首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single gene nuclear yeast mutant was isolated whose mitochondrial F1-ATPase was resistant to the specific F1 inhibitor aurovertin. The mutant enzyme was not cross-resistant to other F1 inhibitors. The binding of aurovertin to F1 and to the two largest F1 subunits (alpha and beta) was measured by enhancement of aurovertin fluorescence. Aurovertin bound to wild type F1-ATPase and to its monomeric beta subunit with about the same binding constant. It failed to bind to wild type alpha subunit or to either F1 or F1 subunits from the mutant. The aurovertin-resistant mutant thus contains an altered nuclear gene which specifies the structure of the beta subunit of F1.  相似文献   

2.
1. Citreoviridin was a potent inhibitor of the soluble mitochondrial ATPase (adenosine triphosphatase) similar to the closely related aurovertins B and D. 2. Citreoviridin inhibited the following mitochondrial energy-linked reactions also: ADP-stimulated respiration in whole mitochondria from ox heart and rat liver; ATP-driven reduction of NAD+ by succinate; ATP-driven NAD transhydrogenase and ATPase from ox heart submitochondrial particles. 3. The dissociation constant (KD) calculated by a simple law-of-mass-action treatment for the citreoviridin--ATPase complex was 0.5--4.2micron for ox-heart mitochondrial preparations and 0.15micron for rat liver mitochondria. 4. Monoacetylation of citreoviridin decreased its inhibitory potency (KD=2--25micron, ox heart; KD=0.7micron, rat liver). Diacetylation greatly decreased the inhibitory potency (KD=60--215micron, ox heart). 5. Hydrogenation of citreoviridin monoacetate diminished its inhibitory potency considerably. 6. No significant enhancement of fluorescence was observed when citreoviridin interacted with the mitochondrial ATPase.  相似文献   

3.
The purity of aurovertins A, B, and D, which inhibit the mitochondrial ATPase and show fluorescence enhancement when bound, has been determined by high-resolution proton nuclear magnetic resonance. This technique demonstrated that solvent molecules, especially water, are tightly bound to crystalline aurovertins B and D. The molar absorption coefficient for aurovertins A, B, and D at the longest wavelength maximum (367.5-369 nm) has been determined to be 38,500 liter x mol(-1) x cm(-1). This correct molar absorption coefficient should enable correct binding stoichiometries for aurovertin to ATPases to be determined.  相似文献   

4.
Isolated beta subunit of ATPase (F1) from yeast mitochondria does not catalyze an ATPase reaction but still binds the specific F1 inhibitor aurovertin. Binding was measured by enhancement of aurovertin fluorescence; it was as tight as that to F1-ATPase. No binding was observed with F1 or with isolated beta subunit from a single-gene nuclear yeast mutant whose F1-ATPase was resistant to aurovertin.  相似文献   

5.
Energy-transducing adenosine triphosphatase (ATPase) from Escherichia coli is inhibited by aurovertin. Aurovertin-resistant mutants were generated by nitrosoguanidine mutagenesis of E. coli AN180, whose growth on a nonfermentable carbon source was blocked by aurovertin. The ATPase activity of cell extracts from 15 different mutants (designated MA1, MA2, MA3, etc.) was found to be at least 20 times less sensitive to aurovertin than that from the parent strain. The aurovertin-resistant mutants did not show cross-resistance towards a number of ATPase inhibitors including azide, dicyclohexylcarbodiimide, quercetin, 7-chloro-4-nitrobenzofurazan, and N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. Aurovertin inhibited the energization brought about by addition of ATP to E. coli AN180 membrane vesicles; it was without effect on MA1 and MA2 membrane vesicles energized by ATP. The mutation in MA1, like other mutations of the ATPase complex, maps in the unc region of the bacterial chromosome.  相似文献   

6.
In contrast to wild-type F1 adenosine triphosphatase, the beta subunits of soluble ATPase from Escherichia coli mutant strains AN120 (uncA401) and AN939 (uncD412) were not labeled by the fluorescent thiol-specific reagents 5-iodoacetamidofluorescein, 2-(4'-iodoacetamidoanilino)naphthalene-6-sulfonic acid or 4-[N-(iodoacetoxy)ethyl-N-methyl]amino-7-nitrobenzo-2-oxa-1,3-diazole. The mutation in the alpha subunit (uncA401) of F1 ATPase thus influences the accessibility of the single cysteinyl residue in the beta subunit. Following reaction of ATPase with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole or N,N'-dicyclohexylcarbodiimide, the alpha and beta subunits of the uncA401, but not of the uncD412 mutant F1 ATPase were intensely labeled by a fluorescent thiol reagent. The mutation in the beta subunit (uncD412) thus influences the accessibility of the cysteinyl residues in the alpha subunit. In other work [Stan-Lotter, H. and Bragg, P.D. (1986) Arch. Biochem. Biophys. 248] we have shown that 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and 2-(4'-iodoacetamidoanilino)naphthalene-6-sulfonic acid react with a different beta subunit from that labeled by N,N'-dicyclohexylcarbodiimide. This asymmetry with respect to modification by 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and N,N'-dicyclohexylcarbodiimide was seen in both mutant enzymes. In addition, the modification of one beta subunit of the uncA401 F1 ATPase induced the previously unreactive sulfhydryl group of another beta subunit to react with 2-(4'-iodoacetamidoanilino-naphthalene-6-sulfonic acid. These results provide evidence for at least three types of conformational interactions of the major subunits of F1 ATPase: from alpha to beta, from beta to alpha, and from beta to beta. As in wild-type ATPase, labeling of membrane-bound unc mutant ATPase by a fluorescent thiol reagent modified the alpha subunits. This suggests that a conformational change of yet a different type occurs when the enzyme binds to the membrane.  相似文献   

7.
Escherichia coli strain AN718 contains the alpha S373F mutation in F1F0-ATP synthase which blocks ATP synthesis (oxidative phosphorylation) and steady-state F1-ATPase activity. The revertant strain AN718SS2 containing the mutation alpha C373 was isolated and shown to confer a phenotype of higher growth yield than that of the wild type in liquid medium containing limiting glucose, succinate, or LB. Purified F1 from strain AN718SS2 was found to have 30% of wild-type steady-state ATPase activity and 60% of wild-type oxidative phosphorylation activity. Azide sensitivity of ATPase activity and ADP-induced enhancement of bound aurovertin fluorescence, both of which are lost in alpha S373F mutant F1, were regained in alpha C373 F1. N-Ethylmaleimide (NEM) inactivated alpha C373 F1 steady-state ATPase potently but had no effect on unisite ATPase. Complete inactivation of alpha C373 F1 steady-state ATPase corresponded to incorporation of one NEM per F1 (mol/mol), in just one of the three alpha subunits. NEM-inactivated enzyme showed azide-insensitive residual ATPase activity and loss of ADP-induced enhancement of bound aurovertin fluorescence. The data confirm the view that placement at residue alpha 373 of a bulky amino acid side-chain (phenylalanyl or NEM-derivatized cysteinyl) blocks positive catalytic cooperativity in F1. The fact that NEM inhibits steady-state ATPase when only one alpha subunit of three is reacted suggests a cyclical catalytic mechanism.  相似文献   

8.
A sequence of 10 amino acids (I-C-S-D-K-T-G-T-L-T) of ion motive ATPases such as Na+/K+-ATPase is similar to the sequence of the beta subunit of H+-ATPases, including that of Escherichia coli (I-T-S-T-K-T-G-S-I-T) (residues 282-291). The Asp (D) residue phosphorylated in ion motive ATPase corresponds to Thr (T) of the beta subunit. This substitution may be reasonable because there is no phosphoenzyme intermediate in the catalytic cycle of F1-ATPase. We replaced Thr-285 of the beta subunit by an Asp residue by in vitro mutagenesis and reconstituted the alpha beta gamma complex from the mutant (or wild-type) beta and wild-type alpha and gamma subunits. The uni- and multisite ATPase activities of the alpha beta gamma complex with mutant beta subunits were about 20 and 30% of those with the wild-type subunit. The rate of ATP binding (k1) of the mutant complex under uni-site conditions was about 10-fold less than that of the wild-type complex. These results suggest that Thr-285, or the region in its vicinity, is essential for normal catalysis of the H+-ATPase. The mutant complex could not form a phosphoenzyme under the conditions where the H+/K+-ATPase is phosphorylated, suggesting that another residue(s) may also be involved in formation of the intermediate in ion motive ATPase. The wild-type alpha beta gamma complex had slightly different kinetic properties from the wild-type F1, possibly because it did not contain the epsilon subunit.  相似文献   

9.
1. Beef-heart mitochondrial ATPase (F1) is inactivated and dissociated by incubation with 0.85 M LiCl. ATP partly protects against inactivation. Three dissociation products could be identified after chromatography on diethylaminoethylcellulose: the delta subunit which is not adsorbed, the beta subunit which may be eluted from the column, and the alpha and gamma subunits which remain bound to the column. 2. Aurovertin binds to dissociated F1 with a fluorescence enhancement equal to about 30% that found with F1. Unlike intact F1 which shows two kinetically separated phases of fluorescence enhancement, only a fast phase is found with dissociated enzyme. 3. Fluorescence measurements at varying aurovertin and protein concentrations indicate that aurovertin binds to dissociated F1 in a simple 3-component reaction with dissociation constant 0.4 muM. There are two indistinguishable binding sites, calculated on the basis of the initial F1 concentration before dissociation. 4. The beta subunit was isolated from dissociated F1 by DEAE-cellulose chromatography. It has no ATPase activity but reacts with aurovertin with a fluorescence enhancement similar to that of dissociated F1. 5. The isolated beta subunit contains one aurovertin binding site with a dissociation constant of 0.56 muM. 6. It is concluded that F1 contains two beta subunits.  相似文献   

10.
Under very mild oxidizing conditions the delta subunit of the F1-ATPase of Escherichia coli can be crosslinked by a disulfide linkage to one of the alpha subunits of the enzyme. The cross-linked ATPase resembles the native enzyme in the following properties: specific activity; activation by lauryldimethylamine N-oxide (LDAO); binding of aurovertin D and ADP; cross-linking products with 3,3'-dithiobis(succinimidyl propionate); binding to ATPase-stripped everted membrane vesicles and the N,N'-dicyclohexylcarbodiimide sensitivity of the rebound enzyme. However, the rebound crosslinked ATPase differed from the native enzyme in lacking the ability to restore NADH oxidation - and ATP hydrolysis-dependent quenching of the fluorescence of quinacrine to ATPase-stripped membrane vesicles. It is proposed that the delta subunit is involved in the proton pathway of the ATPase, and that this pathway is affected in the alpha delta-cross-linked enzyme. The mechanism for activation of the ATPase by LDAO was examined. Evidence against the proposal of L?tscher, H.-R., De Jong, C. and Capaldi, R.A. (Biochemistry (1984) 23, 4140-4143) that activation involves displacement of the epsilon subunit from an active site on a beta subunit was obtained.  相似文献   

11.
The uncD gene for the beta subunit of Escherichia coli H+-ATPase was cloned downstream of the lac promoter and mutagenized (Glu-185----Gln or Lys) by an oligonucleotide-directed procedure. The recombinant plasmid was introduced into a strain in which the unc operon for subunits of H+-ATPase was deleted. The wild-type or mutant beta subunit synthesized amounted to about 10% total cell protein and was mainly found in the cytoplasmic fraction. These subunits could be purified to almost homogeneity by conventional procedures. The wild-type and two mutant beta subunits had essentially the same Kd values for 8-anilinonaphthalene-1-sulfonate, aurovertin, and ATP, although the fluorescence intensities of 8-anilinonaphthalene-1-sulfonate and aurovertin were significantly less when bound to the two mutant beta subunits than when bound to the wild-type subunit. The three beta subunits showed essentially the same circular dichroism spectra, indicating alpha-helical contents of about 16-18%. Thus, the mutations did not cause marked change of the secondary structure of the subunit. However, measurements of theta 208 during linear increase in temperature suggested that replacement of Glu-185 by Gln or Lys slightly changed the stability of the secondary structure. Only trace amounts of alpha beta gamma complexes could be reconstituted using the two mutant beta subunits. These results suggest that Glu-185 or the region in its vicinity may be essential for subunit assembly. The methods developed in this study should be useful for further studies on the beta subunit.  相似文献   

12.
The defective coupling factor F1 ATPase from a mutant strain (KF11) of Escherichia coli was purified to a practically homogeneous form. The final specific activity of Mg2+-ATPase was 6-9 units/mg protein, which is about 10-15 times lower than that of F1 ATPase from the wild-type strain. The mutant F1 had a ratio of Ca2+-ATPase to Mg2+-ATPase of about 3.5, whereas the wild-type F1 had ratio of about 0.8. The mutant F1 was more unstable than wild-type F1: on storage at -80 degrees C for 2 weeks, about 80% of its activity (dependent on Ca2+ or Mg2+) was lost, whereas none of the activity of the wild-type F1 was lost. The following results indicate that the mutation is in the beta subunit. (i) High Mg2+-ATPase activity (about 20 units/mg protein) was reconstituted when the beta subunit from wild type F1 was added to dissociated mutant F1 and the mixture was dialyzed against buffer containing ATP and Mg2+. (ii) Low ATPase activity having the same ratio of Ca2+-ATPase to Mg2+-ATPase as the mutant F1 was reconstituted when a mixture of the beta subunit from the mutant F1 and the alpha and gamma subunits from wild-type F1 was dialyzed against the same buffer. (iii) Tryptic peptide analysis of the beta subunit of the mutant showed a difference in a single peptide compared with the wild-type strain.  相似文献   

13.
M Satre  M Bof  J P Issartel  P V Vignais 《Biochemistry》1982,21(19):4772-4776
N,N'-Dicyclohexylcarbodiimide (DCCD) covalently binds to the beta subunit of Escherichia coli F1-ATPase (BF1). The ATPase activity is fully inhibited when 1 mol of DCCD is bound/mol of BF1, in spite of the fact that BF1 contains several beta subunits [Satre, M., Lunardi, J., Pougeois, R., & Vignais, P.V. (1979) Biochemistry 18, 3134-3140]. Advantage was taken of the reactivity of DCCD with respect to BF1 to determine the exact stoichiometry of the beta subunits in BF1. Two methods were used. The first one was based on the fact that modification of the beta subunit by DCCD results in the disappearance of one negative charge, due to the binding of DCCD to a carboxyl group of the beta subunit. The nonmodified and the modified beta subunits were separated by electrofocusing, and the percentage of modified beta subunits was assessed as a function of the percentage of ATPase inactivation. The second method relied on direct comparison, after inactivation of BF1 by [14C]DCCD, of the specific radioactivities of the whole BF1 and the isolated beta subunits. Both methods indicate that each molecule of BF1 contains three beta subunits.  相似文献   

14.
Binding of the photoreactive ATP analog, 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP), to the isolated alpha and beta subunits of TF1 and to the alpha 3 beta 3 "core" complex of the holoenzyme is described. About 1 mol of BzATP/mol of subunit was incorporated to isolated alpha and beta subunits. The incorporation of BzATP was prevented by ATP. Covalent binding of BzATP to the alpha subunit was in general somewhat lower than that observed with the beta subunit. No complex was formed upon mixing of either of the modified subunits with the complementary nontreated subunits. Covalent binding of 3 mol of BzATP/alpha 3 beta 3 complex completely inhibited ATPase activity and resulted in the dissociation of the complex. The labeled nucleotide analog was specifically incorporated into the beta subunit of the complex. The holoenzyme TF1, in contrast to the core complex, did not dissociate to the individual subunits upon covalent binding of BzATP. These results are discussed in relation to the location of the catalytic nucleotide binding site(s) and the conformation stability of the alpha 3 beta 3 core complex of TF1.  相似文献   

15.
The predicted amino acid sequence of the alpha subunit of the rat liver mitochondrial ATP synthase has been obtained by sequencing a cDNA for the alpha subunit. Analysis of the sequence shows that it contains the A and B consensus sequences found in many nucleotide-binding proteins. Twelve amino acids of the rat liver alpha subunit differ from the sequence of the bovine heart alpha subunit; four of these involve differences in charge. The rat liver alpha subunit, from arginine 15 to the C-terminal proline 510, has been overexpressed in Escherichia coli using the alkaline phosphatase promoter (phoA) and leader peptide to direct the export of the expressed protein to the bacterial periplasm. By treating the cells with lysozyme, osmotic shock, and alkaline pH washes, the alpha subunit can be extracted in high yield (greater than 25 mg/liter) and in a high state of purity. The expressed alpha subunit remains soluble at pH 9.5 or greater and precipitates when treated with Mg2+ ions at low millimolar concentration. The bacterially expressed alpha subunit interacts with 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP), resulting in a marked fluorescence enhancement upon binding. An enhancement of fluorescence is also observed upon the interaction of the alpha subunit with TNP-ADP. Preincubating the alpha subunit with 1.5 mM ATP significantly reduces the fluorescence enhancement seen with TNP-ATP. The alpha subunit binds TNP-ATP with an apparent Kd in the low micromolar range (1-5 microM) and binds TNP-ADP with an affinity at least 10-fold lower. This work shows that the rat liver alpha subunit can be overexpressed in E. coli to yield a large amount of functional protein. With the acquisition of the overexpressed alpha subunit, it is now possible to test the reconstitution of ATPase activity from a mixture of recombinant and rat liver-derived subunits and to test the formation of complexes by the overexpressed alpha and beta subunits of the rat liver F1-ATPase.  相似文献   

16.
S D Dunn  R G Tozer  V D Zadorozny 《Biochemistry》1990,29(18):4335-4340
The stimulation of the ATPase activity of Escherichia coli F1-ATPase by the detergent lauryldimethylamine oxide (LDAO) and the relationship of this activation to removal of the inhibitory epsilon subunit were studied. The detergent caused a dramatic decrease in the affinity of epsilon-depleted enzyme for epsilon subunit, suggesting that release of epsilon is involved in LDAO activation. However, even in the absence of any epsilon subunit, the detergent caused a 140% increase in activity, indicating activation by effects independent of epsilon. In contrast, the addition of 30% ethylene glycol to the reaction buffer caused a modest inhibition of the ATPase activity of epsilon-depleted F1-ATPase but rendered the enzyme insensitive to inhibition by epsilon subunit. This solvent prevented the cross-linking of epsilon to beta by a water-soluble carbodiimide, although epsilon remained linkable to both beta and gamma by dithiobis(succinimidyl propionate). Thus, epsilon was not dissociated from F1-ATPase, but its intimate interaction with the beta subunit was altered. These results suggest that the inhibitory action of epsilon is expressed through its interaction with beta. Kinetic analysis revealed that LDAO activated hydrolysis at both the high- and low-affinity promotional sites, with little change in Km values. Ethylene glycol caused a substantial increase in Km at the low-affinity promotional site and made the enzyme resistant to inhibition by aurovertin D.  相似文献   

17.
1. The cell-membrane ATP phosphohydrolase of vegetatively grown Clostridium pasteurianum was specifically Mg2+-dependent, but demonstrated significant activity with GTP, CTP and UTP. It displayed approximate Michaelis-Menten kinetics only in the presence of certain effectors (e.g. phosphoenolpyruvate, fructose 1,6-bis-phosphate) which decreased the Km for ATP (to below 2 mM) but also V, whilst extending to pH 5.8 the effective pH range of activity of the enzyme. 2. ATP phosphohydrolase activity of the membrane ATPase (BF0F1) was inhibited by N,N'-dicyclohexylcarbodiimide, butyricin 7423, Dio-9, 4-chloro-7-nitrobenzofurazan, efrapeptin, leucinostatin and quercetin, and to a lesser degree by aurovertin and citreoviridin. The enzyme was not inhibited by oligomycin, spegazzinine, tributyl tin, triethyl tin or venturicidin. The soluble ATPase (BF1) component differed in not being inhibited by N,N'-dicyclohexylcarbodiimide, butyricin 7423 or leucinostatin. 3. The ATPase (BF0F1) complex and its soluble (BF1) component were separately purified. 4. Dodecylsulphate/polyacrylamide gel electrophoresis separated only four polypeptide components in the purified ATPase (BF0F1), with approximate molecular weights (+/- 10%) as follows: subunit a, 65 500; subunit c, 57 500; subunit da, 43 000; subunit fa, 15 000. The soluble (BF1 component contained only the three polypeptide subunits a, c and da. These were present in the BF0F1 preparation in the ratio 2 : 1 : 2; the contribution of subunit fa could not satisfactorily be quantified. 5. Subunit a was identified as the component binding 4-chloro-7-nitrobenzofurazan and subunit fa as the component binding N,N'-dicyclohexylcarbodiimide. The ATP phosphohydrolase activity of the membrane ATPase was not activated by trypsin treatment and the ATPase (BF0F1) contained no trypsin-sensitive inhibitor protein subunit. 6. Purified ATPase (BF0F1) was incorporated into artificial proteoliposomes which demonstrated ATP-dependent enhancement of 8-anilinonaphthalene-1-sulphonate fluorescence and ATP-dependent proton influx. These reactions were abolished by proton conductors (e.g. carbonylcyanide m-chlorophenylhydrazone) by valinomycin in the presence of a high external concentration of K+, or by N,N'-dicyclohexylcarbodiimide, butyricin 7423, Dio-9, 4-chloro-7-nitrobenzofurazan or leucinostatin. Oligomycin, tributyl tin, triethyl tin and venturicidin were not inhibitory. 7. When stripped of the soluble BF1 component, such ATPase-proteoliposomes demonstrated nil ATP phosphohydrolase activity and did not display ATP-dependent enhancement of 8-anilino-naphthalene-1-sulphonate fluorescence or ATP-dependent protein influx. All of these activities were restored by incubation of the BF1-depleted proteoliposomes with a purified preparation of the soluble BF1 component.  相似文献   

18.
The effect of aurovertin on the binding parameters of ADP and ATP to native F1 from beef heart mitochondria in the presence of EDTA has been explored. Three exchangeable sites per F1 were titrated by ADP and ATP in the absence or presence of aurovertin. Curvilinear Scatchard plots for the binding of both ADP and ATP were obtained in the absence of aurovertin, indicating one high affinity site (Kd for ADP = 0.6-0.8 microM; Kd for ATP = 0.3-0.5 microM) and two lower affinity sites (Kd for ADP = 8-10 microM; Kd for ATP = 7-10 microM). With a saturating concentration of aurovertin capable of filling the three beta subunits of F1, the curvilinearity of the Scatchard plots was decreased for ATP binding and abolished for ADP binding, indicating homogeneity of ADP binding sites in the F1-aurovertin complex (Kd for ADP = 2 microM). When only the high affinity aurovertin site was occupied, maximal enhancement of the fluorescence of the F1-aurovertin complex was attained with 1 mol of ADP bound per mol of F1 and maximal quenching for 1 mol of ATP bound per mol of F1. When the F1-aurovertin complex was incubated with [3H]ADP followed by [14C]ATP, full fluorescence quenching was attained when ATP had displaced the previously bound ADP. In the case of the isolated beta subunit, both ADP and ATP enhanced the fluorescence of the beta subunit-aurovertin complex. The Kd values for ADP and ATP in the presence of EDTA were 0.6 mM and 3.7 mM, respectively; MgCl2 decreased the Kd values to 0.1 mM for both ADP and ATP. It is postulated that native F1 possesses three equivalent interacting nucleotide binding sites and exists in two conformations which are in equilibrium and recognize either ATP (T conformation) or ADP (D conformation). The negative interactions between the nucleotide binding sites of F1 are strongest in the D conformation. Upon addition of aurovertin, the site-site cooperativity between the beta subunits of F1 is decreased or even abolished.  相似文献   

19.
1. The isolation of the mitochondrial ATPase F1 and its beta-subunit from commercial baker's yeast (Saccharomyces cerevisiae) is described. 2. The molecular weight determined by ultracentrifugation is 340000 +/- 30000. Gel chromatography indicates a molecular weight of 300000 +/- 20000. 3. Fluorimetric titration of the isolated enzyme with aurovertin reveals two binding sites per molecule. The isolated beta-subunit binds aurovertin in a 1 : 1 stoicheiometry. It is concluded that the ATPase molecule contains two aurovertin-binding beta-subunits. 4. The stabilizing agent methanol influences both the measured Kd and the concentration of binding sites for aurovertin. These results fit a model in which both F1 and aurovertin are distributed between aqueous and methanol phases. 5. The effect of methanol on the ATPase activity can be described in terms of the model proposed by Recktenwald and Hess (Recktenwald, D. and Hess, B. (1977) FEBS Lett. 76, 25-28). It is proposed that methanol enhances the affinity of the regulatory site for ATP, but at higher concentrations prevents the interaction between the regulatory and catalytic sites. 6. Since HSO(-3), a typical effector of the assumed regulatory site of F1, has no effect on the binding of aurovertin, it is concluded that the binding site of aurovertin is not correlated with the regulatory site. 7. The inhibition of ATPase activity by aurovertin is slowly (t 1/2 = 70 s) induced during turnover conditions. 8. From the effect of methanol on the inhibition of ATPase activity by aurovertin it is concluded that under turnover conditions the conformation is such that the aurovertin-binding sites have a 6-fold higher affinity for methanol than under resting conditions.  相似文献   

20.
The epsilon subunit of Escherichia coli F1-ATPase is a tightly bound but dissociable partial inhibitor of ATPase activity. The effects of epsilon on the enzyme were investigated by comparing the ATPase activity and aurovertin binding properties of the epsilon-depleted F1-ATPase and the epsilon-replete complex. Kinetic data of multisite ATP hydrolysis were analyzed to give the best fit for one, two, or three kinetic components. Each form of F1-ATPase contained a high-affinity component, with a Km near 20 microM and a velocity of approximately 1 unit/mg. Each also exhibited a component with a Km in the range of 0.2 mM. The velocity of this component was 25 units/mg for epsilon-depleted ATPase but only 4 units/mg for epsilon-replete enzyme. The epsilon-depleted enzyme also contained a very low affinity component not present in the epsilon-replete enzyme. In unisite hydrolysis studies, epsilon had no effect on the equilibrium between substrate ATP and product ADP.P1 at the active site but reduced the rate of product release 15-fold. These results suggest that epsilon subunit slows a conformational change that is required to reduce the affinity at the active site, allowing dissociation of product. It is suggested that inhibition of multisite hydrolysis by epsilon is also due to a reduced rate of product release. epsilon-depleted F1-ATPase showed little of no modulation of aurovertin fluorescence by added ADP and ATP. Aurovertin fluorescence titrations in buffer containing ethylenediaminetetraacetic acid (EDTA) revealed that epsilon-depleted enzyme had high affinity for aurovertin (Kd less than 0.1 microM) regardless of the presence of nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号