首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An analytical model (Datta and Kotamarthi, 1990) for the electrokinetic dispersion coefficient in capillary electrophoresis (CE), for the case of low zeta-potential, that accounts for the effects of pressure-driven and/or electroosmotic flow of the elutant, is utilized here to theoretically explore the performance of CE in terms of plate height, plate number, peak resolution, resolving power, and the time of analysis. Practical operating conditions for the voltage gradient and Poiseuille flow fraction, v, are explored that optimize CE column performance. The implications of the results in the rational design of CE columns are discussed. It is also shown that the superposition of Poiseuille flow on the natural electroosmotic flow, while allowing greater freedom in the choice of elutant velocity, does not always cause increased dispersion.  相似文献   

3.
High speed DNA sequencing by capillary electrophoresis.   总被引:3,自引:4,他引:3       下载免费PDF全文
A major challenge of the Human Genome Initiative is the development of a rapid, accurate, and efficient DNA sequencing technology. A major limitation of current technology is the relatively long time required to perform the gel electrophoretic separations of DNA fragments produced in the sequencing reactions. We demonstrate here that it is possible to increase the speed of sequence analysis by over an order of magnitude by performing the electrophoresis and detection in ultra thin capillary gels. An instrument which utilizes these high speed separations to simultaneously analyze many samples will constitute a second generation automated DNA sequencer suitable for large-scale sequence analysis.  相似文献   

4.
Recent advances in the technique of capillary electrophoresis have demonstrated fast, highly efficient separation of mixtures of intact microbes. This paper describes the application of this technique for the separation of microbial aggregates of Micrococcus luteus, Saccharomyces cerevisiae, or Alcaligenes faecalis. The aggregates of these microbes were resolved into several highly efficient peaks with analysis times under 10 min and efficiencies approaching 1000000 plates m(-1) in some cases. A reproducible relationship was found between the electrophoretic mobility and the aggregation number or size of the cluster under a given set of experimental conditions. Often, cellular aggregation was reversible with brief immersion in an ultrasound bath. This reversibility was confirmed by visual microscopy and electrophoretic data.  相似文献   

5.
This paper presents a method to observe the motions and configurations of large DNA molecules undergoing capillary electrophoresis (CE). A simple device to perform CE horizontally under microscopic observation is designed and images of single DNA molecules inside the capillary are obtained using an epi-fluorescence microscope. DNA molecules moved towards the negative electrode when an electric field was applied. The mobilities of three types of DNA (T4 and lambda bacteriophage DNA and PBR322 plasmid DNA) were measured at different electric field strength. The mobility vs. electric field strength curves of these three large DNAs showed that the mobility remained constant at high electric field strength (200-600 Volt/cm) and increased significantly at low electric field strength (less than or equal to 50 Volt/cm.). The apparent mobilities of the large DNA molecules were independent of molecular weight. At electric field strengths greater than or equal to 400 Volt/cm., big aggregates (snowballs) of DNA molecules formed and moved upstream towards the positive electrode. When the field was turned off, the aggregates dissociated into a cloud of single DNA molecules, and diffused into the solution.  相似文献   

6.
This review summarizes the application of capillary electrophoresis and capillary electrochromatography for the chiral separation of various substance classes using the principle of ligand exchange. The application of this principle to various substance classes is reported.  相似文献   

7.
A reproducible, quantitative isoelectric focusing method using capillary electrophoresis that exhibits high resolution and linearity over a wide pH gradient was developed. RNase T1 and RNase ba are two proteins that have isoelectric points (pI's) at the two extremes of a pH 3-10 gradient. Site-directed mutants of the former were separated from the wild-type form and pI's determined in the same experiment. The pI's of RNase T1 wild-type, its three mutants, and RNase ba were determined for the first time as 2.9, 3.1, 3.1, 3.3, and 9.0, respectively. The paper describes the protocol for isoelectric focusing by capillary electrophoresis, as well as presenting data describing the linearity, resolution, limits of mass loading, and reproducibility of the method.  相似文献   

8.
The LIGA (Lithographie Galvanoformung Abformung) process using synchrotron radiation lithography is applied to the microfabrication of capillary array electrophoresis (CAE) device. Laser-induced fluorescence detection system for the CAE device has been constructed by the modification of laser confocal fluorescence microscopy. DNA molecules were detected during migrating in the microchannels filled with polymer separation matrices under electric field to optimize the separation conditions for DNA analysis. Based on this observation, we demonstrated that microfabricated CAE device is realized the fast separation of DNA.  相似文献   

9.
The combination of capillary isotachophoresis and capillary zone electrophoresis may enhance greatly the performance of analytical capillary electrophoresis with respect to both separation power and the concentration sensitivity. The concentrating effects and the separation power of isotachophoresis allow the analysis of diluted samples and the elimination of interferences due to bulk components. The separation process of zone electrophoresis enables one to resolve the stack of trace analytes and detect the resulting individual zones with high sensitivity. The transition of isotachophoresis into zone electrophoresis plays the key role in the overall performance of this hyphenated technique. This article describes the dynamics of the conversion of isotachophoresis into zone electrophoretic mode and shows that the key role is played by the segments of the leading and terminating zones from the isotachophoretic stage. The magnitude of these segments directly effects the detection time as well as the separation width of the peaks of analytes. It is shown that these effects are also important in the analyses by capillary zone electrophoresis where isotachophoresis is induced by the sample itself. Finally, the paper presents a list of recommended, user-friendly, electrolyte systems which enable one to simply predict the performance of the combination isotachophoresis-zone electrophoresis.  相似文献   

10.
Separations of five diastereoisomers of nucleoside phosphoramidate derivatives (pronucleotides) were performed by both HPLC method using derivatized cellulose and amylose chiral stationary phases and CE method using anionic cyclodextrins added in the background electrolyte (BGE). An optimal baseline separation (Rs > 1.5) was readily obtained with all silica-based celluloses and amyloses using in a normal-phase methodology. Capillary electrophoresis was used as an alternative technique to HPLC for the separation of pronucleotides. The diastereoisomers were fully resolved with sulfated cyclodextrins at both BGE pH (2.5 and 6.2). Limits of detection and limits of quantification, calculated for both methods, are up to 200 times higher in CE separations than in HPLC separations. The analytical HPLC method was then applied in a preliminary study for the pronucleotide 1 quantification in cellular extract.  相似文献   

11.
Capillary electrophoresis has been applied to monitor model reactions in solution-phase combinatorial chemistry. In particular, the simultaneous alkylation reactions of secondary amines with a series of benzyl halides has been investigated. Reactant and product concentrations were monitored using capillary electrophoresis in a non-aqueous buffer system. The simplified sample preparation was a key feature making this an attractive method of analysis. The results demonstrate that capillary electrophoresis is a useful tool for monitoring reactions to determine initial rates, rate constants, and extinction correlation coefficients for quantitative analysis in combinatorial chemistry, and is a broadly applicable technique for the analysis of a variety of organic and bioorganic transformations.  相似文献   

12.
Capillary gel electrophoresis was applied to the high speed separation of DNA and RNA. Factors affecting resolution and speed were optimized for the single base resolution of polynucleotides. Polynucleotides up to 350 bases were completely resolved within 38 min under optimum conditions.  相似文献   

13.
Interpolation algorithms can be developed to size unknown single-stranded (ss) DNA fragments based on their electrophoretic mobilities, when they are compared with the mobilities of standard fragments of known sizes; however, sequence-specific anomalous electrophoretic migration can affect the accuracy and precision of the called sizes of the fragments. We used the anomalous migration of ssDNA fragments to optimize denaturation conditions for capillary electrophoresis. The capillary electrophoretic system uses a refillable polymer that both coats the capillary wall to suppress electro-osmotic flow and acts as the sieving matrix. The addition of 8 M urea to the polymer solution, as in slab gel electrophoresis, is insufficient to fully denature some anomalously migrating ssDNA fragments in this capillary electrophoresis system. The sizing accuracy of these fragments is significantly improved by the addition of 2-pyrrolidinone, or increased capillary temperature (60 degrees C). the effect of these two denaturing strategies is additive, and the best accuracy and precision in sizing results are obtained with a combination of chemical and thermal denaturation.  相似文献   

14.
Capillary electrophoresis (CE) combined with a laser-induced fluorescence (LIF) detection scheme is a powerful approach for single-cell analysis. For measurements requiring a high temporal resolution, CE-LIF is often combined with cell lysis systems based on pulsed lasers. Although extremely rapid, laser lysis has raised some concerns about the efficiency at which the cell contents are sampled. We have assembled a single-cell CE-LIF mounted on the stage of a microscope. This system was coupled with a nanosecond pulsed laser for cell lysis. We have analyzed green fluorescent protein (GFP) expressed in single mammalian cells and developed a novel approach to estimate the cell sampling efficiency (SE) based on the use of fluorescent calibration microspheres and flow cytometry. A significant advantage of this method is that it does not require any knowledge or assumption regarding the cell volume. We have evaluated the SE for different laser pulse energies (from 2 to 9 microJ) and two different pulse focal positions in the xy plane (0-10 microm from the center of the cell). We found the maximum SE at the lowest energy (2 microJ), with the pulse focused directly on the cell. We have demonstrated the utility of a novel method to measure the SE of a single-cell CE system. The measurements presented in this study indicate that rapid cell lysis with nanosecond lasers requires careful optimization of pulse parameters for maximum sampling of the cell contents.  相似文献   

15.
AICA-ribosiduria is a recently discovered inherited metabolic disease caused by a defect in final steps of purine de novo biosynthesis-5-amino-4-imidazolecarboxamide ribotide (AICAR)-transformylase/inosinemonophosphate (IMP)-cyclohydrolase (ATIC). A rapid and selective capillary electrophoretic method for screening of patients with AICA-ribosiduria is described. The method is based on direct ultraviolet detection of 5-amino-4-imidazolecarboxamide (AICA) and 5-amino-4-imidazolecarboxamide riboside (AICAr) in untreated urine. Background electrolyte consists of 100mM malonic acid adjusted with gamma-aminobutyric acid (pH 2.7). Under the given separation conditions both compounds of interest are well separated from other substances with separation efficiency of 1020000 and 130000 theoretical plates/m for AICA and AICAr, respectively. Total analysis time is 3 min with the limits of detection of 3.6 microM and 4.5 microM for AICA and AICAr, respectively. The usefulness of the presented method for screening of patients with ATIC deficiency is demonstrated on samples of Chinese hamster ovary cell line defective in ATIC activity, spiked urine samples and urine samples from patients treated with high-dose MTX which do not excrete increased amounts of AICA and AICAr compared to untreated controls (p<0.05). The described method is fast and effective enough for diagnostic applications.  相似文献   

16.
Capillary electrophoresis (CE) is an extremely sensitive technique, which has been used in the clinical laboratory for almost 10 yr. The components of CE instrumentation are described, as are injection modes, buffers, and effects of electroosmotic flow. The modes of separation used in CE, namely, capillary zone electrophoresis, capillary isoelectric focusing, capillary isotachophoresis, and micellar electrokinetic capillary chromatography, are explained. References for 26 different clinical applications of CE are included, among them assays that are used routinely as well as niche assays for specialized applications of CE. Verification of CE assays, current instrumentation, and future development of CE in the clinical laboratory are addressed.  相似文献   

17.
Capillary electrophoresis was used in this study to separate urinary myoglobin from hemoglobin based on its electrophoretic mobility. Urine was applied directly without any treatment. The separation was accomplished in less than 7 min. Myoglobin extracted from human muscle tissues was separated, in a borate buffer 150 mM, pH 8.7 containing 0.5% polyethyleneglycol at 6 kV, into two peaks (MI and MII) which were also resolved far from hemoglobin. Upon standing at room temperature, MII converted into MI. Horse myoglobin eluted close to MI.The addition of polyethyleneglycol to the buffer enhanced the separation and increased the peak height of myoglobin. Optimum conditions for the separation are discussed. The method is suitable for routine clinical analysis because of its simplicity and speed.  相似文献   

18.
The preconditions are outlined for enantioselective separations in capillary electrophoresis (CE) with chiral selectors as additives to the background electrolyte. Free solution capillary electrophoresis conditions are characterised by a single solution phase. Chiral separations are reviewed by selector type (chiral ligand exchange, cyclodextrins, crown ethers, glycoproteins) with the extensive studies on cyclodextrins grouped into sections on amino acids, pharmaceuticals, and speciality chemicals, optimisation, biological fluids, and quantitative aspects. In micellar electrokinetic capillary chromatography, enantioselective discrimination occurs by partition in a two-phase system, with a chiral micellar phase as selector. Optimum separation conditions can be readily predicted for a given selector–selectand combination, and absolute values of binding constants determined by CE. Advantages of CE in comparison with HPLC using a chiral stationary phase include robust, rapid assays and the use of small volumes of aqueous solutions; disadvantages include less favourable detection limits. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Antigen-antibody interactions in capillary electrophoresis   总被引:2,自引:0,他引:2  
Immunoreactions in combination with separations by capillary electrophoresis (CE) are increasingly being used to quantitate specific analytes in biological fluids. Both competitive and non-competitive approaches have been used for the purpose and, in selected cases, now compare favorably with conventional quantitative immunoassays with respect to concentration limits of detection. CE is also a useful method to evaluate antigen-antibody binding on-line and offers unique possibilities for binding constant estimates, also for weakly binding antibodies and antibody fragments. In this review we cover recent developments in the use of antigen-antibody interactions in conjunction with CE and conclude that continued development of miniaturization, on-line preconcentration and more sensitive detection schemes will contribute to the further dissemination of CE-based immunoassays building on already established affinity CE approaches.  相似文献   

20.
Molecular interaction in capillary electrophoresis   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号