dramatic increase in calcium sensitivity, shifting the activation mid-point by almost an order of magnitude. This shows that exon 6 sequence and, hence, Tm structure in this region have a significant effect upon the calcium regulation of Tn. This finding supports evidence that familial hypertrophic cardiomyopathy mutations occurring adjacent to this region can effect calcium regulation.  相似文献   

2.
Tropomyosin (TM) is a coiled-coil that binds head-to-tail along the helical actin filament. The ends of 284-residue tropomyosins are believed to overlap by about nine amino acids. The present study investigates the function of the N- and C-terminal overlap regions. Recombinant tropomyosins were produced in Escherichia coli in which nine amino acids were truncated from the N-terminal, C-terminal, or both ends of striated muscle alpha-tropomyosin (TM9a) and TM2 (TM9d), a nonmuscle alpha-tropomyosin expressed in many cells. The two isoforms are identical except for the C-terminal 27 amino acids encoded by exon 9a (striated) or exon 9d (TM2). Removal of either end greatly reduces the actin affinity of both tropomyosins in all conditions and the cooperativity with which myosin promotes tropomyosin binding to actin in the open state. N-Terminal truncations generally are more deleterious than C-terminal truncations. With TM9d, truncation of the N-terminus is as deleterious as both for myosin S1-induced binding. None of the TM9d variants binds well to actin with troponin (+/-Ca(2+)). TM9a with the truncated N-terminus binds more weakly to actin with troponin (-Ca(2+)) than when the C-terminus is removed but more strongly than when both ends are removed; the actin binding of all three forms is cooperative. The results show that the ends of TM9a, though important, are not required for cooperative function and suggest they have independent functions beyond formation of an overlap complex. The nonadditivity of the TM9d truncations suggests that the ends may primarily function as a complex in this isoform. A surprising result is that all variants bound with the same affinity, and noncooperatively, to actin saturated with myosin S1. Evidently, end-to-end interactions are not required for high-affinity binding to acto-myosin S1.  相似文献   

3.
Structural and functional properties of the non-muscle tropomyosins   总被引:10,自引:0,他引:10  
Summary The non-muscle tropomyosins (TMs), isolated from such tissues as platelets, brain and thyroid, are structurally very similar to the muscle TMs, being composed of two highly -helical subunits wound around each other to form a rod-like molecule. The non-muscle TMs are shorter than the muscle TMs; sequence analysis demonstrates that each subunit of equine platelet TM consists of 247 amino acids, 37 fewer than for skeletal muscle TM. The major differences in sequence between platelet and skeletal muscle TM are found near the amino and carboxyl terminal ends of the proteins. Probably as the result of such alterations, the non-muscle TMs aggregate in a linear end-to-end manner much more weakly than do the muscle TMs. Since end-to-end interactions are responsible for the highly cooperative manner in which TM binds to actin, the non-muscle TMs have a lower affinity for actin filaments than do the muscle TMs. However, the attachment of other proteins to actin (e.g. the Tn-I subunit of skeletal muscle troponin or the S-1 subfragment of skeletal muscle myosin) can increase the affinity of actin filaments for non-muscle TM. The non-muscle TMs interact functionally with the Tn-I component of skeletal muscle troponin to inhibit the ATPase activity of muscle actomyosin and with whole troponin to regulate the muscle actomyosin ATPase in a Ca++-dependent manner, even though one of the binding sites for troponin on skeletal TM is missing in non-muscle TM. A novel actomyosin regulatory system can be produced using Tn-I, calmodulin and non-muscle TM; in this case inhibition is released when the non-muscle TM detaches from the actin filament in the presence of Ca++. Although it has not yet been demonstrated that the non-muscle TMs participate in a Ca++-dependent contractile regulatory system in vivo it does appear that they are associated with actin filaments in vivo.  相似文献   

4.
To identify interaction sites we measured the rotational motion of a spin label covalently bound to the side chain of a cysteine genetically incorporated into rabbit skeletal muscle tropomyosin (Tm) at positions 13, 36, 146, 160, 174, 190, 209, 230, 271, and 279. Upon the addition of F-actin, the mobility of all the spin labels, especially at position 13, 271, or 279, of Tm was inhibited significantly. Slow spin-label motion at the C-terminus (at the 230th and 271st residues) was observed upon addition of troponin. The binding of myosin-head S1 fragments without troponin immobilized Tm residues at 146, 160, 190, 209, 230, 271, and 279, suggesting that these residues are involved in a direct interaction between Tm and actin in its open state. As immobilization occurred at substoichiometric amounts of S1 binding to actin (a 1:7 molar ratio), the structural changes induced by S1 binding to one actin subunit must have propagated and influenced interaction sites over seven actin subunits.  相似文献   

5.
Tropomyosin binds along actin filaments and regulates actin-myosin interaction in muscle and nonmuscle cells. Seven periodic amino acid repeats are proposed to correspond to actin binding sites, and the middle periods are important for cooperative activation of actin by myosin. The functional contributions of individual periods were studied in mutants in which periods 2-6 were individually deleted from rat striated muscle alphaalpha-tropomyosin or replaced with a leucine zipper sequence. Unacetylated recombinant tropomyosins were assayed for actin binding, regulation of the actomyosin ATPase with troponin, cooperative myosin S1-induced binding to actin, and thermal stability. Tropomyosin function is relatively insensitive to deletion of period 2, but loss increases as the deletion is shifted toward the C-terminus. Retention of function upon deletion of the periodic repeats is in the order of 2 > 3 approximately 4 approximately 6 > 5. Internal periods are important for specific functions and are not quasiequivalent. Deletion of period 5 (residues 166-207), and especially deletion or replacement of residues 166-188, a constitutively expressed region encoded by exon 5, had severe consequences on actin affinity and cooperative myosin S1-induced binding to actin. Period 6, residues 208-242, part of the troponin binding site, is required for full inhibition of the actomyosin ATPase in the absence of calcium. The effect of the deletion can depend on its context, suggesting that sequence alone is not the only factor important for function. We propose that the local structure and stability, and consequent flexibility, of the coiled coil are major determinants of actin affinity.  相似文献   

6.
Caldesmon inhibits actomyosin ATPase and filament sliding in vitro, and therefore may play a role in modulating smooth and non-muscle motile activities. A bacterially expressed caldesmon fragment, 606C, which consists of the C-terminal 150 amino acids of the intact molecule, possesses the same inhibitory properties as full-length caldesmon and was used in our structural studies to examine caldesmon function. Three-dimensional image reconstruction was carried out from electron micrographs of negatively stained, reconstituted thin filaments consisting of actin and smooth muscle tropomyosin both with and without added 606C. Helically arranged actin monomers and tropomyosin strands were observed in both cases. In the absence of 606C, tropomyosin adopted a position on the inner edge of the outer domain of actin monomers, with an apparent connection to sub-domain 1 of actin. In 606C-containing filaments that inhibited acto-HMM ATPase activity, tropomyosin was found in a different position, in association with the inner domain of actin, away from the majority of strong myosin binding sites. The effect of caldesmon on tropomyosin position therefore differs from that of troponin on skeletal muscle filaments, implying that caldesmon and troponin act by different structural mechanisms.  相似文献   

7.
Golitsina NL  Lehrer SS 《FEBS letters》1999,463(1-2):146-150
To obtain proximity information between tropomyosin (Tm) and caldesmon (CaD) on the muscle thin filament, we cloned gizzard alphaTm and created two single Cys mutants S56C/C190S (56Tm) and D100C/C190S (100Tm). They were labeled with benzophenone maleimide (BPM) and UV-irradiated on thin filaments. One chain of BPM-56Tm and two chains of BPM-100Tm crosslinked to CaD. Only BPM-100Tm crosslinked to actin in the absence and presence of CaD and binding of low ratios of myosin subfragment 1 (S1) prevented the crosslinking. Tm-S1 crosslinks were produced when actin.Tm was saturated with S1. Thus, CaD on the actin.Tm filament is located <10 A away from Tm amino acids 56 and 100; in the closed state of the actin.Tm filament, Tm residue 100 is located close to the actin surface and is moved further away in the S1-induced open state; in the open state, S1 binds close to Tm.  相似文献   

8.
Coulton A  Lehrer SS  Geeves MA 《Biochemistry》2006,45(42):12853-12858
Skeletal and smooth muscle tropomyosin (Tm) require acetylation of their N-termini to bind strongly to actin. Tm containing an N-terminal alanine-serine (AS) extension to mimic acetylation has been widely used to increase binding. The current study investigates the ability of an N-terminal AS extension to mimic native acetylation for both alpha alpha and beta beta smooth Tm homodimers. We show that (1) AS alpha-Tm binds actin 100-fold tighter than alpha-Tm and 2-fold tighter than native smooth alphabeta-Tm, (2) beta-Tm requires an AS extension to bind actin, and (3) AS beta-Tm binds actin 10-fold weaker than AS alpha-Tm. Tm is present in smooth muscle tissues as >95% heterodimer; therefore, we studied the binding of recombinant alphabeta heterodimers with different AS extensions. This study shows that recombinant Tm requires an AS extension on both alpha and beta chains to bind like native Tm and that the alpha chain contributes more to actin binding than the beta chain. Once assembled onto an actin filament, all smooth muscle Tm's regulate S1 binding to actin Tm in the same way, irrespective of the presence of an AS extension.  相似文献   

9.
Tropomyosin (Tm) is an alpha-helical coiled-coil actin-binding protein present in all eukaryotes from yeast to man. Its functional role has been best described in muscle regulation; however its much wider role in cytoskeletal actin regulation is still to be clarified. Isoforms vary in size from 284 or 248 amino acids in vertebrates, to 199 and 161 amino acids in yeast, spanning from 7 to 4 actin binding sites respectively. In Saccharomyces cerevisiae, the larger yTm1 protein is produced by an internal 38-amino acid duplication, corresponding to a single actin-binding site. We have produced an ultra-short Tm with only 125 amino acids by removing both of the 38 amino acid repeats from yTm1, with the addition of an Ala-Ser extension used to mimic the essential N-terminal acetylation. This short Tm, and an M1T mutant of it, bind to actin with a similar affinity to most Tms previously studied (K(50%) approximately 0.5 microm). However, an equilibrium fluorescence binding assay shows a much greater inhibition of myosin binding to actin than any previously studied Tm. Actin cosedimentation assays show this is caused by direct competition for binding to actin. The M1T mutant shows a reduced inhibition, probably due to weaker end-to-end interactions making it easier for myosin to displace Tm. All previously characterized Tms, although able to sterically block the myosin-binding site, are able to bind to actin along with myosin. By showing that Tm can compete directly with myosin for the same binding site these new Tms provide direct evidence for the steric blocking model.  相似文献   

10.
11.
NM (nemaline myopathy) is a rare genetic muscle disorder defined on the basis of muscle weakness and the presence of structural abnormalities in the muscle fibres, i.e. nemaline bodies. The related disorder cap myopathy is defined by cap-like structures located peripherally in the muscle fibres. Both disorders may be caused by mutations in the TPM2 gene encoding β-Tm (tropomyosin). Tm controls muscle contraction by inhibiting actin-myosin interaction in a calcium-sensitive manner. In the present study, we have investigated the pathogenetic mechanisms underlying five disease-causing mutations in Tm. We show that four of the mutations cause changes in affinity for actin, which may cause muscle weakness in these patients, whereas two show defective Ca2+ activation of contractility. We have also mapped the amino acids altered by the mutation to regions important for actin binding and note that two of the mutations cause altered protein conformation, which could account for impaired actin affinity.  相似文献   

12.
Rabbit skeletal muscle alpha-tropomyosin (Tm) and the deletion mutant (D234Tm) in which internal actin-binding pseudo-repeats 2, 3, and 4 are missing [Landis et al. (1997) J. Biol. Chem. 272, 14051-14056] were used to investigate the interaction between actin and tropomyosin or actin and troponin (Tn) by means of fluorescence resonance energy transfer (FRET). FRET between Cys-190 of D234Tm and Gln-41 or Cys-374 of actin did not cause any significant Ca2+-induced movement of D234Tm, as reported previously for native Tm [Miki et al. (1998) J. Biochem. 123, 1104-1111]. FRET did not show any significant S1-induced movement of Tm and D234Tm on thin filaments either. The distances between Cys-133 of TnI, and Gln-41 and Cys-374 of actin on thin filaments reconstituted with D234Tm (mutant thin filaments) were almost the same as those on thin filaments with native Tm (wild-type thin filaments) in the absence of Ca2+. Upon binding of Ca2+ to TnC, these distances on mutant thin filaments increased by approximately 10 A in the same way as on wild-type thin filaments, which corresponds to a Ca2+-induced conformational change of thin filaments [Miki et al. (1998) J. Biochem. 123, 324-331]. The rigor binding of myosin subfragment 1 (S1) further increased these distances by approximately 7 A on both wild-type and mutant thin filaments when the thin filaments were fully decorated with S1. This indicates that a further conformational change on thin filaments was induced by S1 rigor-binding (S1-induced or open state). Plots of the extent of S1-induced conformational change vs. molar ratio of S1 to actin showed that the curve for wild-type thin filaments is hyperbolic, whereas that for mutant thin filaments is sigmoidal. This suggests that the transition to the S1-induced state on mutant thin filaments is depressed with a low population of rigor S1. In the absence of Ca2+, the distance also increased on both wild-type and mutant thin filaments close to the level in the presence of Ca2+ as the molar ratio of S1 to actin increased up to 1. The curves are sigmoidal for both wild-type and mutant thin filaments. The addition of ATP completely reversed the changes in FRET induced by rigor S1 binding. For mutant thin filaments, the transition from the closed state to the open state in the presence of ATP is strongly depressed, which results in the inhibition of acto-myosin ATPase even in the presence of Ca2+. The present FRET measurements provide structural evidence for three states of thin filaments (relaxed, Ca2+-induced or closed, and S1-induced or open states) for the regulation mechanism of skeletal muscle contraction.  相似文献   

13.
Expression of a muscle-type alpha-actinin cDNA clone in non-muscle cells   总被引:4,自引:0,他引:4  
We have previously isolated a chick smooth muscle-type alpha-actinin cDNA clone (C17) from a chick embryo fibroblast cDNA library. As part of an investigation into a possible role for a muscle isoform of alpha-actinin in non-muscle cells, we have cloned C17 into a eucaryotic expression vector, pKCR3, and examined the distribution of the expressed protein in non-muscle, monkey COS cells. We report here that the muscle isoform of chick alpha-actinin encoded by C17, was found in focal contacts and periodically distributed along actin filaments.  相似文献   

14.
Tropomyosin (Tm) is one of the major components of smooth muscle. Currently it is impossible to easily distinguish the two major smooth muscle (sm) forms of Tm at a protein level by immunohistochemistry due to lack of specific antibodies. Alpha-sm Tm contains a unique 2a exon not found in any other Tm. We have produced a polyclonal antibody to this exon that specifically detects alpha-sm Tm. We demonstrate here the utility of this antibody for the study of smooth muscle. The tissue distribution of alpha-sm Tm was shown to be highly specific to smooth muscle. Alpha-sm Tm showed an identical profile and tissue colocalization with alpha-sm actin both by Western blotting and immunohistochemistry. Using lung as a model organ system, we examined the developmental appearance of alpha-sm Tm in comparison to alpha-sm actin in both the mouse and human. Alpha-sm Tm is a late-onset protein, appearing much later than actin in both species. There were some differences in onset of appearance in vascular and airway smooth muscle with airway appearing earlier. Alpha-sm Tm can therefore be used as a good marker of mature differentiated smooth muscle cells. Along with alpha-sm actin and sm-myosin antibodies, alpha-sm Tm is a valuable tool for the study of smooth muscle.  相似文献   

15.
Two isoforms of lobster muscle tropomyosin, a fast muscle type, fTm, and a slow muscle type, sTm1, are identical except for 15 residues within the region of amino acids 39-80, which corresponds to exon 2 of the tropomyosin genes of many phyla. Although the difference in the sequence does not include the terminal regions, the two isoforms are extremely different in viscosity, which is a good measure of the head-to-tail interaction strength and should be dependent on the conformation of the terminal 7-9 residues. To determine the influence of amino-acid replacements in the internal region on the overall conformation and the functional properties of the molecule, we compared the physical properties of the two isoforms and their interactions with other proteins, such as actin and myosin subfragment 1 (S1). Limited proteolysis by trypsin and chymotrypsin showed that sTm1 is more susceptible than fTm at the sites outside the region with the replaced residues. Compared with fTm, sTm1 showed higher viscosity, had a higher actin affinity, and inhibited acto-S1 ATPase to a greater extent. Finally, the binding isotherm of S1-ADP to actin-sTm1 is less sigmoidal than that to actin-fTm. These results indicate that the amino-acid replacements in the internal region alter the conformation and the physical properties of the entire molecule as well as its interactions with actin and myosin.  相似文献   

16.
Maytum R  Konrad M  Lehrer SS  Geeves MA 《Biochemistry》2001,40(24):7334-7341
The regulatory properties of naturally occurring tropomyosins (Tms) of differing lengths have been examined. These Tms span from 4 to 7 actin subunits. Native proteins have been used to study the common 7 actin-spanning skeletal and smooth muscle variants and expressed recombinant proteins to study the shorter fibroblast 5a, 5b, yeast Tm1 and yeast Tm2 Tms (6, 6, 5, and 4 actin-spanning variants, respectively). The yTm2 has been overexpressed in Escherichia coli with N-terminal constructs equivalent to those previously used for yTm1 [Maytum, R., et al. (2000) Biochemistry 39, 11913]. The regulation of myosin subfragment 1 (S1) binding to actin by Tm has been assessed using a sensitive S1 binding titration. The equilibrium between closed and open (C to M states, KT = 0.1-0.14) was similar for all vertebrate Tms. Apart from skTm where the apparent cooperative unit size (n) is the same as the structural size (n = 7 actin sites), the other vertebrate Tms that were studied exhibited large n values (n = 12-14). The yeast Tms also exhibited large values of n (6-9) in comparison to their structural sizes (4-5). The determined value of KT depended on the N-terminal sequence (KT = 0.15-1). These results are compared with the effect of S1 upon Tm's affinity for actin. The yeast Tms have regulatory parameters similar to those of skTm, but unlike skTm, S1 has little effect upon their actin affinity. This shows that an actin state with a high affinity for S1 and Tm is not necessary for regulation, and the higher affinity of S1 for actin in the presence of vertebrate Tms is probably the result of a direct interaction of S1 with Tm.  相似文献   

17.
In muscle fibers which are free of myosin, tropomyosin and troponin thin filaments were reconstructed from muscle and non-muscle G-actin modified with 1,5-IAEDANS. Using polarized microfluorimetry it was shown that actin in such filaments maintained the ability to respond to conformational changes during actin interaction with subfragment of myosin (S1). The models of muscle fibers with reconstructed from non-muscle actin thin filaments are supposed to use for investigation of mechanisms of cell cytoskeleton functions with the help of polarized microfluorimetry.  相似文献   

18.
Tropomyosin is present in virtually all eucaryotic cells, where it functions to modulate actin-myosin interaction and to stabilize actin filament structure. In striated muscle, tropomyosin regulates contractility by sterically blocking myosin-binding sites on actin in the relaxed state. On activation, tropomyosin moves away from these sites in two steps, one induced by Ca(2+) binding to troponin and a second by the binding of myosin to actin. In smooth muscle and non-muscle cells, where troponin is absent, the precise role and structural dynamics of tropomyosin on actin are poorly understood. Here, the location of tropomyosin on F-actin filaments free of troponin and other actin-binding proteins was determined to better understand the structural basis of its functioning in muscle and non-muscle cells. Using electron microscopy and three-dimensional image reconstruction, the association of a diverse set of wild-type and mutant actin and tropomyosin isoforms, from both muscle and non-muscle sources, was investigated. Tropomyosin position on actin appeared to be defined by two sets of binding interactions and tropomyosin localized on either the inner or the outer domain of actin, depending on the specific actin or tropomyosin isoform examined. Since these equilibrium positions depended on minor amino acid sequence differences among isoforms, we conclude that the energy barrier between thin filament states is small. Our results imply that, in striated muscles, troponin and myosin serve to stabilize tropomyosin in inhibitory and activating states, respectively. In addition, they are consistent with tropomyosin-dependent cooperative switching on and off of actomyosin-based motility. Finally, the locations of tropomyosin that we have determined suggest the possibility of significant competition between tropomyosin and other cellular actin-binding proteins. Based on these results, we present a general framework for tropomyosin modulation of motility and cytoskeletal modelling.  相似文献   

19.
Tropomyosin (Tm) is a key factor in the molecular mechanisms that regulate the binding of myosin motors to actin filaments (F-Actins) in most eukaryotic cells. This regulation is achieved by the azimuthal repositioning of Tm along the actin (Ac):Tm:troponin (Tn) thin filament to block or expose myosin binding sites on Ac. In striated muscle, including involuntary cardiac muscle, Tm regulates muscle contraction by coupling Ca2 + binding to Tn with myosin binding to the thin filament. In smooth muscle, the switch is the posttranslational modification of the myosin. Depending on the activation state of Tn and the binding state of myosin, Tm can occupy the blocked, closed, or open position on Ac. Using native cryogenic 3DEM (three-dimensional electron microscopy), we have directly resolved and visualized cardiac and gizzard muscle Tm on filamentous Ac in the position that corresponds to the closed state. From the 8-Å-resolution structure of the reconstituted Ac:Tm filament formed with gizzard-derived Tm, we discuss two possible mechanisms for the transition from closed to open state and describe the role Tm plays in blocking myosin tight binding in the closed-state position.  相似文献   

20.
Vertebrate skeletal muscle alpha-tropomyosin polymerizes in a head-to-tail manner and binds cooperatively to actin. It has been postulated that the cooperative actin binding is governed by the strength of the head-to-tail interaction. In order to know the relationship between the head-to-tail affinity and actin binding, we studied the properties of tropomyosin variants with single residue substitutions at serine-283, the penultimate residue at the carboxyl terminus that is involved in the head-to-tail interaction. It has been shown that the phosphorylation of serine-283 strengthens the head-to-tail interaction. Viscometry was employed to compare the head-to-tail affinity of tropomyosin variants. Variant S283E showed higher viscosity whereas variant S283K showed lower viscosity compared with the wild type non-phosphorylated alpha-tropomyosin. The results confirm the idea that the interaction is sensitive to the ionic properties of residue 283. The strength of the head-to-tail interaction was assessed directly by sedimentation equilibrium using two pairs of tropomyosin variants designed so that only dimeric interactions were allowed within each pair. From one pair of variants with serine-283, the association constant was determined to be 2.6 x 10(4) M(-1) (SD =1.0 x 10(4)), whereas for the second pair with glutamate-283, the affinity was 3.9 x 10(4) M(-1) (SD =1.6 x 10(4)), slightly stronger than the former, consistent with the results of viscometry. The results indicate that the head-to-tail association is weak as previously implicated from light scattering measurements. Cosedimentation was employed to measure the cooperative actin binding of tropomyosin variants. Although previous results indicated the phosphorylation has no significant influence on the actin affinity, variant S283E shows a lower affinity compared with the control. Variants S283K and S283A show even lower affinities to actin, although these species bind to actin more cooperatively than does variant S283E. The results indicate that the affinity of the head-to-tail interaction between adjacent tropomyosin molecules is weak, and is substantially influenced by an extra charge at residue 283. On the other hand, the interaction with actin, the affinity and the cooperativity in actin binding, is dependent on amino acid residues at 283 and is not simply correlated with the strength of the head-to-tail interaction between Tm molecules in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号