首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
本文讨论有时滞的扩散系统,此系统有两个种群两个斑块,其中一种种群可以在两斑块中自由扩散,另一种群被限定在斑块中不能扩散,当系数数满足一定的条件时,得到系统有持续生存和全局稳定的解。  相似文献   

2.
杨立  李维德 《生态学报》2012,32(6):1773-1782
利用概率元胞自动机模型对空间隐式的、食饵具Allee效应的一类捕食食饵模型进行模拟,发现随着相关参数的变化,种群的空间扩散前沿由连续的扩散波逐渐转变为一种相互隔离的斑块向外扩散,这种斑块扩散现象与以往的扩散模式有所不同。研究结果表明:(1)在斑块扩散的情况下,相关参数的微小变化会导致种群灭绝或者形成连续的扩散波,即斑块扩散发生在种群趋于灭绝和连续扩散之间;(2)当种群的空间扩散方式为斑块扩散时,种群的扩散速度会变慢,与其他扩散方式下的速度有着明显的区别。该研究结果对生物入侵控制和外来物种监测有重要的启发和指导作用。  相似文献   

3.
从生物的捕食系统出发.提出了一种斑块生境中具有异质捕食风险的新机制.并构造了一个动力系统模型。在此模型之上,首先研究了扩散对系统稳定性的作用.并对系统进行了计算机模拟。研究发现:具有不同捕食风险的斑块生境之间的扩散(无论是只有食饵的扩散.还是食饵和捕食者共同的扩散)对整个捕食系统所起的作用主要取决于扩散的速率——只有在适中的扩散速率下系统才会稳定.如果扩散速率过快,则引起系统的强烈振荡。当只有食饵发生扩散时,参数f的值越小(f代表高捕食风险生境斑块体积占整个系统体积的比例).系统越稳定。在捕食者与食饵同时扩散的时候.只有适中或较小的参数f才可以实现系统的长期稳定。其次研究了系统中种群空间平均平衡密度随扩散速率增加的变化趋势。模拟结果表明:系统中食饵种群的空间平均平衡密度随扩散速率增加而减小;捕食者种群平衡密度的变化趋势则取决于系统斑块之间的扩散形式:只有食饵发生扩散时.捕食者种群的空间平衡密度先保持不变.然后缓慢下降;捕食者与食饵同时扩散的时候.捕食者种群平衡密度呈上升趋势。上述结论是由空间异质的捕食风险所决定的.也就是一种下行控制力所限制的结果。综合以上两个结论.认为斑块之间的扩散形式决定了扩散对系统动态的作用和种群空间平均平衡密度对扩散速率增加的反应。  相似文献   

4.
Leslie系统在污染环境下有关生存问题的分析   总被引:1,自引:0,他引:1  
张镜  王克 《生物数学学报》2006,21(4):501-508
研究了在污染环境中毒素对Leslie资源-消费者系统中消费者种群的长期影响,给出了种群弱持续生存和灭绝的条件.  相似文献   

5.
讨论了一类具有时滞和基于比率的阶段结构捕食扩散模型,其中捕食种群具有两个阶段结构,并且成年捕食种群可以在两斑块间扩散.利用比较原理证明了系统在适当的条件下是持续生存的;通过构造Lyapunov泛函,得到了系统存在唯一全局渐近稳定的正周期解的充分条件.  相似文献   

6.
一个污染环境中的单种群模型的动力学性质   总被引:1,自引:0,他引:1  
以脉冲微分方程为基础建立了一个污染环境中在固定时刻对污染净化处理的单种群模型,详细研究了此模型的动力学性质,给出了种群灭绝和持续生存的充分条件.结果表明,当脉冲作用的周期小于某个阈值时,种群将持续生存;否则,种群将趋于灭绝.  相似文献   

7.
具有扩散的阶段结构模型中种群数量和稳定性的控制   总被引:7,自引:0,他引:7  
由于人类活动对于生态环境的影响,很多中国林蛙的栖息地被污染而使其数量减少,为了保护这一珍稀种群,本文提出并研究了两个具有阶段结构的种群模型(1)和(2),系统(1)中两个斑块1和2是相互隔离的,而系统(2)中两个斑块1和2有廓道相通,对系统(2),得到永久持续生存的充分必要条件,而且考虑了扩散对于平衡点稳定性和种群稳定数量的影响。  相似文献   

8.
讨论了两斑块间脉冲扩散的单种群动力学模型,利用离散动力系统频闪映射理论,得到了种群持续生存的充分条件.结论31,1~了现实的生物种群动力学性质,也丰富了脉冲微分方程理论.  相似文献   

9.
刘志广 《生态学报》2018,38(8):2958-2964
建立了一个显式含有空间庇护所的两斑块Leslie-Gower捕食者-食饵系统。假设只有食饵种群在斑块间以常数迁移率迁移,且在每个斑块上食饵间的迁移比局部捕食者-食饵相互作用发生的时间尺度要快。利用两个时间尺度,可以构建用来描述所有斑块总的食饵和捕食者密度的综合系统。数学分析表明,在一定条件下,存在唯一的正平衡点,并且此平衡点全局稳定。进一步,捕食者的数量随着食饵庇护所数量增加而降低;在一定条件下,食饵的数量随着食饵庇护所数量增加先增加后降低,在足够强的庇护所强度下,两物种出现灭绝。对比以往研究,利用显式含有和隐含空间庇护所的数学模型所得结论不一致,这意味着在研究庇护所对捕食系统种群动态影响时,空间结构可能起着重要作用。  相似文献   

10.
研究了一个扩散系数依赖生态资源丰富度的单种群脉冲扩散模型.利用单调凹算子理论,证明了在一定条件下,系统存在唯一全局渐近稳定的正周期解.通过数值模拟,验证了理论结果.结论表明,迁移有利于斑块环境下白头叶猴种群的持续生存.  相似文献   

11.
In most models of population dynamics, diffusion between two patches is assumed to be either continuous or discrete, but in reality, many species diffuse only during a single period, and diffusion often occurs in regular pulses. Further, in forest habitats, the highest-level predator species are restricted to a specific territory, but prey can impulsively move between territories. Therefore, in this paper, we consider a delayed stage-structured predator–prey model with impulsively diffusive prey between two patches; in the model, patches represent the territories of two different predator populations. Here, we analytically obtain the global attractivity condition of predator-extinction periodic solutions for the system by using the concepts of Hui and Chen (2005); a numerical simulation is also included to illustrate this result. Further, we establish permanence conditions for the coexistence of the species using the theory of impulsive delayed differential equations. Finally, we explore the possibilities of the permanence of the system by using the growth rates of immature predators and the impulse period as critical parameters, and we also obtain the parameters’ threshold limits using numerical experimentation.  相似文献   

12.
We employed an experimental model system to investigate the mechanisms underlying patterns of patch occupancy and population density in a high arctic assemblage of Collembola species inhabiting a sedge tussock landscape on Svalbard. The replicate model systems consisted of 5 cores of the tussocks (habitat patches) imbedded in a barren matrix. Four of the patches were open so that animals could migrate between them, while there was one closed patch per system to test the effect of migration on extinction rate. There were model systems of two types: one with long and one with short inter‐patch distances to test the effect of patch isolation on colonisation and extinction rates. Each of the four most common collembolan species at the field site were introduced to two open patches per system (source patches), with the other two functioning as colonisation patches for the species. The experiment was run in an ecotrone over three identical, simulated arctic summers separated by winters of 3 weeks. Six replicates of systems with short and long inter‐patch distances were sampled at the end of each summer. The species varied markedly in their performance in both open arenas and closed patches, indicating differential responses to patch humidity, consistent with their differential distribution along the moisture gradient in the field site. The extinction – colonisation dynamics differed markedly between species as predicted from our field studies. This could partly be ascribed to differential dispersal and colonisation ability, but also to different tolerance to spatially variable patch quality and/or tendency for aggregative behaviour. Three of the species exhibited dynamics that superficially resemble what could be expected from classical metapopulation dynamics. However, there was a striking discrepancy between what would be expected from the effect of migration on the extinction rate of isolated patches (in particular closed patches) and the observed rates. Thus, metapopulation processes, such as stochastic colonisation and extinction events due to demographic stochasticity, were relatively unimportant compared to other sources of spatial variability among which subtle differences in patch quality are probably most important. We discuss the value of combining field studies with model system experiments, in particular when habitat quality cannot easily be measured in the field. However, our field and laboratory studies also emphasise the need for a thorough knowledge of species‐specific life history traits for making biologically sound interpretations based on both observational and experimental data.  相似文献   

13.
Mike S. Fowler 《Oikos》2009,118(4):604-614
The decision to move between patches in the environment is among the most important life history choices an organism can make. I derive a new density dependent dispersal rule, and examine how dispersal decisions based on avoiding fitness loss associated with an Allee effect or competitive effects impact upon population dynamics in spatially structured populations with qualitatively different dynamics. I also investigate the effects of the number of patches in the system and a limit to the patch sampling time available to dispersers. Dispersing to avoid competitive pressures can destabilise otherwise stable population dynamics, and stabilise chaotic dynamics. Dispersing to avoid an Allee effect does not qualitatively change local population dynamics until eventually driving unstable populations to global extinction with a sufficiently high fitness threshold. A time limit for sampling can stabilise dynamics if dispersal is based on escaping the Allee effect, and rescue populations from global extinction. The results are sensitive to the number of patches available in the environment and suggest that dispersal to avoid an Allee effect will only arise under biologically plausible conditions, i.e. where there is a limit to the number of dispersal attempts that can be made between generations.  相似文献   

14.
Permanence of a dispersal single-species population model where environment is partitioned into several patches is considered. The species not only requires some time to disperse between the patches but also has some possibility to die during its dispersion. The model is described by delay differential equations. The existence of 'super' food-rich patch is proved to be sufficient to ensure partial permanence of the model. It is also shown that partial permanence implies permanence if each food-poor patch is chained to the super food-rich patch. Furthermore, it is proven that partial persistence is ensured if there exist food-rich patches and the dispersion of the species among the patches are small. When the dispersion is large, the partial persistence is realized under relatively small dispersion time.  相似文献   

15.
In this paper, single-species nonautonomous dispersal models with delays are considered. An interesting result on the effect of dispersal for persistence and extinction is obtained. That is, if the species is persistent in a patch then it is also persistent in all other patches; if the species is permanent in a patch then it is also permanent in all other patches; if the species is extinct in a patch then it is also extinct in all other patches. Furthermore, some new sufficient conditions for the permanence and extinction of the species in a patch are established. The existence of positive periodic solutions is obtained in the periodic case by employing Teng and Chen's results on the existence of positive periodic solutions for functional differential equations. Received: 26 June 2000 / Revised version: 6 October 2000 / Published online: 10 April 2001  相似文献   

16.
Persistence,extinction, and critical patch number for island populations   总被引:3,自引:0,他引:3  
Sufficient conditions are derived for persistence and extinction of a population inhabiting several islands. Discrete reaction-diffusion population models are analyzed which describe growth and diffusion of a population on a group of islands or a patch environment. A critical patch number is defined as the number of islands below which the population goes extinct on that group of islands. It is shown that population persistence on one island leads to population persistence for the entire archipelago. Both single-species and multi-species models are discussed.  相似文献   

17.
We investigate the impact of Allee effect and dispersal on the long-term evolution of a population in a patchy environment. Our main focus is on whether a population already established in one patch either successfully invades an adjacent empty patch or undergoes a global extinction. Our study is based on the combination of analytical and numerical results for both a deterministic two-patch model and a stochastic counterpart. The deterministic model has either two, three or four attractors. The existence of a regime with exactly three attractors only appears when patches have distinct Allee thresholds. In the presence of weak dispersal, the analysis of the deterministic model shows that a high-density and a low-density populations can coexist at equilibrium in nearby patches, whereas the analysis of the stochastic model indicates that this equilibrium is metastable, thus leading after a large random time to either a global expansion or a global extinction. Up to some critical dispersal, increasing the intensity of the interactions leads to an increase of both the basin of attraction of the global extinction and the basin of attraction of the global expansion. Above this threshold, for both the deterministic and the stochastic models, the patches tend to synchronize as the intensity of the dispersal increases. This results in either a global expansion or a global extinction. For the deterministic model, there are only two attractors, while the stochastic model no longer exhibits a metastable behavior. In the presence of strong dispersal, the limiting behavior is entirely determined by the value of the Allee thresholds as the global population size in the deterministic and the stochastic models evolves as dictated by their single-patch counterparts. For all values of the dispersal parameter, Allee effects promote global extinction in terms of an expansion of the basin of attraction of the extinction equilibrium for the deterministic model and an increase of the probability of extinction for the stochastic model.  相似文献   

18.
Allee effects limit population viability of an annual plant   总被引:29,自引:0,他引:29  
ABSTRACT Allee effects may be experienced by plants when populations are too small or isolated to receive sufficient pollinator services to replace themselves. This article reports experimental data from an annual herb, Clarkia concinna, documenting that small patches suffered reproductive failure due to lack of effective pollination when critical thresholds of isolation were exceeded. In contrast, sufficiently large patches attracted pollinators regardless of their degree of isolation. These data accord with data on patch extinctions showing that small and isolated patches have a higher extinction rate than do large patches and with observations showing chronically low reproductive success in such patches prior to extinction. While not conclusively demonstrating that Allee effects cause extinction in small and isolated patches, the data are suggestive. Although threshold effects have been postulated in several mathematical models of population viability, this is the first report of data from natural populations that display the occurrence of such thresholds. These results have implications for the management of endangered plants, which often are restricted to isolated, small populations, as well as suggesting a potential limit to spatial spread in plant populations dependent on animal vectors for reproduction.  相似文献   

19.
Mark P. Johnson 《Oikos》2000,88(1):67-74
The classical view of metapopulations relates the regional abundance of a species to the balance between the extinction and colonization dynamics of identical local populations. Species in successional landscapes may represent the most appropriate examples of classical metapopulations. However, Levins‐type metapopulation models do not explicitly separate population loss due to successional habitat change from other causes of extinction. A further complication is that the chance of population loss due to successional habitat change may be related to the age of a patch. I developed simple patch occupancy models to include succession and included consideration of patch age structure to address two related questions: what are the implications of changes in patch demographic rates and when is a move to a structured patch occupancy model justified? Age‐related variation in patch demography could increase or decrease the equilibrium fraction of the available habitat occupied by a species when compared to the predictions of an unstructured model. Metapopulation persistence was enhanced when the age class of patches with the highest species occupancy suffered relatively low losses to habitat succession. Conversely, when the age class of patches with the highest species occupancy also had relatively high successional loss rates, extinction thresholds were higher that would be predicted by a simple unstructured model. Hence age‐related variation in patch successional rate introduces biases into the predictions of simple unstructured models. Such biases can be detected from field surveys of the fraction of occupied and unoccupied patches in each age class. Where a bias is demonstrated, unstructured models will not be adequate for making predictions about the effects of changing parameters on metapopulation size. Thinking in successional terms emphasizes how landscapes might be managed to enhance or reduce the patch occupancy by any particular metapopulation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号