首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The B-protein of phage Mu, which is required for high frequency intermolecular transposition in vivo, shows ATPase activity in vitro, binds nonspecifically to DNA, and stimulates intermolecular strand transfer. To elucidate the structural bases for B-protein function, it was subjected to limited proteolysis with two different proteases, trypsin and chymotrypsin. The resulting fragments were mapped by amino acid sequencing. These data show that the B-protein is organized in two domains: an amino-terminal domain of 25 kDa and a carboxyl-terminal domain of 8-kDa. A fragment analogous to the amino-terminal domain, produced by deleting the 3' end of a cloned B gene, proved to be insoluble and had to be renatured after elution from a sodium dodecyl sulfate gel. The renatured protein retains ATP-binding activity and to a lesser extent the DNA-binding activity of the MuB protein, but is unable to hydrolyze ATP or function in transposition. We also show in this study that efficient DNA-strand transfer by the B-protein occurs even in the absence of a detectable ATPase activity or in the presence of adenosine 5'-O-(thio)triphosphate (ATP gamma S).  相似文献   

2.
G Chaconas  E B Giddens  J L Miller  G Gloor 《Cell》1985,41(3):857-865
The phage-encoded proteins required for conservative integration of infecting bacteriophage Mu DNA were investigated. Our findings show that functional gpA, an essential component of the phage transposition system, is required for integration. The Mu B protein, which greatly enhances replicative transposition of Mu DNA, is also required. Furthermore, a truncated form of gpB lacking 18 amino acids from the carboxy terminus is blocked in replicative transposition, but not conservative integration. Our results point to a more prominent role for gpB than simply a replication enhancer in Mu DNA transposition. The ability of a truncated form of B to function in conservative integration, but not replicative transposition, also suggests a key role for the carboxy-terminal domain of the protein in the replicative reaction. The existence of a shortened form of gpB, which uncouples conservative integration from replicative transposition, should be invaluable for future dissection of Mu DNA transposition.  相似文献   

3.
J L Miller  G Chaconas 《Gene》1986,48(1):101-108
Bacteriophage Mu is a highly efficient transposon and the only moveable element for which an in vitro transposition system has been reported. Recently, this system has been used by Craigie and Mizuuchi [Cell 41 (1985) 867-876] to identify and biochemically characterize intermediates in the transposition process. We have utilized the in vitro transposition system to generate intermediates in the transposition process and have analyzed these intermediates by electron-microscopic methods. Partial denaturation mapping has shown the intermediates to be theta-shaped structures in which the phi X174 target DNA is joined to the mini-Mu plasmid at the ends of the Mu genome. Our results are in agreement with the previous biochemical studies and the type of intermediate we observe is exactly what is predicted by the Shapiro model of transposition [Proc. Natl. Acad. Sci. USA 76 (1979) 1933-1937].  相似文献   

4.
5.
The construction is described of a plasmid (pL-ner) which directs the high-level production of the bacteriophage Mu Ner protein in Escherichia coli. The protein, recovered in the soluble cellular fraction, was susceptible to in vivo proteolytic processing, in many host strains, but not in E. coli B, a natural lon- prototroph. A simple purification method is described which takes advantage of the basic nature of the protein. The purified protein was shown to be physically and chemically homogeneous and to have an amino acid sequence identical to that predicted for the authentic protein. The protein was also shown to have in vitro biological activity, as measured by specific binding to a DNA fragment containing the consensus Ner-binding sequence, and in vivo biological activity as the protein produced by the pL-ner plasmid allowed lysogenic-like maintenance of a Mu prophage c mutant unable to synthesise a functional Mu repressor.  相似文献   

6.
The bacteriophage Mu transposase (the Mu A gene product), which is absolutely required for both integration of Mu and replicative transposition during the lytic cycle, has been overproduced by cloning the gene on a plasmid under the control of the phage lambda PL promoter. The protein has been purified to near homogeneity from the lysate of heat-induced cells of a strain carrying the plasmid. The purified protein is active as judged by its ability to complement Mu A- cell extracts for supporting Mu transposition in a cell-free reaction.  相似文献   

7.
We have characterized a series of amber mutations in the A gene of bacteriophage Mu encoding the phage transposase. We tested different activities of these mutant proteins either in a sup0 strain or in different sup bacteria. In conjunction with the results described in the accompanying paper by Bétermier et al. (1989) we find that the C-terminus of the protein is not absolutely essential for global transposase function, but is essential for phage growth. Specific binding to Mu ends is defined by a more central domain. Our results also reinforce the previous findings (Bétermier et al., 1987) that more than one protein may be specified by the A gene.  相似文献   

8.
Role of ner protein in bacteriophage Mu transposition.   总被引:13,自引:5,他引:8       下载免费PDF全文
  相似文献   

9.
The gene product of gene 44 of Mu phage (gp44) is an essential protein for baseplate assembly and has been designated as gpP, a traditional genetic assignment. The function of gp44 during the assembly or infection process is not known. In the present study, we purified the recombinant gp44 and characterized it by analytical ultracentrifugation and differential scanning microcalorimetry. The results indicate that gp44 forms a trimer comprising a complex consisting of the 42 kDa and 40 kDa subunits that had been cleaved in the C-terminal region. Thermodynamic analysis also suggested that the C-terminal region forms a flexible domain.  相似文献   

10.
The activity of the transposase of bacteriophage Mu is unstable, requiring the protein to be synthesized throughout the lytic cycle (Pato and Reich, 1982). Using Western blot analysis, we analysed the stability of the transposase protein during the lytic cycle and found that it, too, is unstable. The instability of the protein is observed both in the presence and the absence of Mu DNA replication, and is independent of other Mu-encoded proteins and the transposase binding sites at the Mu genome ends. Stability of the protein is enhanced in host strains mutated at the hfl locus; however, stability of the transposase activity is not enhanced in these strains, suggesting that functional inactivation of the protein is not simply a result of its proteolysis.  相似文献   

11.
12.
The 663 amino acid Mu transposase protein is absolutely required for Mu DNA transposition. Mutant proteins were constructed in vitro in order to locate regions of transposase that may be important for the catalysis of DNA transposition. Deletions in the A gene, which encodes the transposase, yielded two stable mutant proteins that aid in defining the end-specific DNA-binding domain. Linker insertion mutagenesis at eight sites in the Mu A gene generated two proteins, FF6 and FF14 (resulting from two and four amino acid insertions, respectively, at position 408), which were thermolabile for DNA binding in vitro at 43°C. However, transposition activity in vivo was severely reduced for all mutant proteins at 37°C, except those with insertions at positions 328 and 624. In addition, site-specific mutagenesis was performed to alter tyrosine 414, which is situated in a region that displays amino acid homology to the active sites of a number of nicking/closing enzymes. Tyrosine 414 may reside within an important, yet non-essential, site of transposase, as an aspartate-substituted protein had a drastically reduced frequency of transposition, while the remaining mutants yielded reduced, but substantial, frequencies of Mu transposition in vivo.  相似文献   

13.
Upon infection of Escherichia coli with bacteriophage Mu, a 64-kDa protein is injected into the host cell along with the phage DNA. This protein is involved in circularizing the infecting Mu DNA (Harshey, R. M., and Bukhari, A. I. (1983) J. Mol. Biol. 167, 427-441; Puspurs, A. H., Trun, N. J., and Reeve, J. N. (1983) EMBO J. 2, 345-352). Its possible role in the integration of infecting Mu DNA and in the infection process remains to be established. To identify the source of this protein we have prepared antiserum to the protein purified from viral particles. We have shown that the antiserum is specific for the Mu N gene product. The antiserum has been used to immunologically screen a Mu DNA library cloned into an expression vector. Four clones have been shown to produce a protein of 64 kDa that is specifically bound by the antiserum. The only Mu gene common to all four clones is the N gene, as demonstrated by physical and genetic mapping. We have also demonstrated by peptide mapping that the cloned N gene product is identical to the 64-kDa protein found complexed with the injected Mu DNA.  相似文献   

14.
We have shown previously that some particular mutations in bacteriophage Mu repressor, the frameshift vir mutations, made the protein very sensitive to the Escherichia coli ATP-dependent Clp protease. This enzyme is formed by the association between a protease subunit (ClpP) and an ATPase subunit. ClpA, the best characterized of these ATPases, is not required for the degradation of the mutant Mu repressors. Recently, a new potential ClpP associated ATPase, ClpX, has been described. We show here that this new subunit is required for Mu vir repressor degradation. Moreover, ClpX (but not ClpP) was found to be required for normal Mu replication. Thus ClpX has activities that do not require its association with ClpP. In the pathway of Mu replicative transposition, the block resides beyond the strand transfer reaction, i.e. after the transposition reaction per se is completed, suggesting that ClpX is required for the transition to the formation of the active replication complex at one Mu end. This is a new clear-cut case of the versatile activity of polypeptides that form multi-component ATP-dependent proteases.  相似文献   

15.
The major surface protein of hepatitis B virus produced in Saccharomyces cerevisiae can be recovered from cell lysates in the form of 22-mm lipoprotein particles. Immunoelectron microscopy was applied to investigate site and time of particle assembly. Thin sections of yeast cells revealed that production of the S protein provoked a dilation of the endoplasmic reticulum. Dilated areas were specifically labeled with a polyclonal antibody raised against glutaraldehyde-treated yeast-derived HBsAg particles. In contrast to previous postulates of particle formation during cell lysis and extract preparation, these results suggest that particle formation in yeast occurs in the endoplasmic reticulum and that transport of particles along the secretion pathway is blocked.  相似文献   

16.
In this paper we show that the Escherichia coli protein Fis has a regulatory function in Mu transposition in the presence of Mu repressor. Fis can lower the transposition frequency of a mini-Mu 3–80-fold, but only if the Mu repressor is expressed simultaneously. In this novel type of regulation of transposition by the concerted action of Fis and repressor, the IAS, the internal activating sequence, is also involved as deletion of this site leads to the loss of the Fis effect. As the IAS contains strong repressor binding sites these are probably the target for the repressor in the observed negative regulation by Fis and repressor. However, the role of Fis and repressor is not only to inactivate the IAS, since a 4bp insertion in the IAS, which changes the spacing of the repressor-binding site, abolishes the enhancing function of the IAS but leaves the repressor-Fis effect intact. A likely target for Fis in this regulation is a strong Fis-binding site, which is located adjacent to the L2 transposase-binding site. However, when this Fis-binding sequence was substituted by a random sequence and Fis no longer showed specific binding to this site, the Fis effect was still observed. Although it is still possible that Fis can function by binding to this non-specific site in a particular complex, it seems more likely that Fis is directly or indirectly involved in determining the level of the repressor.  相似文献   

17.
Employing the recombinant DNA technique, two hybrid plasmids were constructed carrying both ends of bacteriophage Mu DNA in two different orientations. The expression of the early Mu genes located on these plasmids is thermo-inducible.  相似文献   

18.
The 1C6 monoclonal antibody to the hyaluronic acid-binding region weakly stained a 65-kD component in immunoblots of the chondroitin sulfate proteoglycans of brain, and the 8A4 monoclonal antibody, which recognizes two epitopes in the polypeptide portion of link protein, produced strong staining of a 45-kD component present in the brain proteoglycans. These antibodies were utilized to examine the localization of hyaluronic acid-binding region and link protein epitopes in rat cerebellum. Like the chondroitin sulfate proteoglycans themselves and hyaluronic acid, hyaluronic acid-binding region and link protein immunoreactivity changed from a predominantly extracellular to an intracellular (cytoplasmic and intra-axonal) location during the first postnatal month of brain development. The cell types which showed staining of hyaluronic acid-binding region and link protein, such as granule cells and their axons (the parallel fibers), astrocytes, and certain myelinated fibers, were generally the same as those previously found to contain chondroitin sulfate proteoglycans and hyaluronic acid. Prominent staining of some cell nuclei was also observed. In agreement with earlier conclusions concerning the localization of hyaluronic acid and chondroitin sulfate proteoglycans, there was no intracellular staining of Purkinje cells or nerve endings or staining of certain other structures, such as oligodendroglia and synaptic vesicles. The similar localizations and coordinate developmental changes of chondroitin sulfate proteoglycans, hyaluronic acid, hyaluronic acid-binding region, and link protein add further support to previous evidence for the unusual cytoplasmic localization of these proteoglycans in mature brain. Our results also suggest that much of the chondroitin sulfate proteoglycan of brain may exist in the form of aggregates with hyaluronic acid.  相似文献   

19.
We have previously reported that the 13 kDa amino terminus of the 70 kDa bacteriophage D108 transposase protein (A gene product) contains a two-component, sequence-specific DNA-binding domain which specifically binds to the related bacteriophage Mu's right end (attR) in vitro. To extend these studies, we examined the ability of the 13 kDa amino terminus of the Mu transposase protein to bind specifically to Mu attR in crude extracts. Here we report that the Mu transposase protein also contains a Mu attR specific DNA-binding domain, located in a putative alpha-helix-turn-alpha-helix region, in the amino terminal 13 kDa portion of the 70 kDa transposase protein as part of a 23 kDa fusion protein with beta-lactamase. We purified for this attR-specific DNA-binding activity and ultimately obtained a single polypeptide of the predicted molecular weight for the A'--'bla fusion protein. We found that the pure protein bound to the Mu attR site in a different manner compared with the entire Mu transposase protein as determined by DNase I-footprinting. Our results may suggest the presence of a potential primordial DNA-binding site (5'-PuCGAAA-3') located several times within attR, at the ends of Mu and D108 DNA, and at the extremities of other prokaryotic class II elements that catalyze 5 base pair duplications at the site of element insertion. The dissection of the functional domains of the related phage Mu and D108 transposase proteins will provide clues to the mechanisms and evolution of DNA transposition as a mode of mobile genetic element propagation.  相似文献   

20.
Blood platelets are particularly rich in cytoskeletal proteins and respond to stimulation and activation by changes in shape. We examined the effect of blood platelet activation on the subcellular distribution of the cytoskeletal proteins, actin, myosin, alpha-actinin and actin-binding protein. These studies were performed with immunofluorescent staining on thin cryosections of paraformaldehyde-fixed platelets and by immunogold labeling of ultrathin cryosections of glutaraldehyde-fixed blood platelets. Platelets were studied immediately at blood collection (resting platelets), in platelet-rich plasma and after gel filtration (partially activated platelets), and after gel filtration and thrombin activation (0.5 U/ml, 10 min, 37 degrees C) (activated platelets). Resting platelets were disk-shaped and showed homogeneous distribution of cytoskeletal proteins. Partially activated platelets were more spherical and showed at least one protrusion. Immunofluorescence and immunogold labeling showed a more intense staining of the peripheral 0.2 to 0.3 micron of cytoplasm of these platelets. In the immunofluorescence photographs this resulted in the appearance of small fluorescent rings with staining at the periphery of cross-sectioned cells. Activated platelets showed an irregular outline composed of broad based pseudopods. Cell centers were composed of poorly delineated electron-dense material, interspersed with profiles of surface-connected tubules. The broad based pseudopods stained uniformely for actin, alpha-actinin and actin-binding protein. The cell center stained poorly for these proteins. Myosin staining was found in the peripheral cortex, but also in the cell center. Partially activated platelets that had returned to the disk shape after incubation at 37 degrees C showed increased submembranous concentration of microfilament proteins. These data reveal the profound cytoskeletal rearrangements that already occur upon minimal platelet activation and emphasize that platelets that have returned to the disk shape are not identical to resting platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号