首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C S Yang  J L Spudich 《Biochemistry》2001,40(47):14207-14214
The Natronobacterium pharaonis HtrII (NpHtrII) transducer interacts with its cognate photoactive sensory rhodopsin receptor, NpSRII, to mediate phototaxis responses. NpHtrII is predicted to have two transmembrane helices and a large cytoplasmic domain and to form a homodimer. Single cysteines were substituted into an engineered cysteine-less NpHtrII at 38 positions in its transmembrane domain. Oxidative disulfide cross-linking efficiencies of the monocysteine mutants were measured with or without photoactivation of NpSRII. The rapid cross-linking rates at several positions support that NpHtrII is a dimer when functionally expressed in the Halobacterium salinarum membrane. Thirteen positions in the second transmembrane segment (TM2) exhibited significant light-induced increases in cross-linking efficiency, and they define a single face traversing the length of the segment when modeled as an alpha-helix. Four positions in this helix showing light-induced decreases in efficiency are clustered on the cytoplasmic side of the protein. One of the monocysteine mutants, G83C, showed loss of phototaxis responses, and analysis of double mutants showed that the G83C mutation alters the dark structure of the TM2-TM2' region of NpHtrII. In summary, the results reveal conformationally active regions in the second transmembrane segment of NpHtrII and a face along the length of TM2 that becomes more available for TM2-TM2' cross-linking upon receptor photoactivation. The data also establish that one residue in TM2, Gly83, is critical for maintaining the proper conformation of NpHtrII for signal relay from the photoactivated receptor to the kinase-binding region of the transducer.  相似文献   

2.
Halobacterium salinarum sensory rhodopsin II (HsSRII) is a phototaxis receptor for blue-light avoidance that relays signals to its tightly bound transducer HsHtrII (H. salinarum haloarchaeal transducer for SRII). We found that disruption of the salt bridge between the protonated Schiff base of the receptor's retinylidene chromophore and its counterion Asp73 by residue substitutions D73A, N or Q constitutively activates HsSRII, whereas the corresponding Asp75 counterion substitutions do not constitutively activate Natronomonas pharaonis SRII (NpSRII) when complexed with N. pharaonis haloarchaeal transducer for SRII (NpHtrII). However, NpSRII(D75Q) in complex with HsHtrII is fully constitutively active, showing that transducer sensitivity to the receptor signal contributes to the phenotype. The swimming behaviour of cells expressing chimeras exchanging portions of the two homologous transducers localizes their differing sensitivities to the HtrII transmembrane domains. Furthermore, deletion constructs show that the known contact region in the cytoplasmic domain of the NpSRII-NpHtrII complex is not required for phototaxis, excluding the domain as a site for signal transmission. These results distinguish between the prevailing models for SRII-HtrII signal relay, strongly supporting the 'steric trigger-transmembrane relay model', which proposes that retinal isomerization directly signals HtrII through the mid-membrane SRII-HtrII interface, and refuting alternative models that propose signal relay in the cytoplasmic membrane-proximal domain.  相似文献   

3.
Archaeal phototaxis is mediated by sensory rhodopsins which form complexes with their cognate transducers. Whereas the receptors sensory rhodopsin I and sensory rhodopsin II (SRII) have been expressed in Escherichia coli (E. coli) only shortened fragments of HtrII from Natronomonas pharaonis (NpHtrII) are available. Here we describe the heterologous expression of full length NpHtrII which was achieved in yields of up to 0.9 mg per litre cell culture. Gel filtration analysis reveals the tendency of the transducer to form dimers and higher-order oligomers which was also observed when complexed to NpSRII. A circular dichroism (CD) spectrum of NpHtrII is comparable to those obtained for the E. coli chemoreceptors indicating a similar folding with predominantly alpha-helical structure. NpHtrII dissociates from the NpSRII/HtrII complex with an apparent K(D) of about 0.6 microM. Photocycle kinetics of the complex is comparable to that obtained for NpSRII in complex with a truncated transducer with slight differences in the M-decay. The data indicate that the heterologously expressed NpHtrII adopt a native like structure, providing the means for elucidating transmembrane signal transduction and activation of microbial signalling cascades.  相似文献   

4.
HAMP domains (conserved in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases) perform their putative function as signal transducing units in diversified environments in a variety of protein families. Here the conformational changes induced by environmental agents, namely salt and temperature, on the structure and function of a HAMP domain of the phototransducer from Natronomonas pharaonis (NpHtrII) in complex with sensory rhodopsin II (NpSRII) were investigated by site-directed spin labeling electron paramagnetic resonance. A series of spin labeled mutants were engineered in NpHtrII157, a truncated analog containing only the first HAMP domain following the transmembrane helix 2. This truncated transducer is shown to be a valid model system for a signal transduction domain anchored to the transmembrane light sensor NpSRII. The HAMP domain is found to be engaged in a "two-state" equilibrium between a highly dynamic (dHAMP) and a more compact (cHAMP) conformation. The structural properties of the cHAMP as proven by mobility, accessibility, and intra-transducer-dimer distance data are in agreement with the four helical bundle NMR model of the HAMP domain from Archaeoglobus fulgidus.  相似文献   

5.
The phototaxis receptor complex composed of sensory rhodopsin II (SRII) and the transducer subunit HtrII mediates photorepellent responses in haloarchaea. Light-activated SRII transmits a signal through two HAMP switch domains (HAMP1 and HAMP2) in HtrII that bridge the photoreceptive membrane domain of the complex and the cytoplasmic output kinase-modulating domain. HAMP domains, widespread signal relay modules in prokaryotic sensors, consist of four-helix bundles composed of two helices, AS1 and AS2, from each of two dimerized transducer subunits. To examine their molecular motion during signal transmission, we incorporated SRII-HtrII dimeric complexes in nanodiscs to allow unrestricted probe access to the cytoplasmic side HAMP domains. Spin-spin dipolar coupling measurements confirmed that in the nanodiscs, SRII photoactivation induces helix movement in the HtrII membrane domain diagnostic of transducer activation. Labeling kinetics of a fluorescein probe in monocysteine-substituted HAMP1 mutants revealed a light-induced shift of AS2 against AS1 by one-half α-helix turn with minimal other changes. An opposite shift of AS2 against AS1 in HAMP2 at the corresponding positions supports the proposal from x-ray crystal structures by Airola et al. (Airola, M. V., Watts, K. J., Bilwes, A. M., and Crane, B. R. (2010) Structure 18, 436-448) that poly-HAMP chains undergo alternating opposite interconversions to relay the signal. Moreover, we found that haloarchaeal cells expressing a HAMP2-deleted SRII-HtrII exhibit attractant phototaxis, opposite from the repellent phototaxis mediated by the wild-type di-HAMP SRII-HtrII complex. The opposite conformational changes and corresponding opposite output signals of HAMP1 and HAMP2 imply a signal transmission mechanism entailing small shifts in helical register between AS1 and AS2 alternately in opposite directions in adjacent HAMPs.  相似文献   

6.
Halophilic archaea, such as Halobacterium salinarum and Natronobacterium pharaonis, alter their swimming behavior by phototaxis responses to changes in light intensity and color using visual pigment-like sensory rhodopsins (SRs). In N. pharaonis, SRII (NpSRII) mediates photorepellent responses through its transducer protein, NpHtrII. Here we report the expression of fusions of NpSRII and NpHtrII and fusion hybrids with eubacterial cytoplasmic domains and analyze their function in vivo in haloarchaea and in eubacteria. A fusion in which the C terminus of NpSRII is connected by a short flexible linker to NpHtrII is active in phototaxis signaling for H. salinarum, showing that the fusion does not inhibit functional receptor-transducer interactions. We replaced the cytoplasmic portions of this fusion protein with the cytoplasmic domains of Tar and Tsr, chemotaxis transducers from enteric eubacteria. Purification of the fusion protein from H. salinarum and Tar fusion chimera from Escherichia coli membranes shows that the proteins are not cleaved and exhibit absorption spectra characteristic of wild-type membranes. Their photochemical reaction cycles in H. salinarum and E. coli membranes, respectively, are similar to those of native NpSRII in N. pharaonis. These fusion chimeras mediate retinal-dependent phototaxis responses by Escherichia coli, establishing that the nine-helix membrane portion of the receptor-transducer complex is a modular functional unit able to signal in heterologous membranes. This result confirms a current model for SR-Htr signal transduction in which the Htr transducers are proposed to interact physically and functionally with their cognate sensory rhodopsins via helix-helix contacts between their transmembrane segments.  相似文献   

7.
Motile bacteria and archaea respond to chemical and physical stimuli seeking optimal conditions for survival. To this end transmembrane chemo- and photoreceptors organized in large arrays initiate signaling cascades and ultimately regulate the rotation of flagellar motors. To unravel the molecular mechanism of signaling in an archaeal phototaxis complex we performed coarse-grained molecular dynamics simulations of a trimer of receptor/transducer dimers, namely NpSRII/NpHtrII from Natronomonas pharaonis. Signaling is regulated by a reversible methylation mechanism called adaptation, which also influences the level of basal receptor activation. Mimicking two extreme methylation states in our simulations we found conformational changes for the transmembrane region of NpSRII/NpHtrII which resemble experimentally observed light-induced changes. Further downstream in the cytoplasmic domain of the transducer the signal propagates via distinct changes in the dynamics of HAMP1, HAMP2, the adaptation domain and the binding region for the kinase CheA, where conformational rearrangements were found to be subtle. Overall these observations suggest a signaling mechanism based on dynamic allostery resembling models previously proposed for E. coli chemoreceptors, indicating similar properties of signal transduction for archaeal photoreceptors and bacterial chemoreceptors.  相似文献   

8.
Sensory rhodopsin II, the photophobic receptor from Natronomonas pharaonis (NpSRII)5, forms a 2:2 complex with its cognate transducer (N. pharaonis halobacterial transducer of rhodopsins II (NpHtrII)) in lipid membranes. Light activation of NpSRII leads to a displacement of helix F, which in turn triggers a rotation/screw-like motion of TM2 in NpHtrII. This conformational change is thought to be transmitted through the membrane adjacent conserved signal transduction domain in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases (HAMP domain) to the cytoplasmic signaling domain of the transducer. The architecture and function of the HAMP domain are still unknown. In order to obtain information on the structure and dynamics of this region, EPR experiments on a truncated transducer (NpHtrII(157)) and NpSRII, site-directed spin-labeled and reconstituted into purple membrane lipids, have been carried out. A nitroxide scanning involving residues in the transducer helix TM2, in the predicted AS-1 region, and at selected positions in the following connector and AS-2 regions of the HAMP domain has been performed. Accessibility and dynamics data allowed us to identify a helical region up to residue Ala(94) in the AS-1 amphipathic sequence, followed by a highly dynamic domain protruding into the water phase. Additionally, transducer-transducer and transducer-receptor proximity relations revealed the overall architecture of the AS-1 sequences in the 2:2 complex, which are suggested to form a molten globular type of a coiled-coil bundle.  相似文献   

9.
Hayashi K  Sudo Y  Jee J  Mishima M  Hara H  Kamo N  Kojima C 《Biochemistry》2007,46(50):14380-14390
Halobacterial pharaonis phoborhodopsin [ppR, also called Natronomonas pharaonis sensory rhodopsin II (NpSRII)] is a phototaxis protein which transmits a light signal to the cytoplasm through its transducer protein (pHtrII). pHtrII, a two-transmembrane protein that interacts with ppR, belongs to the group of methyl-accepting chemotaxis proteins (MCPs). Several mutation studies have indicated that the linker region connecting the transmembrane and methylation regions is necessary for signal transduction. However, the three-dimensional (3D) structure of an MCP linker region has yet to be reported, and hence, details concerning the signal transduction mechanism remain unknown. Here the structure of the pHtrII linker region was investigated biochemically and biophysically. Following limited proteolysis, only one trypsin resistant fragment in the pHtrII linker region was identified. This fragment forms a homodimer with a Kd value of 115 microM. The 3D structure of this fragment was determined by solution NMR, and only one alpha-helix was found between two HAMP domains of the linker region. This alpha-helix was significantly stabilized within transmembrane protein pHtrII as revealed by CW-EPR. The presence of Af1503 HAMP domain-like structures in the linker region was supported by CD, NMR, and ELDOR data. The alpha-helix determined here presumably works as a mechanical joint between two HAMP domains in the linker region to transfer the photoactivated conformational change downstream.  相似文献   

10.
The cytoplasmic domains of the erythropoietin receptor essential for signal transduction were identified by assessing a series of truncated and deletional mutant receptors. A 91-amino acid region proximal to the transmembrane domain was required for growth signaling. In this region, residues between 353Pro and 362His and between 278Gln and 308Leu appeared to constitute the essential cytoplasmic domains. These two domains contain the conserved amino acids common in the cytokine receptor superfamily, which indicates that these domains in the cytoplasmic regions of the erythropoietin receptor may be important for interaction with common signal transducers or protein tyrosine kinases.  相似文献   

11.
The HAMP linker, a predicted structural element observed in sensor proteins from all domains of life, is proposed to transmit signals between extracellular sensory input domains and cytoplasmic output domains. HAMP (histidine kinase, adenylyl cyclase, methyl-accepting chemotaxis protein, and phosphatase) linkers are located just inside the cytoplasmic membrane and are projected to form two short amphipathic alpha-helices (AS-1 and AS-2) joined by an unstructured connector. The presumed helices are comprised of hydrophobic residues in heptad repeats, with only three positions exhibiting strong conservation. We generated missense mutations at these three positions and throughout the HAMP linker in the Escherichia coli nitrate sensor kinase NarX and screened the resulting mutants for defective responses to nitrate. Most missense mutations in this region resulted in a constitutive phenotype mimicking the ligand-bound state, and only one residue (a conserved Glu before AS-2) was essential for HAMP linker function. We also scanned the narX HAMP linker with an overlapping set of seven-residue deletions. Deletions in AS-1 and the connector resulted in constitutive phenotypes. Two deletions in AS-2 resulted in a novel reversed response phenotype in which the response to ligand was the opposite of that seen for the narX(+) strain. These observations are consistent with the proposed HAMP linker structure, show that the HAMP linker plays an active role in transmembrane signal transduction, and indicate that the two amphipathic alpha-helices have different roles in signal transduction.  相似文献   

12.
The molecular mechanism of transmembrane signal transduction is still a pertinent question in cellular biology. Generally, a receptor can transfer an external signal via its cytoplasmic surface, as found for G-protein-coupled receptors such as rhodopsin, or via the membrane domain, such as that in sensory rhodopsin II (SRII) in complex with its transducer, HtrII. In the absence of HtrII, SRII functions as a proton pump. Here, we report on the crystal structure of the active state of uncomplexed SRII from Natronomonas pharaonis, NpSRII. The problem with a dramatic loss of diffraction quality upon loading of the active state was overcome by growing better crystals and by reducing the occupancy of the state. The conformational changes in the region comprising helices F and G are similar to those observed for the NpSRII-transducer complex but are much more pronounced. The meaning of these differences for the understanding of proton pumping and signal transduction by NpSRII is discussed.  相似文献   

13.
Sensory rhodopsin II (SRII), a receptor for negative phototaxis in haloarchaea, transmits light signals through changes in protein-protein interaction with its transducer HtrII. Light-induced structural changes throughout the SRII-HtrII interface, which spans the periplasmic region, membrane-embedded domains, and cytoplasmic domains near the membrane, have been identified by several studies. Here we demonstrate by site-specific mutagenesis and analysis of phototaxis behavior that two residues in SRII near the membrane-embedded interface (Tyr174 on helix F and Thr204 on helix G) are essential for signaling by the SRII-HtrII complex. These residues, which are the first in SRII shown to be required for phototaxis function, provide biological significance to the previous observation that the hydrogen bond between them is strengthened upon the formation of the earliest SRII photointermediate (SRII(K)) only when SRII is complexed with HtrII. Here we report frequency changes of the S-H stretch of a cysteine substituted for SRII Thr204 in the signaling state intermediates of the SRII photocycle, as well as an influence of HtrII on the hydrogen bond strength, supporting a direct role of the hydrogen bond in SRII-HtrII signal relay chemistry. Our results suggest that the light signal is transmitted to HtrII from the energized interhelical hydrogen bond between Thr204 and Tyr174, which is located at both the retinal chromophore pocket and in helices F and G that form the membrane-embedded interaction surface to the signal-bearing second transmembrane helix of HtrII. The results argue for a critical process in signal relay occurring at this membrane interfacial region of the complex.  相似文献   

14.
A conformational change of the transducer HtrII upon photoexcitation of the associated photoreceptor sensory rhodopsin II (SRII) was investigated by monitoring the kinetics of volume changes and the diffusion coefficient (D) of the complex during the photochemical reaction cycle. To localize the region of the transducer responsible, we truncated it at various positions in the cytoplasmic HAMP (histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases) domain. The truncations do not alter receptor binding, which is dependent primarily on membrane-embedded domain interactions. We found that the light-induced reduction in D occurs in transducers of lengths 120 and 157 residues (Tr120 and Tr157), which are both predicted to contain a HAMP domain consisting of two amphipathic α-helices (AS-1 and AS-2). In contrast, the change in D was abolished in a transducer of 114 amino acid residues (Tr114), which lacks a distal portion of the second α-helix AS-2. The volume changes in SRII-Tr114 are comparable in amplitude and kinetics with those in SRII-Tr120 and SRII-Tr157, confirming the integrity of the complex, which was previously concluded from the similar SRII binding affinity and similar blocking of SRII proton transport by full-length HtrII and Tr114. Our results indicate that a substantial conformational change occurs in the HAMP domain during SRII-HtrII signaling. The data presented here are the first demonstration of stimulus-induced conformational changes of a HAMP domain and provide evidence that the presence of AS-2 is crucial for the conformational alterations. The reduction in diffusion coefficient is likely to due to structural changes in the AS-1 and AS-2 helices such that hydrogen bonding with the surrounding water molecules is increased, thereby increasing friction with the solvent. Similar structural changes may be a general feature in HAMP domain switching, which occurs in diverse signaling proteins, including sensor kinases, taxis receptors/transducers, adenylyl cyclases, and phosphatases.  相似文献   

15.
HAMP domains are signal transduction domains typically located between the membrane anchor and cytoplasmic signaling domain of the proteins in which they occur. The prototypical structure consists of two helical amphipathic sequences (AS-1 and AS-2) connected by a region of undetermined structure. The Escherichia coli aerotaxis receptor, Aer, has a HAMP domain and a PAS domain with a flavin adenine dinucleotide (FAD) cofactor that senses the intracellular energy level. Previous studies reported mutations in the HAMP domain that abolished FAD binding to the PAS domain. In this study, using random and site-directed mutagenesis, we identified the distal helix, AS-2, as the component of the HAMP domain that stabilizes FAD binding. AS-2 in Aer is not amphipathic and is predicted to be buried. Mutations in the sequence coding for the contiguous proximal signaling domain altered signaling by Aer but did not affect FAD binding. The V264M residue replacement in this region resulted in an inverted response in which E. coli cells expressing the mutant Aer protein were repelled by oxygen. Bioinformatics analysis of aligned HAMP domains indicated that the proximal signaling domain is conserved in other HAMP domains that are not involved in chemotaxis or aerotaxis. Only one null mutation was found in the coding sequence for the HAMP AS-1 and connector regions, suggesting that these are not active signal transduction sites. We consider a model in which the signal from FAD is transmitted across a PAS-HAMP interface to AS-2 or the proximal signaling domain.  相似文献   

16.
Histidine kinase Hik33 responds to a variety of stress conditions and regulates the expression of stress-inducible genes in the cyanobacterium Synechocystis sp. PCC 6803. However, the mechanisms of response and regulation remain unknown. Generally, a histidine kinase perceives a specific signal via its N-terminal region. Hik33 has two transmembrane helices, a periplasmic loop, and HAMP and PAS domains in its N-terminal region, all of which might be involved in signal perception. To investigate the functions of these subdomains in vivo, we expressed a chimeric histidine kinase (Hik33n-SphSc) by fusing the N-terminal region of Hik33 with the C-terminal region of a sensory histidine kinase that is activated under phosphate-deficient conditions, SphS. Hik33n-SphSc responded to several stimuli that are perceived by intact Hik33 and regulated expression of the phoA gene for alkaline phosphatase, which is normally regulated under phosphate-deficient conditions by SphS. We introduced genes for modified versions of Hik33n-SphSc into Synechocystis and monitored expression of phoA under standard and stress conditions. Hik33n-SphSc lacking either the transmembrane helices or both the HAMP and PAS domains had no kinase activity, whereas Hik33n-SphSc lacking the HAMP or the PAS domain enhanced expression of phoA. Moreover, variants of Hik33n-SphSc, in which the membrane-localizing region was replaced by those of other histidine kinases, also responded to stress conditions. Thus, transmembrane helices, regardless of sequence, appear to be essential for the function of Hik33, while the HAMP and PAS domains play important roles in regulating kinase activity in vivo.  相似文献   

17.
HAMP domain is a ubiquitous module of bacterial and archaeal two-component signaling systems. Considerable progress has been made recently in studies of its structure and conformational changes. However, the mechanism of signal transduction through the HAMP domain is not clear. It remains a question whether all the HAMPs have the same mechanism of action and what are the differences between the domains from different protein families. Here, we present the results of unbiased molecular dynamics simulations of the HAMP domain from the archaeal phototaxis signal transducer NpHtrII. Two distinct conformational states of the HAMP domain are observed, that differ in relative position of the helices AS1 and AS2. The longitudinal shift is roughly equal to a half of an α-helix turn, although sometimes it reaches one full turn. The states are closely related to the position of bulky hydrophobic aminoacids at the HAMP domain core. The observed features are in good agreement with recent experimental results and allow us to propose that the states detected in the simulations are the resting state and the signaling state of the NpHtrII HAMP domain. To the best of our knowledge, this is the first observation of the same HAMP domain in different conformations. The simulations also underline the difference between AMBER ff99-SB-ILDN and CHARMM22-CMAP forcefields, as the former favors the resting state and the latter favors the signaling state.  相似文献   

18.
Swain KE  Falke JJ 《Biochemistry》2007,46(48):13684-13695
The HAMP domain is a conserved motif widely distributed in prokaryotic and lower eukaryotic organisms, where it is often found in transmembrane receptors that regulate two-component signaling pathways. The motif links receptor input and output modules and is essential to receptor structure and signal transduction. Recently, a structure was determined for a HAMP domain isolated from an unusual archeal membrane protein of unknown function [Hulko, M., et al. (2006) Cell 126, 929-940]. This study uses cysteine and disulfide chemistry to test this archeal HAMP model in the full-length, membrane-bound aspartate receptor of bacterial chemotaxis. The chemical reactivities of engineered Cys residues scanned throughout the aspartate receptor HAMP region are highly correlated with the degrees of solvent exposure of corresponding positions in the archeal HAMP structure. Both domains are homodimeric, and the individual subunits of both domains share the same helix-connector-helix organization with the same helical packing faces. Moreover, disulfide mapping reveals that the four helices of the aspartate receptor HAMP domain are arranged in the same parallel, four-helix bundle architecture observed in the archeal HAMP structure. One detectable difference is the packing of the extended connector between helices, which is not conserved. Finally, activity studies of the aspartate receptor indicate that contacts between HAMP helices 1 and 2' at the subunit interface play a critical role in modulating receptor on-off switching. Disulfide bonds linking this interface trap the receptor in its kinase-activating on-state, or its kinase inactivating off-state, depending on their location. Overall, the evidence suggests that the archeal HAMP structure accurately depicts the architecture of the conserved HAMP motif in transmembrane chemoreceptors. Both the on- and off-states of the aspartate receptor HAMP domain closely resemble the archeal HAMP structure, and only a small structural rearrangement occurs upon on-off switching. A model incorporating HAMP into the full receptor structure is proposed.  相似文献   

19.
HAMP domains are widely abundant signaling modules. The putative mechanism of their function comprises switching between two distinct states. To unravel these conformational transitions, we apply site-directed spin labeling and time-resolved EPR spectroscopy to the phototactic receptor/transducer complex NpSRII/NpHtrII. We characterize the kinetic coupling of NpHtrII to NpSRII along with the activation period of the transducer and follow the transient conformational signal. The observed transient shift towards a more compact state of the HAMP domain upon light-activation agrees with structure-based calculations. It thereby validates the two modeled signaling states and integrates the domain’s dynamics into the current model.  相似文献   

20.
Park H  Im W  Seok C 《Biophysical journal》2011,(12):2955-2963
Transmembrane signaling of chemotaxis receptors has long been studied, but how the conformational change induced by ligand binding is transmitted across the bilayer membrane is still elusive at the molecular level. To tackle this problem, we carried out a total of 600-ns comparative molecular dynamics simulations (including model-building simulations) of the chemotaxis aspartate receptor Tar (a part of the periplasmic domain/transmembrane domain/HAMP domain) in explicit lipid bilayers. These simulations reveal valuable insights into the mechanistic picture of Tar transmembrane signaling. The piston-like movement of a transmembrane helix induced by ligand binding on the periplasmic side is transformed into a combination of both longitudinal and transversal movements of the helix on the cytoplasmic side as a result of different protein-lipid interactions in the ligand-off and ligand-on states of the receptor. This conformational change alters the dynamics and conformation of the HAMP domain, which is presumably a mechanism to deliver the signal from the transmembrane domain to the cytoplasmic domain. The current results are consistent with the previously suggested dynamic bundle model in which the HAMP dynamics change is a key to the signaling. The simulations provide further insights into the conformational changes relevant to the HAMP dynamics changes in atomic detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号