首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
IL-10 is a potent immunoregulatory cytokine attenuating a wide range of immune effector and inflammatory responses. In the present study, we assess whether endogenous levels of IL-10 function to regulate the incidence and severity of collagen-induced arthritis. DBA/1 wildtype (WT), heterozygous (IL-10+/-) and homozygous (IL-10-/-) IL-10-deficient mice were immunized with type II collagen. Development of arthritis was monitored over time, and collagen-specific cytokine production and anticollagen antibodies were assessed. Arthritis developed progressively in mice immunized with collagen, and 100% of the WT, IL-10+/-, and IL-10-/- mice were arthritic at 35 days. However, the severity of arthritis in the IL-10-/- mice was significantly greater than that in WT or IL-1+/- animals. Disease severity was associated with reduced IFN-γ levels and a dramatic increase in CD11b-positive macrophages. Paradoxically, both the IgG1 and IgG2a anticollagen antibody responses were also significantly reduced. These data demonstrate that IL-10 is capable of controlling disease severity through a mechanism that involves IFN-γ. Since IL-10 levels are elevated in rheumatoid arthritis synovial fluid, these findings may have relevance to rheumatoid arthritis.  相似文献   

3.
During interaction with APCs, invariant (i) NKT cells are thought to be indirectly activated by TLR4-dependently activated APCs. However, whether TLR4 directly activates iNKT cells is unknown. Therefore, the expression and function of TLR4 in iNKT cells were investigated. Flow cytometric and confocal microscopic analysis revealed TLR4 expression on the surface and in the endosome of iNKT cells. Upon LPS stimulation, iNKT cells enhanced IFN-γ production, but reduced IL-4 production, in the presence of TCR signals, depending on TLR4, MyD88, TRIF, and the endosome. However, enhanced TLR4-mediated IFN-γ production by iNKT cells did not affect IL-12 production or CD1d expression by DCs. Adoptive transfer of WT, but not TLR4-deficient, iNKT cells promoted antibody-induced arthritis in CD1d−/− mice, suggesting that endogenous TLR4 ligands modulate iNKT cell function in arthritis. Furthermore, LPS-pretreated WT, but not TLR4-deficient, iNKT cells suppressed pulmonary fibrosis, but worsened hypersensitivity pneumonitis more than untreated WT iNKT cells, indicating that exogenous TLR4 ligands regulate iNKT cell functions in pulmonary diseases. Taken together, we propose a novel direct activation pathway of iNKT cells in the presence of TCR signals via endogenous or exogenous ligand-mediated engagement of TLR4 in iNKT cells, which regulates immune diseases by altering IFN-γ and IL-4 production.  相似文献   

4.

Introduction

Properdin amplifies the alternative pathway of complement activation. In the present study, we evaluated its role in the development of collagen antibody-induced arthritis (CAIA).

Methods

Arthritis was induced by intraperitoneal injection of a collagen antibody cocktail into properdin-deficient (KO) and wild-type (WT) C57BL/6 mice. Symptoms of disease were evaluated daily. The degree of joint damage was assessed histologically and with immunostaining for bone-resorption markers. Phenotypes of cell populations, their receptor expression, and intracellular cytokine production were determined with flow cytometry. Osteoclast differentiation of bone marrow (BM) precursors was evaluated by staining for tartrate-resistant acid phosphatase (TRAP).

Results

Properdin-deficient mice developed less severe CAIA than did WT mice. They showed significantly improved clinical scores and downregulated expression of bone-resorption markers in the joints at day 10 of disease. The frequencies of Ly6G+CD11b+ cells were fewer in BM, blood, and synovial fluid (SF) of KO than of WT CAIA mice. The receptor activator of nuclear factor κB ligand (RANKL) was downregulated on arthritic KO neutrophils from BM and the periphery. Decreased C5a amounts in KO SF contributed to lower frequencies of CD5aR+-bearing neutrophils. In blood, surface C5aR was detected on KO Ly6G+ cells as a result of low receptor engagement. Circulating CD4+ T cells had an altered ability to produce interleukin (IL)-17 and interferon (IFN)-γ and to express RANKL. In KO CAIA mice, decreased frequencies of CD4+ T cells in the spleen were related to low CD86 expression on Ly6GhighCD11b+ cells. Arthritic KO T cells spontaneously secreted IFN-γ but not IL-17 and IL-6, and responded to restimulation with less-vigorous cytokine production in comparison to WT cells. Fewer TRAP-positive mature osteoclasts were found in KO BM cell cultures.

Conclusions

Our data show that the active involvement of properdin in arthritis is related to an increased proinflammatory cytokine production and RANKL expression on immune cells and to a stimulation of the RANKL-dependent osteoclast differentiation.  相似文献   

5.
Hypersensitivity pneumonitis (HP) is an interstitial lung disease that develops following repeated exposure to environmental antigens. The disease results in alveolitis, granuloma formation and may progress to a fibrotic chronic form, which is associated with significant morbidity and mortality. The severity of the disease correlates with a neutrophil rich influx and an IL-17 response. We used the Saccharopolyspora rectivirgula (SR) model of HP to determine whether Toll-like receptors (TLR) 2 and 9 cooperate in neutrophil recruitment and IL-17-associated cytokine production during the development of HP. Stimulation of bone marrow derived macrophages (BMDMs) from C57BL/6, MyD88-/- and TLR2/9-/- mice with SR demonstrate that SR is a strong inducer of neutrophil chemokines and growth factors. The cytokines induced by SR were MyD88-dependent and, of those, most were partially or completely dependent on TLRs 2 and 9. Following in vivo exposure to SR, CXCL2 production and neutrophil recruitment were reduced in TLR2-/- and TLR2/9-/- mice suggesting that the response was largely dependent on TLR2; however the reduction was greatest in the TLR2/9-/- double knockout mice indicating TLR9 may also contribute to the response. There was a reduction in the levels of pro-inflammatory cytokines TNFα and IL-6 as well as CCL3 and CCL4 in the BALF from TLR2/9-/- mice compared to WT and single knockout (SKO) mice exposed one time to SR. The decrease in neutrophil recruitment and TNFα production in the TLR2/9-/- mice was maintained throughout 3 weeks of SR exposures in comparison to WT and SKO mice. Both TLRs 2 and 9 contributed to the Th17 response; there was a decrease in Th17 cells and IL-17 mRNA in the TLR2/9-/- mice in comparison to the WT and SKO mice. Despite the effects on neutrophil recruitment and the IL-17 response, TLR2/9-/- mice developed granuloma formation similarly to WT and SKO mice suggesting that there are additional mediators and pattern recognition receptors involved in the disease.  相似文献   

6.

Introduction

Estrogen (E2) delays onset and decreases severity of experimental arthritis. The aim of this study was to investigate the importance of total estrogen receptor alpha (ERα) expression and cartilage-specific ERα expression in genetically modified mice for the ameliorating effect of estrogen treatment in experimental arthritis.

Methods

Mice with total (total ERα-/-) or cartilage-specific (Col2α1-ERα-/-) inactivation of ERα and wild-type (WT) littermates were ovariectomized, treated with E2 or placebo, and induced with antigen-induced arthritis (AIA). At termination, knees were collected for histology, synovial and splenic cells were investigated by using flow cytometry, and splenic cells were subjected to a T-cell proliferation assay.

Results

E2 decreased synovitis and joint destruction in WT mice. Amelioration of arthritis was associated with decreased frequencies of inflammatory cells in synovial tissue and decreased splenic T-cell proliferation. E2 did not affect synovitis or joint destruction in total ERα-/- mice. In Col2α1-ERα-/- mice, E2 protected against joint destruction to a similar extent as in WT mice. In contrast, E2 did not significantly ameliorate synovitis in Col2α1-ERα-/- mice.

Conclusions

Treatment with E2 ameliorates both synovitis and joint destruction in ovariectomized mice with AIA via ERα. This decreased severity in arthritis is associated with decreased synovial inflammatory cell frequencies and reduced splenic T-cell proliferation. ERα expression in cartilage is not required for estrogenic amelioration of joint destruction. However, our data indicate that ERα expression in cartilage is involved in estrogenic effects on synovitis, suggesting different mechanisms for the amelioration of joint destruction and synovitis by E2.  相似文献   

7.

Background

Bacterial DNA containing motifs of unmethylated CpG dinucleotides (CpG-ODN) initiate an innate immune response mediated by the pattern recognition receptor Toll-like receptor 9 (TLR9). This leads in particular to the expression of proinflammatory mediators such as tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β). TLR9 is expressed in human and murine pulmonary tissue and induction of proinflammatory mediators has been linked to the development of acute lung injury. Therefore, the hypothesis was tested whether CpG-ODN administration induces an inflammatory response in the lung via TLR9 in vivo.

Methods

Wild-type (WT) and TLR9-deficient (TLR9-D) mice received CpG-ODN intraperitoneally (1668-Thioat, 1 nmol/g BW) and were observed for up to 6 hrs. Lung tissue and plasma samples were taken and various inflammatory markers were measured.

Results

In WT mice, CpG-ODN induced a strong activation of pulmonary NFκB as well as a significant increase in pulmonary TNF-α and IL-1β mRNA/protein. In addition, cytokine serum levels were significantly elevated in WT mice. Increased pulmonary content of lung myeloperoxidase (MPO) was documented in WT mice following application of CpG-ODN. Bronchoalveolar lavage (BAL) revealed that CpG-ODN stimulation significantly increased total cell number as well as neutrophil count in WT animals. In contrast, the CpG-ODN-induced inflammatory response was abolished in TLR9-D mice.

Conclusion

This study suggests that bacterial CpG-ODN causes lung inflammation via TLR9.  相似文献   

8.

Introduction

Acid-sensing ion channel 3 (ASIC3) is expressed in synoviocytes, activated by decreases in pH, and reduces inflammation in animal models of inflammatory arthritis. The purpose of the current study was to characterize potential mechanisms underlying the control of inflammation by ASIC3 in fibroblast-like synoviocytes (FLS).

Methods

Experiments were performed in cultured FLS from wild-type (WT) and ASIC3-/- mice, ASIC1-/- mice, and people with rheumatoid arthritis. We assessed the effects of acidic pH with and without interleukin-1β on FLS and the role of ASICs in modulating intracellular calcium [Ca2+]i, mitogen activated kinase (MAP kinase) expression, and cell death. [Ca2+]i was assessed by fluorescent calcium imaging, MAP kinases were measured by Western Blots; ASIC, cytokine and protease mRNA expression were measured by quantitative PCR and cell death was measured with a LIVE/DEAD assay.

Results

Acidic pH increased [Ca2+]i and decreased p-ERK expression in WT FLS; these effects were significantly smaller in ASIC3-/- FLS and were prevented by blockade of [Ca2+]i. Blockade of protein phosphatase 2A (PP2A) prevented the pH-induced decreases in p-ERK. In WT FLS, IL-1β increases ASIC3 mRNA, and when combined with acidic pH enhances [Ca2+]i, p-ERK, IL-6 and metalloprotienase mRNA, and cell death. Inhibitors of [Ca2+]i and ERK prevented cell death induced by pH 6.0 in combination with IL-1β in WT FLS.

Conclusions

Decreased pH activates ASIC3 resulting in increased [Ca2+]i, and decreased p-ERK. Under inflammatory conditions, acidic pH results in enhanced [Ca2+]i and phosphorylation of extracellular signal-regulated kinase that leads to cell death. Thus, activation of ASIC3 on FLS by acidic pH from an inflamed joint could limit synovial proliferation resulting in reduced accumulation of inflammatory mediators and subsequent joint damage.  相似文献   

9.

Introduction

Interleukin (IL)-33 is a cytokine of the IL-1 family, which signals through the ST2 receptor. Previous work suggested implication of the IL-33/ST2 axis in the pathogenesis of human and mouse arthritis. Here, we directly investigated the role of endogenous IL-33 in K/BxN serum transfer-induced arthritis by using IL-33 knockout (KO) mice.

Methods

Arthritis was induced by injection of complete K/BxN serum or purified IgG. Disease severity was monitored by clinical and histological scoring.

Results

K/BxN serum transfer induced pronounced arthritis with similar incidence and severity in IL-33 KO and wild-type (WT) mice. In contrast, disease development was significantly reduced in ST2 KO mice. IL-33 expression in synovial tissue was comparable in arthritic WT and ST2 KO mice, and absent in IL-33 KO mice. Transfer of purified arthritogenic IgG instead of complete K/BxN serum also resulted in similar arthritis severity in IL-33 KO and WT mice, excluding a contribution of IL-33 contained in the serum of donor mice to explain this result. We investigated additional potential confounding factors, including purity of genetic background, but the mechanisms underlying reduced arthritis in ST2 KO mice remained unclear.

Conclusions

The data obtained with IL-33 KO mice indicate that endogenous IL-33 is not required for the development of joint inflammation in K/BxN serum transfer-induced arthritis. On the contrary, arthritis severity was reduced in ST2 KO mice. This observation might relate to IL-33 independent effects of ST2, and/or reveal the existence of confounding variables affecting the severity of joint inflammation in these KO strains.  相似文献   

10.

Objective

Chronic stress is an important risk factor for atherosclerotic diseases. Our previous studies have shown that chronic unpredictable mild stress (CUMS) accelerates atherosclerosis and up-regulates TLR4/NF-κB expression in apoE-/- mice. However, TLR4/NF-κB signaling whether directly contributes to the development of atherosclerosis in CUMS mice is unclear. We hypothesized that the interference of TLR4/NF-κB can ameliorate CUMS-induced inflammation and atherosclerosis in apoE-/- mice.

Methods

ApoE-/- mice were exposed to 12 weeks CUMS. Ad-siRNA TLR4 was given by tail vein injection (10 μl/mouse, every 5 days), and PDTC (an inhibitor of NF-κB) was given by intraperitoneal injection (60 mg/kg, once a day). Plasma corticosterone concentrations were determined by solid-phase 125I radioimmunoassay. Atherosclerosis lesions in aortic sinuses were evaluated and quantified by IMAGEPRO PLUS. Western blotting was used to detect the expression of TLR4, NF-κB, and IL-1β in aortas of the mice. Plasma lipid profiles, IL-1β, TNF-α, and MCP-1 were measured by ELISA.

Results

Our results indicated that CUMS apoE-/- mice treatment with siRNA TLR4 significantly decreased atherosclerosis and down-regulated TLR4, NF-κB, and inflammatory cytokines. PDTC also remarkably reduced atherosclerosis and the levels of IL-1β, TNF-α and MCP-1 in plasma. However, Treatment with siRNA TLR4 or PDTC had no effect on plasma corticosterone levels, and lipid profiles.

Conclusions

TLR4/NF-κB pathway may participate in CUMS-induced atherosclerosis through activation of proinflammatory cytokines in apoE-/- mice. Our data may provide a new potential therapeutic target for prevention of CUMS -induced atherosclerosis.  相似文献   

11.
Parasitic helminths are sensed by the immune system via tissue-derived alarmins that promote the initiation of the appropriate type 2 immune responses. Here we establish the nuclear alarmin cytokine IL-33 as a non-redundant trigger of specifically IL-9-driven and mast cell-mediated immunity to the intestinal parasite Strongyloides ratti. Blockade of endogenous IL-33 using a helminth-derived IL-33 inhibitor elevated intestinal parasite burdens in the context of reduced mast cell activation while stabilization of endogenous IL-33 or application of recombinant IL-33 reciprocally reduced intestinal parasite burdens and increased mast cell activation. Using gene-deficient mice, we show that application of IL-33 triggered rapid mast cell-mediated expulsion of parasites directly in the intestine, independent of the adaptive immune system, basophils, eosinophils or Gr-1+ cells but dependent on functional IL-9 receptor and innate lymphoid cells (ILC). Thereby we connect the described axis of IL-33-mediated ILC2 expansion to the rapid initiation of IL-9-mediated and mast cell-driven intestinal anti-helminth immunity.  相似文献   

12.

Introduction

Endosomal toll-like receptors (TLRs) have recently emerged as potential contributors to the inflammation observed in human and rodent models of rheumatoid arthritis (RA). This study aims to evaluate the role of endosomal TLRs and in particular TLR7 in the murine collagen induced arthritis (CIA) model.

Methods

CIA was induced by injection of collagen in complete Freund''s adjuvant. To investigate the effect of endosomal TLRs in the CIA model, mianserin was administered daily from the day of disease onset. The specific role of TLR7 was examined by inducing CIA in TLR7-deficient mice. Disease progression was assessed by measuring clinical score, paw swelling, serum anti-collagen antibodies histological parameters, cytokine production and the percentage of T regulatory (Treg) cells.

Results

Therapeutic administration of mianserin to arthritic animals demonstrated a highly protective effect on paw swelling and joint destruction. TLR7-/- mice developed a mild arthritis, where the clinical score and paw swelling were significantly compromised in comparison to the control group. The amelioration of arthritis by mianserin and TLR7 deficiency both corresponded with a reduction in IL-17 responses, histological and clinical scores, and paw swelling.

Conclusions

These data highlight the potential role for endosomal TLRs in the maintenance of inflammation in RA and support the concept of a role for TLR7 in experimental arthritis models. This study also illustrates the potential benefit that may be afforded by therapeutically inhibiting the endosomal TLRs in RA.  相似文献   

13.
Interleukin (IL)-25, which is a member of the IL-17 family of cytokines, induces production of such Th2 cytokines as IL-4, IL-5, IL-9 and/or IL-13 by various types of cells, including Th2 cells, Th9 cells and group 2 innate lymphoid cells (ILC2). On the other hand, IL-25 can suppress Th1- and Th17-associated immune responses by enhancing Th2-type immune responses. Supporting this, IL-25 is known to suppress development of experimental autoimmune encephalitis, which is an IL-17-mediated autoimmune disease in mice. However, the role of IL-25 in development of IL-17-mediated arthritis is not fully understood. Therefore, we investigated this using IL-1 receptor antagonist-deficient (IL-1Ra-/-) mice, which spontaneously develop IL-17-dependent arthritis. However, development of spontaneous arthritis (incidence rate, disease severity, proliferation of synovial cells, infiltration of PMNs, and bone erosion in joints) and differentiation of Th17 cells in draining lymph nodes in IL-25-/- IL-1Ra-/- mice were similar to in control IL-25+/+ IL-1Ra-/- mice. These observations indicate that IL-25 does not exert any inhibitory and/or pathogenic effect on development of IL-17-mediated spontaneous arthritis in IL-1Ra-/- mice.  相似文献   

14.

Background

Although use of the mechanical ventilator is a life-saving intervention, excessive tidal volumes will activate NF-κB in the lung with subsequent induction of lung edema formation, neutrophil infiltration and proinflammatory cytokine/chemokine release. The roles of NF-κB and IL-6 in ventilator-induced lung injury (VILI) remain widely debated.

Methods

To study the molecular mechanisms of the pathogenesis of VILI, mice with a deletion of IкB kinase in the myeloid cells (IKKβ△mye), IL-6-/- to WT chimeric mice, and C57BL/6 mice (WT) were placed on a ventilator for 6 hr.WT mice were also given an IL-6-blocking antibody to examine the role of IL-6 in VILI.

Results

Our results revealed that high tidal volume ventilation induced pulmonary capillary permeability, neutrophil sequestration, macrophage drifting as well as increased protein in bronchoalveolar lavage fluid (BALF). IL-6 production and IL-1β, CXCR2, and MIP2 expression were also increased in WT lungs but not in those pretreated with IL-6-blocking antibodies. Further, ventilator-induced protein concentrations and total cells in BALF, as well as lung permeability, were all significantly decreased in IKKβ△mye mice as well as in IL6-/- to WT chimeric mice.

Conclusion

Given that IKKβ△mye mice demonstrated a significant decrease in ventilator-induced IL-6 production, we conclude that NF-κB–IL-6 signaling pathways induce inflammation, contributing to VILI, and IкB kinase in the myeloid cells mediates ventilator-induced IL-6 production, inflammation, and lung injury.  相似文献   

15.
We reported that the ethanol-induced innate immune response by activating TLR4 signaling triggers gliosis and neuroinflammation. Ethanol also activates other immune receptors, such as NOD-like-receptors, and specifically NLRP3-inflammasome in astroglial cells, to stimulate caspase-1 cleavage and IL-1β and IL-18 cytokines production. Yet, whether microglia NLRs are also sensitive to the ethanol effects that contribute to neuroinflammation is uncertain. Using cerebral cortexes of the chronic alcohol-fed WT and TLR4?/? mice, we demonstrated that chronic ethanol treatment enhanced TLR4 mediated-NLRP3/Caspase-1 complex activation, and up-regulated pro-inflammatory cytokines and chemokines levels. Ethanol-induced NLRP3-inflammasome activation and mitochondria-ROS generation were also observed in cultured microglial cells. The up-regulation of CD45high/CD11b+ cell populations and matrix metalloproteinase-9 levels was also noted in the cortexes of the ethanol-treated WT mice. Notably, elimination of the TLR4 function abolished most ethanol-induced neuroinflammatory effects. Thus, our results demonstrate that ethanol triggers TLR4-mediated NLRP3-inflammasome activation in glial cells, and suggest that microglia stimulation may compromise the permeability of blood–brain barrier events to contribute to ethanol-induced neuroinflammation and brain damage.  相似文献   

16.

Introduction

Our objective in the present study was to determine the signaling pathway of interleukin 10 (IL-10) for modulating IL-17 expression in macrophages and the importance of this mediation in collagen-induced arthritis (CIA).

Methods

IL-10-knockout (IL-10−/−) mice and wild-type (WT) mice were immunized with chicken type II collagen (CII) to induce arthritis. The expression levels of IL-17 and retinoid-related orphan receptor γt (RORγt) in macrophages and joint tissues of IL-10−/− and WT mice were analyzed by enzyme-linked immunosorbent assay, quantitative RT-PCR (qRT-PCR) and Western blotting. The F4/80 macrophages and positive IL-17-producing macrophages in synovial tissues of the mice were determined by immunohistochemistry. The populations of classically activated macrophage (M1) and alternatively activated macrophage (M2) phenotypes were analyzed by flow cytometry. The expression of genes associated with M1 and M2 markers was analyzed by qRT-PCR.

Results

Compared to WT mice, IL-10−/− mice had exacerbated CIA development, which was associated with increased production of T helper 17 cell (Th17)/Th1 proinflammatory cytokines and CII-specific immunoglobulin G2a antibody after CII immunization. Macrophages in IL-10−/− mice had increased amounts of IL-17 and RORγt compared with the amounts in WT mice with CIA. Immunofluorescence microscopy showed that the number of IL-17-producing macrophages in synovial tissues was significantly higher in IL-10−/− mice than in WT mice. IL-10 deficiency might promote macrophage polarization toward the proinflammatory M1 phenotype, which contributes to the rheumatoid arthritis inflammation response.

Conclusion

IL-10 inhibits IL-17 and RORγt expression in macrophages and suppresses macrophages toward the proinflammatory M1 phenotype, which is important for the role of IL-10 in mediating the pathogenesis of CIA.  相似文献   

17.

Introduction

Matrix metalloproteinases (MMPs) are important in tissue remodelling. Here we investigate the role of collagenase-3 (MMP-13) in antibody-induced arthritis.

Methods

For this study we employed the K/BxN serum-induced arthritis model. Arthritis was induced in C57BL/6 wild type (WT) and MMP-13-deficient (MMP-13–/–) mice by intraperitoneal injection of 200 μl of K/BxN serum. Arthritis was assessed by measuring the ankle swelling. During the course of the experiments, mice were sacrificed every second day for histological examination of the ankle joints. Ankle sections were evaluated histologically for infiltration of inflammatory cells, pannus tissue formation and bone/cartilage destruction. Semi-quantitative PCR was used to determine MMP-13 expression levels in ankle joints of untreated and K/BxN serum-injected mice.

Results

This study shows that MMP-13 is a regulator of inflammation. We observed increased expression of MMP-13 in ankle joints of WT mice during K/BxN serum-induced arthritis and both K/BxN serum-treated WT and MMP-13–/– mice developed progressive arthritis with a similar onset. However, MMP-13–/– mice showed significantly reduced disease over the whole arthritic period. Ankle joints of WT mice showed severe joint destruction with extensive inflammation and erosion of cartilage and bone. In contrast, MMP-13–/– mice displayed significantly decreased severity of arthritis (50% to 60%) as analyzed by clinical and histological scoring methods.

Conclusions

MMP-13 deficiency acts to suppress the local inflammatory responses. Therefore, MMP-13 has a role in the pathogenesis of arthritis, suggesting MMP-13 is a potential therapeutic target.  相似文献   

18.
MicroRNA-155 has been shown to play a role in immune activation and inflammation, and is suppressed by IL-10, an important anti-inflammatory cytokine. The established involvement of IL-10 in the murine model of Borrelia burgdorferi-induced Lyme arthritis and carditis allowed us to assess the interplay between IL-10 and miR-155 in vivo. As reported previously, Mir155 was highly upregulated in joints from infected severely arthritic B6 Il10-/- mice, but not in mildly arthritic B6 mice. In infected hearts, Mir155 was upregulated in both strains, suggesting a role of miR-155 in Lyme carditis. Using B. burgdorferi-infected B6, Mir155-/-, Il10-/-, and Mir155-/- Il10-/- double-knockout (DKO) mice, we found that anti-inflammatory IL-10 and pro-inflammatory miR-155 have opposite and somewhat compensatory effects on myeloid cell activity, cytokine production, and antibody response. Both IL-10 and miR-155 were required for suppression of Lyme carditis. Infected Mir155-/- mice developed moderate/severe carditis, had higher B. burgdorferi numbers, and had reduced Th1 cytokine expression in hearts. In contrast, while Il10-/- and DKO mice also developed severe carditis, hearts had reduced bacterial numbers and elevated Th1 and innate cytokine expression. Surprisingly, miR-155 had little effect on Lyme arthritis. These results show that antagonistic interplay between IL-10 and miR-155 is required to balance host defense and immune activation in vivo, and this balance is particularly important for suppression of Lyme carditis. These results also highlight tissue-specific differences in Lyme arthritis and carditis pathogenesis, and reveal the importance of IL-10-mediated regulation of miR-155 in maintaining healthy immunity.  相似文献   

19.

Background

Ascending infections of the female genital tract with bacteria causes pelvic inflammatory disease (PID), preterm labour and infertility. Lipopolysaccharide (LPS) is the main component of the cell wall of Gram-negative bacteria. Innate immunity relies on the detection of LPS by Toll-like receptor 4 (TLR4) on host cells. Binding of LPS to TLR4 on immune cells stimulates secretion of pro-inflammatory cytokines such as IL-6, chemokines such as CXCL1 and CCL20, and prostaglandin E2. The present study tested the hypothesis that TLR4 on endometrial epithelial and stromal cells is essential for the innate immune response to LPS in the female genital tract.

Methodology/Principal Findings

Wild type (WT) mice expressed TLR4 in the endometrium. Intrauterine infusion of purified LPS caused pelvic inflammatory disease, with accumulation of granulocytes throughout the endometrium of WT but not Tlr4−/− mice. Intra-peritoneal infusion of LPS did not cause PID in WT or Tlr4−/− mice, indicating the importance of TLR4 in the endometrium for the detection of LPS in the female genital tract. Stromal and epithelial cells isolated from the endometrium of WT but not Tlr4−/− mice, secreted IL-6, CXCL1, CCL20 and prostaglandin E2 in response to LPS, in a concentration and time dependent manner. Co-culture of combinations of stromal and epithelial cells from WT and Tlr4−/− mice provided little evidence of stromal-epithelial interactions in the response to LPS.

Conclusions/Significance

The innate immune response to LPS in the female genital tract is dependent on TLR4 on the epithelial and stromal cells of the endometrium.  相似文献   

20.
We investigated whether the pathways linked to Toll-like receptors 2 and 4 (TLRs) are involved in renal ischemia-reperfusion (I/R)-induced cardiac hypertrophy. Wild type (WT) C57BL/6J, TLR2-/- and TLR4-/- mice were subjected to left kidney ischemia for 60 min followed by reperfusion for 5, 8, 12 and 15 days. Proton density magnetic resonance showed alterations in the injured kidney from WT mice, together with signs of parenchymal edema and higher levels of vimentin mRNA, accompanied by: (i) small, but significant, increase in serum urea after 24 h, (ii) 100% increase in serum creatinine at 24 h. A serum peak of inflammatory cytokines occurred after 5 days of reperfusion. Heart weight/body weight and heart weight/tibia length ratios increased after 12 and 15 days of reperfusion, respectively. Cardiac hypertrophy markers, B-type natriuretic peptide (BNP) and α-actin, left ventricle mass, cardiac wall thickness and myocyte width increased after 15 days of reperfusion, together with longer QTc and action potential duration. Cardiac TLRs, MyD88, HSP60 and HSP70 mRNA levels also increased. After 15 days of reperfusion, absence of TLRs prevented cardiac hypertrophy, as reflected by similar values of left ventricular cardiac mass and heart weight/body weight ratio compared to the transgenic Sham. Renal tissular injury also ameliorated in both knockout mice, as revealed by the comparison of their vimentin mRNA levels with those found in the WT on the same day after I/R. The I/R TLR2-/- group had TNF-α, IFN-γ and IL-1β levels similar to the non-I/R group, whereas the TLR4-/- group conserved the p-NF-κB/NF- κB ratio contrasting with that found in TLR2-/-. We conclude: (i) TLRs are involved in renal I/R-induced cardiac hypertrophy; (ii) absence of TLRs prevents I/R-induced cardiac hypertrophy, despite renal lesions seeming to evolve towards those of chronic disease; (iii) TLR2 and TLR4 selectively regulate the systemic inflammatory profile and NF- κB activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号