首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高血糖引起的自由基产生过多或消除障碍导致氧化应激的出现,氧化应激与糖尿病及其并发症的发生发展密切相关。抗氧化治疗为糖尿病及并发症的防治提供了新的思路。  相似文献   

2.
氧化应激与糖尿病   总被引:2,自引:0,他引:2  
高血糖引起的自由基产生过多或消除障碍导致氧化应激的出现,氧化应激与糖尿病及其并发症的发生发展密切相关。抗氧化治疗为糖尿病及并发症的防治提供了新的思路。  相似文献   

3.
4.
The condition of oxidative stress arises when oxidant production exceeds antioxidant activity in cells and plasma. The overabundance of oxidants is mechanistically connected to the multifactorial etiology of insulin resistance, primarily in skeletal muscle tissue, and the subsequent development of type 2 diabetes. Two important mechanisms for this oxidant excess are (1) the mitochondrial overproduction of hydrogen peroxide and superoxide ion under conditions of energy surplus and (2) the enhanced activation of cellular NADPH oxidase via angiotensin II receptors. Several recent studies are reviewed that support the concept that direct exposure of mammalian skeletal muscle to an oxidant stress (including hydrogen peroxide) results in stimulation of the serine kinase p38 mitogen-activated protein kinase (p38 MAPK), and that the engagement of this stress-activated p38 MAPK signaling is mechanistically associated with diminished insulin-dependent stimulation of insulin signaling elements and glucose transport activity. The beneficial interactions between the antioxidant α-lipoic acid and the advanced glycation end-product inhibitor pyridoxamine that ameliorate oxidant stress-associated defects in whole-body and skeletal-muscle insulin action in the obese Zucker rat, a model of prediabetes, are also addressed. Overall, this review highlights the importance of oxidative stress in the development of insulin resistance in mammalian skeletal muscle tissue, at least in part via a p38-MAPK-dependent mechanism, and indicates that interventions that reduce this oxidative stress and oxidative damage can improve insulin action in insulin-resistant animal models. Strategies to prevent and ameliorate oxidative stress remain important in the overall treatment of insulin resistance and type 2 diabetes.  相似文献   

5.
A considerable amount of clinical and experimental evidence now exists suggesting the involvement of free radical-mediated oxidative processes in the pathogenesis of diabetic complications. If the diabetic state is associated with a generalized increase in oxidative stress, it might well be reflected in the alterations in embryonic and fetal development during pregnancy. In the present study, incidence of the malformed fetuses, biochemical parameters and antioxidant system activity of streptozotocin (STZ)-induced diabetic pregnant rats was investigated and the results obtained were compared with those of the control group (non-diabetic). Virgin female Wistar rats were injected with 40 mg/kg streptozotocin (STZ) before mating. All the females were killed on Day 21 of pregnancy and the fetuses were analyzed. A maternal blood sample was collected by venous puncture and the maternal liver was removed for biochemical measurement. The diabetic dams presented hyperglycemia, hyperlipemia, hypertriglyceridemia, hypercholesterolemia, hyperuricemia, decreased reduced glutathione (GSH), hepatic glycogen and superoxide dismutase (SOD) determinations. There was an increased incidence of skeletal and visceral malformation in fetuses from diabetic rats. Our findings suggest that oxidative stress occurs in the diabetic pregnant state, which might promote maternal homeostasis alterations. These diabetic complications might be a contributory factor to conceptus damage causing embryonic death (abortion/miscarriage) or the appearance of malformations in the fetuses of diabetic dams. Antioxidant treatment of women with diabetes may be important in future attempts to prevent congenital malformations.  相似文献   

6.
Oxidative stress has been suggested to play a main role in the pathogenesis of type 2 diabetes mellitus and its complications. As a consequence of this increased oxidative status a cellular adaptive response occurs requiring functional chaperones, antioxidant production and protein degradation. This study was designed to evaluate systemic oxidative stress and cellular stress response in patients suffering from type 2 diabetes and in age-matched healthy subjects. Systemic oxidative stress has been evaluated by measuring plasma reduced and oxidized glutathione, as well as pentosidine, protein carbonyls lipid oxidation products 4-hydroxy-2-nonenal and F2-isoprostanes in plasma, and lymphocytes, whereas the lymphocyte levels of the heat shock proteins (HSP) HO-1, Hsp72, Sirtuin-1, Sirtuin-2 and thioredoxin reductase-1 (TrxR-1) have been measured to evaluate the systemic cellular stress response. Plasma GSH/GSSG showed a significant decrease in type 2 diabetes as compared to control group, associated with increased pentosidine, F2-isoprostanes, carbonyls and HNE levels. In addition, lymphocyte levels of HO-1, Hsp70, Trx and TrxR-1 (P<0.05 and P<0.01) in diabetic patients were higher than in normal subjects, while sirtuin-1 and sirtuin-2 protein was significantly decreased (p<0.05). In conclusion, patients affected by type 2 diabetes are under condition of systemic oxidative stress and, although the relevance of downregulation in sirtuin signal has to be fully understood, however induction of HSPs and thioredoxin protein system represent a maintained response in counteracting systemic pro-oxidant status. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   

7.

Background

Oxidative stress increases the cytosolic content of calcium in the cytoplasm through a combination of effects on calcium pumps, exchangers, channels and binding proteins. In this study, oxidative stress was produced by exposure to tert-butyl hydroperoxide (tBHP); cell viability was assessed using a dye reduction assay; receptor binding was characterized using [3H]N-methylscopolamine ([3H]MS); and cytosolic and luminal endoplasmic reticulum (ER) calcium concentrations ([Ca2+]i and [Ca2+]L, respectively) were measured by fluorescent imaging.

Results

Activation of M3 muscarinic receptors induced a biphasic increase in [Ca2+]i: an initial, inositol trisphosphate (IP3)-mediated release of Ca2+ from endoplasmic reticulum (ER) stores followed by a sustained phase of Ca2+ entry (i.e., store-operated calcium entry; SOCE). Under non-cytotoxic conditions, tBHP increased resting [Ca2+]i; a 90 minute exposure to tBHP (0.5-10 mM ) increased [Ca2+]i from 26 to up to 127 nM and decreased [Ca2+]L by 55%. The initial response to 10 μM carbamylcholine was depressed by tBHP in the absence, but not the presence, of extracellular calcium. SOCE, however, was depressed in both the presence and absence of extracellular calcium. Acute exposure to tBHP did not block calcium influx through open SOCE channels. Activation of SOCE following thapsigargin-induced depletion of ER calcium was depressed by tBHP exposure. In calcium-free media, tBHP depressed both SOCE and the extent of thapsigargin-induced release of Ca2+ from the ER. M3 receptor binding parameters (ligand affinity, guanine nucleotide sensitivity, allosteric modulation) were not affected by exposure to tBHP.

Conclusions

Oxidative stress induced by tBHP affected several aspects of M3 receptor signaling pathway in CHO cells, including resting [Ca2+]i, [Ca2+]L, IP3 receptor mediated release of calcium from the ER, and calcium entry through the SOCE. tBHP had little effect on M3 receptor binding or G protein coupling. Thus, oxidative stress affects multiple aspects of calcium homeostasis and calcium dependent signaling.  相似文献   

8.
Oxidative stress and aberrant signaling in aging and cognitive decline   总被引:7,自引:0,他引:7  
Dröge W  Schipper HM 《Aging cell》2007,6(3):361-370
Brain aging is associated with a progressive imbalance between antioxidant defenses and intracellular concentrations of reactive oxygen species (ROS) as exemplified by increases in products of lipid peroxidation, protein oxidation, and DNA oxidation. Oxidative conditions cause not only structural damage but also changes in the set points of redox-sensitive signaling processes including the insulin receptor signaling pathway. In the absence of insulin, the otherwise low insulin receptor signaling is strongly enhanced by oxidative conditions. Autophagic proteolysis and sirtuin activity, in turn, are downregulated by the insulin signaling pathway, and impaired autophagic activity has been associated with neurodegeneration. In genetic studies, impairment of insulin receptor signaling causes spectacular lifespan extension in nematodes, fruit flies, and mice. The predicted effects of age-related oxidative stress on sirtuins and autophagic activity and the corresponding effects of antioxidants remain to be tested experimentally. However, several correlates of aging have been shown to be ameliorated by antioxidants. Oxidative damage to mitochondrial DNA and the electron transport chain, perturbations in brain iron and calcium homeostasis, and changes in plasma cysteine homeostasis may altogether represent causes and consequences of increased oxidative stress. Aging and cognitive decline thus appear to involve changes at multiple nodes within a complex regulatory network.  相似文献   

9.
Oxidative stress,antioxidants and stress tolerance   总被引:183,自引:0,他引:183  
Traditionally, reactive oxygen intermediates (ROIs) were considered to be toxic by-products of aerobic metabolism, which were disposed of using antioxidants. However, in recent years, it has become apparent that plants actively produce ROIs as signaling molecules to control processes such as programmed cell death, abiotic stress responses, pathogen defense and systemic signaling. Recent advances including microarray studies and the development of mutants with altered ROI-scavenging mechanisms provide new insights into how the steady-state level of ROIs are controlled in cells. In addition, key steps of the signal transduction pathway that senses ROIs in plants have been identified. These raise several intriguing questions about the relationships between ROI signaling, ROI stress and the production and scavenging of ROIs in the different cellular compartments.  相似文献   

10.
Oxidative stress: the special case of diabetes   总被引:3,自引:0,他引:3  
The implication of oxidative stress (OS) in diabetes is a major concern for the development of therapeutics aimed at improving the metabolic and/or vascular dysfunctions of this burdening disease. Ample evidence is available suggesting that OS is present in essentially all tissues and can even be observed in prediabetic states. This raises the question of the origin of OS and suggests that, although hyperglycemia is largely linked with free radical production, its role may mainly be the aggravation of a preexisting state. Indeed other factors are also causally linked to OS, such as hormones and lipids. The main debate is about the pertinence of antioxidant therapy since the large scale clinical trials performed recently have essentially failed to show any significant improvement in metabolic or vascular disturbances of diabetic patients. However this conclusion must be tempered by the fact that they have mainly been using vitamin E +/-C; indeed many arguments suggest that either the choice or the application modalities of these substances may have been inadequate. Potential reasons for the actual failure of antioxidant therapy in diabetes are discussed; the indisputable involvement of OS in this disease still leaves hope for alternative therapeutic approaches.  相似文献   

11.
The endoplasmic reticulum is the main intracellular Ca2+ store for Ca2+ release during cell signaling. There are different strategies to avoid ER Ca2+ depletion. Release channels utilize first Ca2+-bound to proteins and this minimizes the reduction of the free luminal [Ca2+]. However, if release channels stay open after exhaustion of Ca2+-bound to proteins, then the reduction of the free luminal ER [Ca2+] (via STIM proteins) activates Ca2+ entry at the plasma membrane to restore the ER Ca2+ load, which will work provided that SERCA pump is active. Nevertheless, there are several noxious conditions that result in decreased activity of the SERCA pump such as oxidative stress, inflammatory cytokines, and saturated fatty acids, among others. These conditions result in a deficient restoration of the ER [Ca2+] and lead to the ER stress response that should facilitate recovery of the ER. However, if the stressful condition persists then ER stress ends up triggering cell death and the ensuing degenerative process leads to diverse pathologies; particularly insulin resistance, diabetes and several of the complications associated with diabetes. This scenario suggests that limiting ER stress should decrease the incidence of diabetes and the mobility and mortality associated with this illness.  相似文献   

12.
Caveolae are specialized membrane microdomains present within the plasma membrane of the vast majority of cell types. They have a unique composition in that they are highly enriched in cholesterol, sphingolipids, and their coat proteins the caveolins (-1, -2, and -3). In recent years it has been recognized that caveolae act as signaling platforms, serving as a concentrating point for numerous signaling molecules, as well as regulating flux through many distinct signaling cascades. Although caveolae are found in a variety of cell types, they are most abundant in adipose tissue. This fact has led to the intense study of the function of these organelles in adipocytes. It has now become apparent that effective insulin signaling in the adipocyte may be strictly dependent on localization of at least two insulin-responsive elements to caveolae (insulin receptor and GLUT4), as well as on a direct functional interaction between caveolin-1 and the insulin receptor. We present a critical discussion of these recent findings.  相似文献   

13.
Endothelial dysfunction comprises a number of functional alterations in the vascular endothelium that are associated with diabetes and cardiovascular disease, including changes in vasoregulation, enhanced generation of reactive oxygen intermediates, inflammatory activation, and altered barrier function. Hyperglycemia is a characteristic feature of type 1 and type 2 diabetes and plays a pivotal role in diabetes-associated microvascular complications. Although hyperglycemia also contributes to the occurrence and progression of macrovascular disease (the major cause of death in type 2 diabetes), other factors such as dyslipidemia, hyperinsulinemia, and adipose-tissue-derived factors play a more dominant role. A mutual interaction between these factors and endothelial dysfunction occurs during the progression of the disease. We pay special attention to the possible involvement of endoplasmic reticulum stress (ER stress) and the role of obesity and adipose-derived adipokines as contributors to endothelial dysfunction in type 2 diabetes. The close interaction of adipocytes of perivascular adipose tissue with arteries and arterioles facilitates the exposure of their endothelial cells to adipokines, particularly if inflammation activates the adipose tissue and thus affects vasoregulation and capillary recruitment in skeletal muscle. Hence, an initial dysfunction of endothelial cells underlies metabolic and vascular alterations that contribute to the development of type 2 diabetes. E.C. Eringa is supported by the Dutch Diabetes Foundation (grant 2003.00.030), the Dutch Kidney foundation (grant C03.2046), and the Dutch organization for scientific research (grant 916.76.179). V.W.M. van Hinsbergh is supported by the European Vascular Genomics Network (grant LSHM-CT-2003–503254).  相似文献   

14.
Oxidative stress and neuronal death/survival signaling in cerebral ischemia   总被引:11,自引:0,他引:11  
It has been demonstrated by numerous studies that apoptotic cell death pathways are implicated in ischemic cerebral injury in ischemia models in vivo. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and the numerous reports suggest the involvement of cell survival/death signaling pathways in the pathogenesis of apoptotic cell death in ischemic lesions. In these models, reoxygenation during reperfusion provides oxygen as a substrate for numerous enzymatic oxidation reactions and for mitochondrial oxidative phosphorylation to produce adenosine triphosphate. Oxygen radicals, the products of these biochemical and physiological reactions, are known to damage cellular lipids, proteins, and nucleic acids and to initiate cell signaling pathways after cerebral ischemia. Genetic manipulation of intrinsic antioxidants and factors in the signaling pathways has provided substantial understanding of the mechanisms involved in cell death/survival signaling pathways and the role of oxygen radicals in ischemic cerebral injury. Future studies of these pathways could provide novel therapeutic strategies in clinical stroke.  相似文献   

15.
16.
Oxidative stress,spermatogenesis and fertility   总被引:4,自引:0,他引:4  
Reactive oxygen species production and glutathione depletion in mammalian male germ cells are physiological events that are requisite to the functional maturation and capacitation of spermatozoa. In relation to this oxidative stress, an oxidation of the bulk of protein sulfydryl groups takes place during the final phases of male germ cell maturation. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase catalyzes this reaction, and accounts for both the assembly of the mid-piece of spermatozoa and chromatin condensation. This process highlights the role of H2O2 and selenium in spermatogenesis and provides a mechanism for coupling a 'physiologically controlled' oxidative stress to a specialized phenotypic function.  相似文献   

17.
Immunosenescence is characterized by a decreased ability of the immune system to respond to foreign antigens, as well as a decreased ability to maintain tolerance to self-antigens. This results in an increased susceptibility to infection and cancer and reduced responses to vaccination [1-5]. The mechanisms underlying immunosenescence comprise a series of cellular and molecular events involving alteration of several biochemical pathways and different cellular populations, and for the most part our understanding of these molecular mechanisms is still fragmentary. In this review we will focus on the process of senescence associated with oxidative stress, in particular how protein oxidation alters the functionality of immune cells and how oxidative stress contributes to a chronic inflammatory process often referred as inflamm-aging.  相似文献   

18.
Tumor necrosis factor (TNF) receptor 1 (TNFR1, p55) and 2 (TNFR2, p75) are characterized by several cysteine-rich modules in the extracellular domain, raising the possibility that redox-induced modifications of these cysteine residues might alter TNFR function. To test this possibility, we examined fluorescence resonance energy transfer (FRET) in 293T cells transfected with CFP- and YFP-tagged TNFRs exposed to the thiol oxidant diamide. Treatment with high concentrations of diamide (1 mm) resulted in an increase in the FRET signal that was sensitive to inhibition with the reducing agent dithiothreitol, suggesting that oxidative stress resulted in TNFR self-association. Treatment of cells with low concentrations of diamide (1 mum) that was not sufficient to provoke TNFR self-association resulted in increased TNF-induced FRET signals relative to the untreated cells, suggesting that oxidative stress enhanced ligand-dependent TNFR signaling. Similar findings were obtained when the TNFR1- and TNFR2-transfected cells were pretreated with a cell-impermeable oxidase, DsbA, that catalyzes disulfide bond formation between thiol groups on cysteine residues. The changes in TNFR self-association were functionally significant, because pretreating the HeLa cells and 293T cells resulted in increased TNF-induced NF-kappaB activation and TNF-induced expression of IkappaB and syndecan-4 mRNA levels. Although pretreatment with DsbA did not result in an increase in TNF binding to TNFRs, it resulted in increased TNF-induced activation of NF-kappaB, consistent with an allosteric modification of the TNFRs. Taken together, these results suggest that oxidative stress promotes TNFR receptor self-interaction and ligand-independent and enhanced ligand-dependent TNF signaling.  相似文献   

19.
Insulin resistance has been shown to occur as a consequence of heart failure. However, its exact mechanisms in this setting remain unknown. We have previously reported that oxidative stress is enhanced in the skeletal muscle from mice with heart failure after myocardial infarction (MI) (30). This study is aimed to investigate whether insulin resistance in postinfarct heart failure is due to the impairment of insulin signaling in the skeletal muscle caused by oxidative stress. Mice were divided into four groups: sham operated (sham); sham treated with apocynin, an inhibitor of NAD(P)H oxidase activation (10 mmol/l in drinking water); MI; and MI treated with apocynin. After 4 wk, intraperitoneal insulin tolerance tests were performed, and skeletal muscle samples were obtained for insulin signaling measurements. MI mice showed left ventricular dilation and dysfunction by echocardiography and increased left ventricular end-diastolic pressure and lung weight. The decrease in glucose level after insulin load significantly attenuated in MI compared with sham. Insulin-stimulated serine phosphorylation of Akt and glucose transporter-4 translocation were decreased in MI mice by 61 and 23%, respectively. Apocynin ameliorated the increase in oxidative stress and NAD(P)H oxidase activities measured by the lucigenin assay in the skeletal muscle after MI. It also improved insulin resistance and inhibited the decrease of Akt phosphorylation and glucose transporter-4 translocation. Insulin resistance was induced by the direct impairment of insulin signaling in the skeletal muscle from postinfarct heart failure, which was associated with the enhanced oxidative stress via NAD(P)H oxidase.  相似文献   

20.
Using an expression cloning strategy, we have identified TFE3, a basic helix-loop-helix protein, as a transactivator of metabolic genes that are regulated through an E-box in their promoters. Adenovirus-mediated expression of TFE3 in hepatocytes in culture and in vivo strongly activated expression of IRS-2 and Akt and enhanced phosphorylation of insulin-signaling kinases such as Akt, glycogen synthase kinase 3beta and p70S6 kinase. TFE3 also induced hexokinase II (HK2) and insulin-induced gene 1 (INSIG1). These changes led to metabolic consequences, such as activation of glycogen and protein synthesis, but not lipogenesis, in liver. Collectively, plasma glucose levels were markedly reduced both in normal mice and in different mouse models of diabetes, including streptozotocin-treated, db/db and KK mice. Promoter analyses showed that IRS2, HK2 and INSIG1 are direct targets of TFE3. Activation of insulin signals in both insulin depletion and resistance suggests that TFE3 could be a therapeutic target for diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号