首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophages secrete endoplasmic reticulum aminopeptidase 1 (ERAP1) in response to lipopolysaccharide (LPS) and interferon (IFN)-γ to enhance their phagocytic and nitric oxide (NO) synthetic activities. In this study, we found that a subset of secreted ERAP1 bound to exosomes released from LPS/IFN-γ-treated murine RAW264.7 macrophages compared to untreated cells. ERAP1-bound exosomes enhanced phagocytic and NO synthetic activities of macrophages more efficiently than free ERAP1 and exosomes derived from untreated cells. Deletion of the exon 10 coding sequence in ERAP1 gene resulted in loss of binding to exosomes. By comparing the activities of exosomes derived from wild-type and ERAP1 gene-deficient RAW264.7 cells, we observed that ERAP1 contributed to the exosome-dependent phagocytosis and NO synthesis of the cells. Upon stimulation of RAW264.7 cells with LPS/IFN-γ, TNF-α, IFN-γ, and CCL3 were also associated with the released exosomes. Analyses of cytokine function revealed that while CCL3 in the exosomes was crucial to the phagocytic activity of RAW264.7 cells, TNF-α and IFN-γ primarily contributed to the enhancement of NO synthesis. These results suggest that treatment with LPS/IFN-γ alters the physicochemical properties of exosomes released from macrophages in order to facilitate association with ERAP1 and several cytokines/chemokines. This leads to exosome-mediated enhancement of macrophage functions. It is possible that packaging effector molecules into exosomes upon inflammatory stimuli, facilitates the exertion of effective pathophysiological functions on macrophages. Our data provide the first evidence that ERAP1 associated with exosomes plays important roles in inflammatory processes via activation of macrophages.  相似文献   

2.
In the classical human leukocyte antigen (HLA) class I antigen processing and presentation pathway, the antigenic peptides are generated from viral proteins by multiple proteolytic cleavages of the proteasome (and in some cases other cytosolic proteases) and transported to the endoplasmic reticulum (ER) lumen where they are exposed to aminopeptidase activity. In human cells, two different ER-resident enzymes, ERAP1 and ERAP2, can trim the N-terminally extended residues of peptide precursors. In this study, the possible cooperative effect of generating five naturally processed HLA-B27 ligands by both proteases was analyzed. We identified differences in the products obtained with increased detection of natural HLA-B27 ligands by comparing double versus single enzyme digestions by mass spectrometry analysis. These in vitro data suggest that each enzyme can use the degradation products of the other as a substrate for new N-terminal trimming, indicating concerted aminoproteolytic activity of ERAP 1 and ERAP2.  相似文献   

3.
Endoplasmic reticulum aminopeptidase-1 (ERAP1) is a multifunctional, ubiquitously expressed enzyme whose peptide-trimming role during antigen processing for presentation by MHC I molecules is well established, however, a role for ERAP1 in modulating global innate immune responses has not been described to date. Here we demonstrate that, relative to wild type mice, mice lacking ERAP1 exhibit exaggerated innate immune responses early during pathogen recognition, as characterized by increased activation of splenic and hepatic NK and NKT cells and enhanced production of pro-inflammatory cytokines such as IL12 and MCP1. Our data also revealed that ERAP1 is playing a critical role in NK cell development and function. We observed higher frequencies of terminally matured NK cells, as well as higher frequencies of licensed NK cells (expressing the Ly49C and Ly49I receptors) in ERAP1-KO mice, results that positively correlated with an enhanced NK activation and IFNγ production by ERAP1-KO mice challenged with pro-inflammatory stimuli. Furthermore, during pathogen recognition, ERAP1 regulates IL12 production by CD11c+ DCs specifically, with increases in IL12 production positively correlated with an increased phagocytic activity of splenic DCs and macrophages. Collectively, our results demonstrate a previously unrecognized, more central role for the ERAP1 protein in modulating several aspects of both the development of the innate immune system, and its responses during the initial stages of pathogen recognition. Such a role may explain why ERAP1 has been implicated by GWAS in the pathogenesis of autoimmune diseases that may be precipitated by aberrant responses to pathogen encounters.  相似文献   

4.
ERAP1 (endoplasmic reticulum aminopeptidase 1), ERAP2 and IRAP (insulin-regulated aminopeptidase) are three homologous enzymes that play critical roles in the generation of antigenic peptides. These aminopeptidases excise amino acids from N-terminally extended precursors of antigenic peptides in order to generate the correct length epitopes for binding on to MHC class I molecules. The specificity of these peptidases can affect antigenic peptide selection, but has not yet been investigated in detail. In the present study we utilized a collection of 82 fluorigenic substrates to define a detailed selectivity profile for each of the three enzymes and to probe structural and functional features of the S1 (primary specificity) pocket. Molecular modelling of the three S1 pockets reveals substrate-enzyme interactions that are critical determinants for specificity. The substrate selectivity profiles suggest that IRAP largely combines the S1 specificity of ERAP1 and ERAP2, consistent with its proposed biological function. IRAP, however, does not achieve this dual specificity by simply combining structural features of ERAP1 and ERAP2, but rather by an unique amino acid change at position 541. The results of the present study provide insights on antigenic peptide selection and may prove valuable in designing selective inhibitors or activity markers for this class of enzymes.  相似文献   

5.
Epithelial cell adhesion molecule (EpCAM) is an epithelial and cancer cell “marker” and there is a cumulative and growing evidence of its signaling role. Its importance has been recognized as part of the breast cancer stem cell phenotype, the tumorigenic breast cancer stem cell is EpCAM+. In spite of its complex functions in normal cell development and cancer, relatively little is known about EpCAM-interacting proteins. We used breast cancer cell lines and performed EpCAM co-immunoprecipitation followed by mass spectrometry in search for novel potentially interacting proteins. The endoplasmic reticulum aminopeptidase 2 (ERAP2) was found to co-precipitate with EpCAM and to co-localize in the cytoplasm/ER and the plasma membrane. ERAP2 is a proteolytic enzyme set in the endoplasmic reticulum (ER) where it plays a central role in the trimming of peptides for presentation by MHC class I molecules. Expression of EpCAM and ERAP2 in vitro in the presence of dog pancreas rough microsomes (ER vesicles) confirmed N-linked glycosylation, processing in ER and the size of EpCAM. The association between ERAP2 and EpCAM is a unique and novel finding that provides new ideas on EpCAM processing and on how antigen presentation may be regulated in cancer.  相似文献   

6.
A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection.  相似文献   

7.
Population genetic variability in immune system genes can often underlie variability in immune responses to pathogens. Cytotoxic T-lymphocytes are emerging as critical determinants of both severe acute respiratory syndrome coronavirus 2 infection severity and long-term immunity, after either recovery or vaccination. A hallmark of coronavirus disease 2019 is its highly variable severity and breadth of immune responses between individuals. To address the underlying mechanisms behind this phenomenon, we analyzed the proteolytic processing of S1 spike glycoprotein precursor antigenic peptides across ten common allotypes of endoplasmic reticulum aminopeptidase 1 (ERAP1), a polymorphic intracellular enzyme that can regulate cytotoxic T-lymphocyte responses by generating or destroying antigenic peptides. We utilized a systematic proteomic approach that allows the concurrent analysis of hundreds of trimming reactions in parallel, thus better emulating antigen processing in the cell. While all ERAP1 allotypes were capable of producing optimal ligands for major histocompatibility complex class I molecules, including known severe acute respiratory syndrome coronavirus 2 epitopes, they presented significant differences in peptide sequences produced, suggesting allotype-dependent sequence biases. Allotype 10, previously suggested to be enzymatically deficient, was rather found to be functionally distinct from other allotypes. Our findings suggest that common ERAP1 allotypes can be a major source of heterogeneity in antigen processing and through this mechanism contribute to variable immune responses in coronavirus disease 2019.  相似文献   

8.

Background

Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims N-terminally extended antigenic peptide precursors down to mature antigenic peptides for presentation by major histocompatibility complex (MHC) class I molecules. ERAP1 has unique properties for an aminopeptidase being able to trim peptides in vitro based on their length and the nature of their C-termini.

Methodology/Principal Findings

In an effort to better understand the molecular mechanism that ERAP1 uses to trim peptides, we systematically analyzed the enzyme''s substrate preferences using collections of peptide substrates. We discovered strong internal sequence preferences of peptide N-terminus trimming by ERAP1. Preferences were only found for positively charged or hydrophobic residues resulting to trimming rate changes by up to 100 fold for single residue substitutions and more than 40,000 fold for multiple residue substitutions for peptides with identical N-termini. Molecular modelling of ERAP1 revealed a large internal cavity that carries a strong negative electrostatic potential and is large enough to accommodate peptides adjacent to the enzyme''s active site. This model can readily account for the strong preference for positively charged side chains.

Conclusions/Significance

To our knowledge no other aminopeptidase has been described to have such strong preferences for internal residues so distal to the N-terminus. Overall, our findings indicate that the internal sequence of the peptide can affect its trimming by ERAP1 as much as the peptide''s length and C-terminus. We therefore propose that ERAP1 recognizes the full length of its peptide-substrate and not just the N- and C- termini. It is possible that ERAP1 trimming preferences influence the rate of generation and the composition of antigenic peptides in vivo.  相似文献   

9.
In this study we report the cloning and characterization of a novel human aminopeptidase, which we designate leukocyte-derived arginine aminopeptidase (L-RAP). The sequence encodes a 960-amino acid protein with significant homology to placental leucine aminopeptidase and adipocyte-derived leucine aminopeptidase. The predicted L-RAP contains the HEXXH(X)18E zinc-binding motif, which is characteristic of the M1 family of zinc metallopeptidases. Phylogenetic analysis indicates that L-RAP forms a distinct subfamily with placental leucine aminopeptidase and adipocyte-derived leucine aminopeptidase in the M1 family. Immunocytochemical analysis indicates that L-RAP is located in the lumenal side of the endoplasmic reticulum. Among various synthetic substrates tested, L-RAP revealed a preference for arginine, establishing that the enzyme is a novel arginine aminopeptidase with restricted substrate specificity. In addition to natural hormones such as angiotensin III and kallidin, L-RAP cleaved various N-terminal extended precursors to major histocompatibility complex class I-presented antigenic peptides. Like other proteins involved in antigen presentation, L-RAP is induced by interferon-gamma. These results indicate that L-RAP is a novel aminopeptidase that can trim the N-terminal extended precursors to antigenic peptides in the endoplasmic reticulum.  相似文献   

10.
Adipocyte-derived leucine aminopeptidase (A-LAP, endoplasmic reticulum aminopeptidase ERAP1) is specialized to produce peptides presented on the class I major histocompatibility complex (MHC) by trimming epitopes to eight or nine residues, in addition to its enzymatic activity to degrade angiotensin II. Previously we identified placental leucine aminopeptidase (P-LAP), another member of the oxytocinase subfamily of aminopeptidases, in human uterine endometrial epithelial cells. Here we analyzed the distribution of A-LAP in human cyclic endometrium. Western blotting analysis showed that A-LAP was present in the endometrial tissue throughout the menstrual cycle. Immunohistochemical (IHC) analysis of A-LAP showed a similar distribution to that of P-LAP. A-LAP was localized predominantly in the endometrial glands and the luminal surface epithelium. However, the intracellular localization change that accompanied apocrine secretion, which was observed in P-LAP, was not shown in A-LAP. Subcellular localization of A-LAP, demonstrated by immunofluorescence, was ER in the cultured glandular epithelial cells. Our results indicate that A-LAP may fit the endometrial localization as an antigen-presenting ER aminopeptidase. Further understanding of the function(s) of A-LAP in the endometrium appear likely to yield insights into the cyclic changes during the normal endometrial cycle.  相似文献   

11.
12.
Endoplasmic reticulum aminopeptidase 1 (ERAP1) is a recently discovered enzyme that plays critical roles in antigen presentation and the immune response. Unlike other aminopeptidases, ERAP1 displays strong sequence preferences for residues distal to the peptide-substrate’s N terminus. This unusual substrate specificity necessitates the development of new assays that are appropriate for the study of such aminopeptidases. Here we describe a continuous fluorigenic assay suitable for the analysis of the enzymatic properties of ERAP1. In this assay, signal is generated by the excision of an internally quenched N-terminal tryptophan residue from a 10mer peptide by the aminopeptidase, resulting in the enhancement of tryptophan fluorescence in the solution. This method overcomes the limitations of previously used fluorigenic and high-performance liquid chromatography (HPLC)-based assays and is appropriate for small molecule inhibitor screening as well as for rapid substrate specificity analysis by kinetic competition experiments. Such efficient peptidic fluorigenic substrates like the ones described here should greatly simplify specificity analysis and inhibitor discovery for ERAP1 and similar aminopeptidases.  相似文献   

13.
14.
Endoplasmic reticulum-associated aminopeptidase 1 (ERAP1) is involved in the final processing of endogenous peptides presented by MHC class I molecules to CTLs. We generated ERAP1-deficient mice and analyzed cytotoxic responses upon infection with three viruses, including lymphocytic choriomeningitis virus, which causes vigorous T cell activation and is controlled by CTLs. Despite pronounced effects on the presentation of selected epitopes, the in vivo cytotoxic response was altered for only one of several epitopes tested. Moreover, control of lymphocytic choriomeningitis virus was not impaired in the knockout mice. Thus, we conclude that lack of ERAP1 has little influence on antiviral immunohierarchies and antiviral immunity in the infections studied. We also focused on the role of ERAP1 in cross-presentation. We demonstrate that ERAP1 is required for efficient cross-presentation of cell-associated Ag and of OVA/anti-OVA immunocomplexes. Surprisingly, however, ERAP1 deficiency has no effect on cross-presentation of soluble OVA, suggesting that for soluble exogenous proteins, final processing may not take place in an environment containing active ERAP1.  相似文献   

15.
gp96, an abundant peptide-binding chaperone of the lumen of the endoplasmic reticulum and an acceptor of peptides transported into the endoplasmic reticulum through transporter associated with antigen processing, is shown to be an aminopeptidase. gp96 can trim an amino-terminal extended 19-mer precursor of the K(b)-binding VSV8 epitope for recognition by the cognate cytotoxic T lymphocyte clone. These observations support a role for gp96 in the amino-terminal trimming of extended peptides in the endoplasmic reticulum.  相似文献   

16.
The tumor promoting role of M2 macrophages has been described in in vivo models and the presence of macrophages in certain tumor types has been linked to a poor clinical outcome. In light of burgeoning activities to clinically develop new therapies targeting tumor-associated macrophages (TAMs), reliable in vitro models faithfully mimicking the tumor promoting functions of TAMs are required. Generation and activation of human monocyte-derived macrophages (MDM) in vitro, described as M1 or M2 macrophages attributed with tumoricidal or tumor-promoting functions, respectively, has been widely reported using mainly serum containing culture methods. In this study, we compared the properties of macrophages originating from monocytes cultured either in media containing serum together with M-CSF for M2 and GM-CSF for M1 macrophages or in serum-free media supplemented with M-CSF or GM-CSF and cytokines such as IL-4, IL-10 to induce activated M2 or LPS together with IFN-γ to generate activated M1 phenotype. We observed differences in cell morphology as well as increased surface receptor expression levels in serum-containing culture whereas similar or higher cytokine production levels were detected under serum-free culture conditions. More importantly, MDM differentiated under serum-free conditions displayed enhanced tumoricidal activity for M1 and tumor promoting property for M2 macrophages in contrast to MDM differentiated in the presence of serum. Moreover, evaluation of MDM phagocytic activity in serum free condition resulted in greater phagocytic properties of M2 compared to M1. Our data therefore confirm the tumor promoting properties of M2 macrophages in vitro and encourage the targeting of TAMs for cancer therapy.  相似文献   

17.
Macrophage-specific Abca1 knock-out (Abca1(-)(M)(/-)(M)) mice were generated to determine the role of macrophage ABCA1 expression in plasma lipoprotein concentrations and the innate immune response of macrophages. Plasma lipid and lipoprotein concentrations in chow-fed Abca1(-)(M)(/-)(M) and wild-type (WT) mice were indistinguishable. Compared with WT macrophages, Abca1(-)(M)(/-)(M) macrophages had a >95% reduction in ABCA1 protein, failed to efflux lipid to apoA-I, and had a significant increase in free cholesterol (FC) and membrane lipid rafts without induction of endoplasmic reticulum stress. Lipopolysaccharide (LPS)-treated Abca1(-)(M)(/-)(M) macrophages exhibited enhanced expression of pro-inflammatory cytokines and increased activation of the NF-kappaB and MAPK pathways, which could be diminished by silencing MyD88 or by chemical inhibition of NF-kappaB or MAPK. In vivo LPS injection also resulted in a higher pro-inflammatory response in Abca1(-)(M)(/-)(M) mice compared with WT mice. Furthermore, cholesterol depletion of macrophages with methyl-beta-cyclodextrin normalized FC content between the two genotypes and their response to LPS; cholesterol repletion of macrophages resulted in increased cellular FC accumulation and enhanced cellular response to LPS. Our results suggest that macrophage ABCA1 expression may protect against atherosclerosis by facilitating the net removal of excess lipid from macrophages and dampening pro-inflammatory MyD88-dependent signaling pathways by reduction of cell membrane FC and lipid raft content.  相似文献   

18.
Peptide trimming in the endoplasmic reticulum (ER), the final step required for the generation of most HLA class I-binding peptides, implicates the concerted action of two aminopeptidases, ERAP1 and ERAP2. Because defects in the expression of these peptidases could lead to aberrant surface HLA class I expression in tumor cells, we quantitatively assayed 14 EBV-B cell lines and 35 human tumor cell lines of various lineages for: 1) expression and enzymatic activities of ERAP1 and ERAP2; 2) ER peptide-trimming activity in microsomes; 3) expression of HLA class I H chains and TAP1; and 4) surface HLA class I expression. ERAP1 and ERAP2 expression was detectable in all of the EBV-B and tumor cell lines, but in the latter it was extremely variable, sometimes barely detectable, and not coordinated. The expression of the two aminopeptidases corresponded well to the respective enzymatic activities in most cell lines. A peptide-trimming assay in microsomes revealed additional enzymatic activities, presumably contributed by other unidentified aminopeptidases sharing substrate specificity with ERAP2. Interestingly, surface HLA class I expression showed significant correlation with ERAP1 activity, but not with the activity of either ERAP2 or other unidentified aminopeptidases. Transfection with ERAP1 or ERAP2 of two tumor cell lines selected for simultaneous low expression of the two aminopeptidases resulted in the expected, moderate increases of class I surface expression. Thus, low and/or imbalanced expression of ERAP1 and probably ERAP2 may cause improper Ag processing and favor tumor escape from the immune surveillance.  相似文献   

19.
Preeclampsia is a heritable pregnancy disorder that presents new onset hypertension and proteinuria. We have previously reported genetic linkage to preeclampsia on chromosomes 2q, 5q and 13q in an Australian/New Zealand (Aust/NZ) familial cohort. This current study centered on identifying the susceptibility gene(s) at the 5q locus. We first prioritized candidate genes using a bioinformatic tool designed for this purpose. We then selected a panel of known SNPs within ten prioritized genes and genotyped them in an extended set of the Aust/NZ families and in a very large, independent Norwegian case/control cohort (1,139 cases, 2,269 controls). In the Aust/NZ cohort we identified evidence of a genetic association for the endoplasmic reticulum aminopeptidase 1 (ERAP1) gene (rs3734016, P uncorr = 0.009) and for the endoplasmic reticulum aminopeptidase 2 (ERAP2) gene (rs2549782, P uncorr = 0.004). In the Norwegian cohort we identified evidence of a genetic association for ERAP1 (rs34750, P uncorr = 0.011) and for ERAP2 (rs17408150, P uncorr = 0.009). The ERAP2 SNPs in both cohorts remained statistically significant (rs2549782, P corr = 0.018; rs17408150, P corr = 0.039) after corrections at an experiment-wide level. The ERAP1 and ERAP2 genes encode enzymes that are reported to play a role in blood pressure regulation and essential hypertension in addition to innate immune and inflammatory responses. Perturbations within vascular, immunological and inflammatory pathways constitute important physiological mechanisms in preeclampsia pathogenesis. We herein report a novel preeclampsia risk locus, ERAP2, in a region of known genetic linkage to this pregnancy-specific disorder.  相似文献   

20.
To elucidate a significance of the expression of brain-derived neurotrophic factor (BDNF) in the activated microglia/macrophages of the injured central nervous system, we examined BDNF actions on or BDNF synthesis by macrophages cultured from the mouse peritoneal cavity. They synthesized BDNF and neurotrophin-3 (NT-3) in addition to expressing high-affinity neurotrophin receptors, full-length TrkB (FL), truncated TrkB (TK(-)), and TrkC, thus suggesting an autocrine influence of BDNF and NT-3. BDNF, but not NT-3, enhanced phagocytic activity and stimulated synthesis/secretion of interleukin-1beta in the same manner as lipopolysaccharide (LPS). Furthermore, there was a significant correlation of the phagocytic activity with the expression of BDNF or TrkB (FL). These results imply that the phagocytic activity of macrophages depends on BDNF synthesis and/or TrkB (FL) expression, suggesting that BDNF participates in the activation processes of macrophages by acting in an autocrine manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号