首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
  1. Download : Download high-res image (123KB)
  2. Download : Download full-size image
  相似文献   

5.
6.
7.
8.
9.
10.
11.
Iron metabolism and the innate immune response to infection   总被引:1,自引:0,他引:1  
Host antimicrobial mechanisms reduce iron availability to pathogens. Iron proteins influencing the innate immune response include hepcidin, lactoferrin, siderocalin, haptoglobin, hemopexin, Nramp1, ferroportin and the transferrin receptor. Numerous global health threats are influenced by iron status and provide examples of our growing understanding of the connections between infection and iron metabolism.  相似文献   

12.
13.
14.
15.
16.
O-linked N-acetylglucosamine (O-GlcNAc), a monosaccharide N-acetylglucosamine on the serine and threonine residues of nucleocytoplasmic proteins, is a novel protein modification that is ubiquitous among eukaryotes and implicated in cell regulation. Recent evidence indicates that O-GlcNAc regulates protein-protein interactions. Here we provide evidence that O-GlcNAc interrupts a known interaction between Sp1 and sterol regulatory element binding protein 2 (SREBP2), thereby inhibiting expression of the gene encoding acetyl-CoA synthetase 1, which is involved in lipid synthesis. This study suggests a novel mechanism in which lipid biosynthesis may be regulated by O-GlcNAc.  相似文献   

17.
18.
Expression of genes involved in cholesterol biosynthesis in male germ cells is insensitive to the negative cholesterol feedback regulation, in contrast to cholesterol level-sensitive/sterol regulatory element binding protein (SREBP)-dependent gene regulation in somatic cells. The role of sterol regulatory element binding proteins in spermatogenic cells was an enigma until recently, when a soluble, 55 kDa cholesterol-insensitive form of SREBP2 (SREBP2gc) was discovered [Mol. Cell. Endocrinol. 22 (2002) 8478], being translated from a germ cell-specific SREBP2 mRNA. Our RT-PCR results also show that SREBP2 as well as SREBP1c mRNAs are detectable in prepubertal and postpubertal male germ cells while SREBP1a is not detected. Surprisingly, three SREBP2 immunoreactive proteins (72, 63 and 55 kDa), that are not present in mouse liver nuclei, reside in testis nuclei of prepubertal and adult mice. The 55 kDa protein is likely SREBP2gc, the other two isoforms are novel. HPLC measurements in liver and testes of fasted prepubertal and postpubertal mice showed no significant difference in cholesterol level. However, FF-MAS and lanosterol/testis-meiosis activating sterol (T-MAS) intermediates that are detectable mainly in testes, increase in fasted postpubertal mice which coincides well with the elevated level of 68 kDa SREBP2. Similar to SREBP2gc, the two novel SREBP2 immunoreactive proteins seem to be insensitive to the level of cholesterol.  相似文献   

19.
Niemann-Pick C1-like 1 (NPC1L1) is an essential intestinal component of cholesterol absorption. However, little is known about the molecular regulation of intestinal NPC1L1 expression and promoter activity. We demonstrated that human NPC1L1 mRNA expression was significantly decreased by 25-hydroxycholesterol but increased in response to cellular cholesterol depletion achieved by incubation with Mevinolin (an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase) in human intestinal Caco-2 cells. We also showed that a -1741/+56 fragment of the NPC1L1 gene demonstrated high promoter activity in Caco-2 cells that was reduced by 25-hydroxycholesterol and stimulated by cholesterol depletion. Interestingly, we showed that the NPC1L1 promoter is remarkably transactivated by the overexpression of sterol regulatory element (SRE) binding protein (SREBP)-2, suggesting its involvement in the sterol-induced alteration in NPC1L1 promoter activity. Finally, we identified two putative SREs in the human NPC1L1 promoter and established their essential roles in mediating the effects of cholesterol on promoter activity. Our study demonstrated the modulation of human NPC1L1 expression and promoter activity by cholesterol in a SREBP-2-dependent mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号