首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nienhaus K  Deng P  Kriegl JM  Nienhaus GU 《Biochemistry》2003,42(32):9633-9646
We have studied CO binding to the heme and CO migration among protein internal cavities after photodissociation in sperm whale carbonmonoxy myoglobin (MbCO) mutant L29W using Fourier transform infrared (FTIR) spectroscopy combined with temperature derivative spectroscopy (TDS) and kinetic experiments at cryogenic temperatures. Photoproduct intermediates, characterized by CO at particular locations in the protein, were selectively enhanced by applying special laser illumination protocols. These studies were performed on the L29W mutant protein and a series of double mutants constructed so that bulky amino acid side chains block passageways between cavities or fill these sites. Binding of xenon was also employed as an alternative means of occluding cavities. All mutants exhibit two conformations, A(I) and A(II), with distinctly different photoproduct states and ligand binding properties. These differences arise mainly from different positions of the W29 and H64 side chains in the distal heme pocket [Ostermann, A., et al. (2000) Nature 404, 205-208]. The detailed knowledge of the interplay between protein structure, protein dynamics, and ligand migration at cryogenic temperatures allowed us to develop a dynamic model that explains the slow CO and O(2) bimolecular association observed after flash photolysis at ambient temperature.  相似文献   

2.
A ligand binding pocket has been created on the proximal side of the heme in porcine myoglobin by site-directed mutagenesis. Our starting point was the H64V/V68H double mutant which has been shown to have bis-histidine (His68 and His93) heme coordination [Dou, Y., Admiraal, S. J., Ikeda-Saito, M., Krzywda, S., Wilkinson, A. J., Li, T., Olson, J. S., Prince, R. C., Pickering, I. J., George, G. N. (1995) J. Biol. Chem. 270, 15993-16001]. The replacement of the proximal His93 ligand by noncoordinating Ala (H64V/V68H/H93A) or Gly (H64V/V68H/H93G) residues resulted unexpectedly in a six-coordinate low-spin species in both ferric and ferrous states. To test the hypothesis that the sixth coordinating ligand in the triple mutants was the imidazole of His97, this residue was mutated to Phe, in the quadruple mutants, H64V/V68H/H93A/H97F and H64V/V68H/H93G/H97F. The ferric quadruple mutants show a clear water/hydroxide alkaline transition and high cyanide and CO affinities, characteristics similar to those of wild-type myoglobin. The nu(Fe-CO) and nu(C-O) stretching frequencies in the ferrous-CO state of the quadruple mutants indicate that the "proximal" ligand binding heme pocket is less polar than the distal pocket in the wild-type protein. Thus, we conclude that the proximal heme pocket in the quadruple mutants has a similar affinity for exogenous ligands to the distal pocket of wild-type myoglobin but that the two pockets have different polarities. The quadruple mutants open up new approaches for developing heme chemistry on the myoglobin scaffold.  相似文献   

3.
We have combined Fourier transform infrared/temperature derivative (FTIR-TDS) spectroscopy at cryogenic temperatures and flash photolysis at ambient temperature to examine the effects of polar and bulky amino acid replacements of the highly conserved distal valine 68 in sperm whale myoglobin. In FTIR-TDS experiments, the CO ligand can serve as an internal voltmeter that monitors the local electrostatic field not only at the active site but also at intermediate ligand docking sites. Mutations of residue 68 alter size, shape, and electric field of the distal pocket, especially in the vicinity of the primary docking site (state B). As a consequence, the infrared bands associated with the ligand at site B are shifted. The effect is most pronounced in mutants with large aromatic side chains. Polar side chains (threonine or serine) have only little effect on the peak frequencies. Ligands that migrate toward more remote sites C and D give rise to IR bands with altered frequencies. TDS experiments separate the photoproducts according to their recombination temperatures. The rates and extent of ligand migration among internal cavities at cryogenic temperatures can be used to interpret geminate and bimolecular O2 and CO recombination at room temperature. The kinetics of geminate recombination can be explained by steric arguments alone, whereas both the polarity and size of the position 68 side chain play major roles in regulating bimolecular ligand binding from the solvent.  相似文献   

4.
Kundu S  Hargrove MS 《Proteins》2003,50(2):239-248
Leghemoglobins facilitate diffusion of oxygen through root tissue to a bacterial terminal oxidase in much the same way that myoglobin transports oxygen from blood to muscle cell mitochondria. Leghemoglobin serves an additional role as an oxygen scavenger to prevent inhibition of nitrogen fixation. For this purpose, the oxygen affinity of soybean leghemoglobin is 20-fold greater than myoglobin, resulting from an 8-fold faster association rate constant combined with a 3-fold slower dissociation rate constant. Although the biochemical mechanism used by myoglobin to bind oxygen has been described in elegant detail, an explanation for the difference in affinity between these two structurally similar proteins is not obvious. The present work demonstrates that, despite their similar structures, leghemoglobin uses methods different from myoglobin to regulate ligand affinity. Oxygen and carbon monoxide binding to a comprehensive set of leghemoglobin distal heme pocket mutant proteins in comparison to their myoglobin counterparts has revealed some of these mechanisms. The "distal histidine" provides a crucial hydrogen bond to stabilize oxygen in myoglobin but has little effect on bound oxygen in leghemoglobin and is retained mainly for reasons of protein stability and prevention of heme loss. Furthermore, soybean leghemoglobin uses an unusual combination of HisE7 and TyrB10 to sustain a weak stabilizing interaction with bound oxygen. Thus, the leghemoglobin distal heme pocket provides a much lower barrier to oxygen association than occurs in myoglobin and oxygen dissociation is regulated from the proximal heme pocket.  相似文献   

5.
Crystal structures of the reactive short-lived species that occur in chemical or binding reactions can be determined using X-ray crystallography via time-resolved or kinetic trapping approaches. Recently, various kinetic trapping methods have been used to determine the structure of intermediates in ligand binding to myoglobin.  相似文献   

6.
Carbon monoxide binding to a myoglobin mutant with distal arginine in place of histidine has been examined. The mutant is derived from a cDNA clone for Mb mRNA from fetal bovine skeletal muscle. The mutation only slightly perturbs visible/Soret spectra whereas the infrared spectrum of liganded CO is greatly modified to become nearly identical to Hb Zurich beta-subunit spectrum. The mutant IR spectra differ substantially from spectra of wild-type MbCO and normal HbCO beta-subunit. For both the Mb and the Hb the distal His----Arg mutation increases the affinity for CO and reduces the number of observed conformers. These results demonstrate that this mutation greatly reduces the differences between Mb and Hb in the structure and properties of its ligand binding sites.  相似文献   

7.
A triple mutant of sperm whale myoglobin (Mb) [Leu(B10) --> Tyr, His(E7) --> Gln, and Thr(E10) --> Arg, called Mb-YQR], investigated by stopped-flow, laser photolysis, crystallography, and molecular dynamics (MD) simulations, proved to be quite unusual. Rebinding of photodissociated NO, O2, and CO from within the protein (in a "geminate" mode) allows us to reach general conclusions about dynamics and cavities in proteins. The 3D structure of oxy Mb-YQR shows that bound O2 makes two H-bonds with Tyr(B10)29 and Gln(E7)64; on deoxygenation, these two residues move toward the space occupied by O2. The bimolecular rate constant for NO binding is the same as for wild-type, but those for CO and O2 binding are reduced 10-fold. While there is no geminate recombination with O2 and CO, geminate rebinding of NO displays an unusually large and very slow component, which is pretty much abolished in the presence of xenon. These results and MD simulations suggest that the ligand migrates in the protein matrix to a major "secondary site," located beneath Tyr(B10)29 and accessible via the motion of Ile(G8)107; this site is different from the "primary site" identified by others who investigated the photolyzed state of wild-type Mb by crystallography. Our hypothesis may rationalize the O2 binding properties of Mb-YQR, and more generally to propose a mechanism of control of ligand binding and dissociation in hemeproteins based on the dynamics of side chains that may (or may not) allow access to and direct temporary sequestration of the dissociated ligand in a docking site within the protein. This interpretation suggests that very fast (picosecond) fluctuations of amino acid side chains may play a crucial role in controlling O2 delivery to tissue at a rate compatible with physiology.  相似文献   

8.
After photodissociation, ligand rebinding to myoglobin exhibits complex kinetic patterns associated with multiple first-order geminate recombination processes occurring within the protein and a simpler bimolecular phase representing second-order ligand rebinding from the solvent. A smooth transition from cryogenic-like to solution phase properties can be obtained by using a combination of sol-gel encapsulation, addition of glycerol as a bathing medium, and temperature tuning (-15 --> 65 degrees C). This approach was applied to a series of double mutants, myoglobin CO (H64L/V68X, where X = Ala, Val, Leu, Asn, and Phe), which were designed to examine the contributions of the position 68(E11) side chain to the appearance and disappearance of internal rebinding phases in the absence of steric and polar interactions with the distal histidine. Based on the effects of viscosity, temperature, and the stereochemistry of the E11 side chain, the three major phases, B --> A, C --> A, and D --> A, can be assigned, respectively, to ligand rebinding from the following: (i) the distal heme pocket, (ii) the xenon cavities prior to large amplitude side chain conformational relaxation, and (iii) the xenon cavities after significant conformational relaxation of the position 68(E11) side chain. The relative amplitudes of the B --> A and C --> A phases depend markedly on the size and shape of the E11 side chain, which regulates sterically both ligand return to the heme iron atom and ligand migration to the xenon cavities. The internal xenon cavities provide a transient docking site that allows side chain relaxations and the entry of water into the vacated distal pocket, which in turn slows ligand recombination markedly.  相似文献   

9.
10.
Skerra A 《The FEBS journal》2008,275(11):2677-2683
Antibodies are the paradigm for binding proteins, with their hypervariable loop region supported by a structurally rigid framework, thus providing the vast repertoire of antigen-binding sites in the immune system. Lipocalins are another family of proteins that exhibit a binding site with high structural plasticity, which is composed of four peptide loops mounted on a stable beta-barrel scaffold. Using site-directed random mutagenesis and selection via phage display against prescribed molecular targets, it is possible to generate artificial lipocalins with novel ligand specificities, so-called anticalins. Anticalins have been successfully selected both against small hapten-like compounds and against large protein antigens and they usually possess high target affinity and specificity. Their structural analysis has yielded interesting insights into the phenomenon of molecular recognition. Compared with antibodies, they are much smaller, have a simpler molecular architecture (comprising just one polypeptide chain) and they do not require post-translational modification. In addition, anticalins exhibit robust biophysical properties and can easily be produced in microbial expression systems. As their structure-function relationships are well understood, rational engineering of additional features such as site-directed pegylation or fusion with functional effector domains, dimerization modules or even with another anticalin, can be readily achieved. Thus, anticalins offer many applications, not only as reagents for biochemical research but also as a new class of potential drugs for medical therapy.  相似文献   

11.
Integrin alpha(IIb)beta(3), a platelet fibrinogen receptor, is critically involved in thrombosis and hemostasis. However, how ligands interact with alpha(IIb)beta(3) has been controversial. Ligand-mimetic anti-alpha(IIb)beta(3) antibodies (PAC-1, LJ-CP3, and OP-G2) contain the RGD-like RYD sequence in their CDR3 in the heavy chain and have structural and functional similarities to native ligands. We have located binding sites for ligand-mimetic antibodies in alpha(IIb) and beta(3) using human-to-mouse chimeras, which we expect to maintain functional integrity of alpha(IIb)beta(3). Here we report that these antibodies recognize several discontinuous binding sites in both the alpha(IIb) and beta(3) subunits; these binding sites are located in residues 156-162 and 229-230 of alpha(IIb) and residues 179-183 of beta(3). In contrast, several nonligand-mimetic antibodies (e.g. 7E3) recognize single epitopes in either subunit. Thus, binding to several discontinuous sites in both subunits is unique to ligand-mimetic antibodies. Interestingly, these binding sites overlap with several (but not all) of the sequences that have been reported to be critical for fibrinogen binding (e.g. N-terminal repeats 2-3 but not repeats 4-7, of alpha(IIb)). These results suggest that ligand-mimetic antibodies and probably native ligands may make direct contact with these discontinuous binding sites in both subunits, which may constitute a ligand-binding pocket.  相似文献   

12.
Agmon N 《Biophysical journal》2004,87(3):1537-1543
Protein relaxation, ligand binding, and ligand migration into a hydrophobic cavity in myoglobin are unified by a bounded diffusion model which produces an accurate fit to complex ligand rebinding data over eight decades in time and a 160 K temperature range, in qualitative agreement with time-resolved x-ray crystallography. Protein relaxation operates in a cyclic manner to move the ligand away from the binding site.  相似文献   

13.
Molecular interactions of odorants with their olfactory receptors (ORs) are of central importance for the ability of the mammalian olfactory system to detect and discriminate a vast variety of odors with a limited set of receptors. How a particular OR binds and distinguishes different odorant molecules remains largely unknown on a structural basis. Here we investigated this question for the mouse eugenol receptor (mOR-EG). By screening a large odorant library, we discovered a wide range of chemical structures activating the receptor in heterologous mammalian cells. Potent agonists comprise (i) benzene, (ii) cyclohexane, or (iii) polycyclic structures substituted with alcohol, aldehyde, keto, ether, or esterified carboxylic groups. To detect those amino acids within the receptor that are in contact with a particular bound odorant molecule, we investigated how distinct mOR-EG point mutants were activated by the different odorant agonists found for the wild-type receptor. We identified 11 amino acids as a part of the receptor's ligand binding pocket. Molecular modeling predicted 10 of these residues in transmembrane helices TM3-TM6 and one in the extracellular loop between TM2 and TM3. These amino acids participate in odorant binding with variable importance depending on the type of odorant, revealing functional "fingerprints" of ligand-receptor interactions.  相似文献   

14.
Examination was made of CO binding reactions to four kinds of modified sperm whale myoglobin (Mb), whose heme was reconstituted by iron complexes of synthetic porphyrins such as porphine (Por), meso-tetramethylporphyrin (TMeP), meso-tetraethylporphyrin (TEtP) and meso-tetra(n-propyl)porphyrin (TnPrP), using flash photolysis and stopped-flow methods. The CO association rate was found to be 5- to 20-times and dissociation rate 10- to 36-times accelerated by replacement with synthetic hemes. These features could be explained based on characteristic structures of modified Mbs indicated by X-ray crystallography. The side chain of Arg-45 protruded from the heme vicinity into the solvent region and heme was tilted by interactions of meso-alkyl side chains with surrounding peptides, resulting in the formation of widely opened channels and pockets for ligand passage. These structural features indicate the CO ligand to more easily enter or exit from heme pockets of reconstituted myoglobins, compared to native Mb.  相似文献   

15.
Phenomena occurring in the heme pocket after photolysis of carbonmonoxymyoglobin (MbCO) below about 100 K are investigated using temperature-derivative spectroscopy of the infrared absorption bands of CO. MbCO exists in three conformations (A substrates) that are distinguished by the stretch bands of the bound CO. We establish connections among the A substates and the substates of the photoproduct (B substates) using Fourier-transform infrared spectroscopy together with kinetic experiments on MbCO solution samples at different pH and on orthorhombic crystals. There is no one-to-one mapping between the A and B substates; in some cases, more than one B substate corresponds to a particular A substate. Rebinding is not simply a reversal of dissociation; transitions between B substates occur before rebinding. We measure the nonequilibrium populations of the B substates after photolysis below 25 K and determine the kinetics of B substate transitions leading to equilibrium. Transitions between B substates occur even at 4 K, whereas those between A substates have only been observed above about 160 K. The transitions between the B substates are nonexponential in time, providing evidence for a distribution of substates. The temperature dependence of the B substate transitions implies that they occur mainly by quantum-mechanical tunneling below 10 K. Taken together, the observations suggest that the transitions between the B substates within the same A substate reflect motions of the CO in the heme pocket and not conformational changes. Geminate rebinding of CO to Mb, monitored in the Soret band, depends on pH. Observation of geminate rebinding to the A substates in the infrared indicates that the pH dependence results from a population shift among the substates and not from a change of the rebinding to an individual A substate.  相似文献   

16.
Human CXCR4 was expressed in Sf9 insect cells using the Bac-to-Bac baculovirus expression system. The recombinant receptor exhibited ligand binding activities with a K(d) value (3.3 nM) comparable to that of the native receptor. The role of four conserved cysteinyl residues was explored by site-directed mutagenesis. Each cysteine was individually changed to an alanine residue. All of the four mutants showed decreased ligand binding activity with increased K(d) values although comparable levels of receptor expression were observed. These results suggest that each of these four cysteinyl residues may be important for the ligand binding of the receptor. Evidence suggests that the ionic interaction may be involved in ligand binding. Point mutation of several relatively conserved acidic residues (Asp-10, Asp-262, Glu-275, and Glu-277) to an alanine residue greatly decreased the ligand binding activity and affinity. Since SDF-1alpha is a highly basic protein, these acidic residues may interact with the basic residues of SDF-1alpha by ionic pairing in addition to other molecular interactions and play an important role in ligand binding.  相似文献   

17.
Elementary steps or geminate states in the reaction of gaseous ligands with transport proteins delineate the trajectory of the ligand and its rebinding to the heme. By use of kinetic studies of the 765-nm optical "conformation" band, three geminate states were identified for temperatures less than approximately 100 K. MbCO, which is accumulated by photolysis between 1.2 and approximately 10 K, was characterized by our previous optical and X-ray absorption studies [Chance, B., Fischetti, R., & Powers, L. (1983) Biochemistry 22, 3820-3829]. Between 10 and approximately 100 K, geminate states that are also identified that have recombination rates of approximately 10(3) s-1 and approximately 10(-5) s-1 (40 K). Thus, it is possible to maintain a steady-state nearly homogeneous population of the slowest recombining geminate state, Mb, by regulated continuous illumination (optical pumping). Both X-ray absorption and resonance Raman studies under similar conditions of optical pumping show that the heme structure around the iron in Mb is similar to that of MbCO. In both geminate states, the iron-proximal histidine distance remains unchanged (+/- 0.02 A) from that of MbCO while the iron to pyrrole nitrogen average distance has not fully relaxed to that of the deoxy state. In MbCO the CO remains close to iron but not bound, and the Fe...CO angle, which is bent in MbCO (127 +/- 4 degrees C), is decreased by approximately 15 degrees [Powers, L., Sessler, J. L., Woolery, G. L., & Chance, B. (1984) Biochemistry 23, 5519-5523]. The CO molecule in Mb, however, has moved approximately 0.7 A further from iron. Computer graphics modeling of the crystal structure of MbCO places the CO in a crevice in the heme pocket that is just large enough for the CO molecule end-on. Above approximately 100 K resonance Raman studies show that this structure relaxes to the deoxy state.  相似文献   

18.
Association and dissociation rate constants were measured for O2, CO, and alkyl isocyanide binding to a set of genetically engineered sperm whale myoglobins with site-specific mutations at residue 64 (the E7 helical position). Native His was replaced by Gly, Val, Leu, Met, Phe, Gln, Arg, and Asp using the synthetic gene and expression system developed by Springer and Sligar (Springer, B. A., and Sligar, S. G. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8961-8965). The His64----Gly substitution produced a sterically unhindered myoglobin that exhibited ligand binding parameters similar to those of chelated protoheme suspended in soap micelles. The order of the association rate constants for isocyanide binding to the mutant myoglobins was Gly64 (approximately 10(7) M-1 s-1) much greater than Val64 approximately Leu64 (approximately 10(6) M-1 s-1) greater than Met64 greater than Phe64 approximately His64 approximately Gln64 (10(5)-10(3) M-1 s-1) and indicates that the barrier to isocyanide entry into the distal pocket is primarily steric in nature. The bimolecular rates of methyl, ethyl, n-propyl, and n-butyl isocyanide binding to the His64----Arg and His64----Asp mutants were abnormally high (1-5 x 10(6) M-1 s-1), suggesting that Arg64 and Asp64 adopt conformations with the charged side chains pointing out toward the solvent creating a less hindered pathway for ligand binding. In contrast to the isocyanide data, the association rate constants for O2 and CO binding exhibited little dependence on the size of the E7 side chain. The values for all the mutants except His64----Gln approached or were larger than those for chelated model heme (i.e. approximately 1 x 10(8) M-1 s-1 for O2 and approximately 1 x 10(7) M-1 s-1 for CO), whereas the corresponding rate parameters for myoglobin containing either Gln64 or His64 were 5- to 10-fold smaller. This result suggests that a major kinetic barrier for O2 and CO binding to native myoglobin may involve disruption of polar interactions between His64 and water molecules found in the distal pocket of deoxymyoglobin. Finally, the rate and equilibrium parameters for O2 and CO binding to the His64----Gln, His64----Val, and His64----Leu mutants were compared to those reported previously for Asian elephant myoglobin (Gln-E7), Aplysia limacina myoglobin (Val-E7), and monomeric Hb II from Glycera dibranchiata (Leu-E7).  相似文献   

19.
In the present study, we investigate the impact of a tightly bound water molecule on ligand binding in the S1 pocket of thrombin. The S1 pocket contains a deeply buried deprotonated aspartate residue (Asp189) that is, due to its charged state, well hydrated in the uncomplexed state. We systematically studied the importance of this water molecule by evaluating a series of ligands that contains pyridine-type P1 side chains that could potentially alter the binding properties of this water molecule. All of the pyridine derivatives retain the original hydration state albeit sometimes with a slight perturbance. In order to prevent a direct H-bond formation with Asp189, and to create a permanent positive charge on the P1 side chain that is positioned adjacent to the Asp189 carboxylate anion, we methylated the pyridine nitrogen. This methylation resulted in displacement of water but was accompanied by a loss in binding affinity. Quantum chemical calculations of the ligand solvation free energy showed that the positively charged methylpyridinium derivatives suffer a large penalty of desolvation upon binding. Consequently, they have a substantially less favorable enthalpy of binding. In addition to the ligand desolvation penalty, the hydration shell around Asp189 has to be overcome, which is achieved in nearly all pyridinium derivatives. Only for the ortho derivative is a partial population of a water next to Asp189 found. Possibly, the gain of electrostatic interactions between the charged P1 side chain and Asp189 helps to compensate for the desolvation penalty. In all uncharged pyridine derivatives, the solvation shell remains next to Asp189, partly mediating interactions between ligand and protein. In the case of the para-pyridine derivative, a strongly disordered cluster of water sites is observed between ligand and Asp189.  相似文献   

20.
Site-specific mutants of human myoglobin (Mb) have been prepared, in which Leu29 (B10) is replaced by Ala(L29A) or Ile(L29I), in order to examine the influence of this highly conserved residue in the hydrophobic clusters of the heme distal site on the heme environmental structure and ligand binding properties of Mb. Structural characterizations of these recombinant Mbs are studied by electronic absorption, infrared (IR), one- and two-dimensional proton nuclear magnetic resonance spectroscopies, and ligand-binding kinetics by laser photolysis measurements under ambient and high pressures (up to 2000 bar). Multiple split carbon monoxide (CO) stretch bands in the IR spectra of mutant Mbs exhibit a relative decrease of the 1945 cm-1 band (approximately 50%) which is associated with an upright binding geometry of CO, accompanied by an increase of the tilted CO conformer at 1932 cm-1. On the basis of these results, replacement of Leu29(B10) by Ala or Ile appears to allow bound CO to rotate from a conformation pointing toward the beta meso carbon of the heme group to the one pointing toward the alpha meso carbon atom, presumably filling the space left by removal of the delta 2 carbon atom of Leu29(B10). These substitutions cause the rate constants for CO and O2 association to decrease almost 3-5-fold. Present results show that CO and O2 bindings to the heme iron of Mb are controlled by Leu29(B10) by influencing the structure of close vicinity of the heme and the geometry of iron-bound ligand. Further, mutant Mbs (Leu72(E15)----Ala and Leu104 (G5)----Ala) which have altered residues in another hydrophobic clusters around proximal and distal site are also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号