首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of age, weaning, season of the year and body weight on the peripheral levels of progesterone, oestradiol-17β and luteinizing hormone (LH) were studied during neonatal, perinatal and peripubertal periods in buffalo heifers. The buffalo heifers exhibited oestrus only after 30 months of age and had higher levels of LH and oestradiol-17β and a lower level of progesterone on the day of oestrus. The progesterone concentration was affected significantly (P < 0.01) by different seasons, by weaning (P < 0.05) and varied between pubertal and neonatal periods (P < 0.01), whereas the oestradiol-17β level was affected significantly (P < 0.01) by weaning and varied at different seasons and with body weight. However, the LH concentration was greater during the neonatal period than the pre- and peripubertal periods and changed significantly (P < 0.01) between groups of ages and body weights. The results suggest that increases in the levels of oestradiol-17β and progesterone after 30 months of age are probably indicative of the onset of puberty in buffalo heifers. However, a further increase in oestradiol-17β, LH, and a decrease in progesterone are essential for oestrus and cyclicity to be exhibited in buffalo heifers.  相似文献   

2.
The object of the study was to investigate the clinical and endocrine patterns of progesterone, oestradiol-17β and LH during the peripubertal period in female pigs. Crossbred gilts were penned in groups at an age of 10–12 weeks and boars were kept in adjacent pens during the entire experimental period. Daily oestrous checks started at 4.5 months of age and the gilts were slaughtered after their third heat. At the age of 4.5–5 months a permanent catheter was inserted in the cephalic vein and blood samples were collected from the gilts once daily until either the first or second oestrus. In three gilts hourly blood samples were taken during their first and second oestrus, beginning at early pro-oestrus.The gilts showed their first oestrus at the average age of 183 days. No corpora lutea from earlier ovulations were observed in gilts laparoscoped after their first detected oestrus. During the 30-day period before first oestrus the mean daily progesterone levels varied between 32 and 329 pmol/l. The average levels of oestradiol-17β varied between 15.6 and 30.8 pmol/l. There was no tendency for the oestradiol-17β level to rise before onset of first pro-oestrus. The average levels of LH varied between 0.15 and 0.94 μg/l. The statistical analyses revealed no significant relationship between the level of the hormones studied and onset of first oestrus. The mean progesterone levels during the first and second oestrous cycles were almost identical, however. Oestradiol-17β increased gradually during pro-oestrus, reaching maximum levels before onset of oestrus and thereafter decreasing sharply to values around 30 pmol/l. The oestradiol-17β levels were higher at the second than at the first pro-oestrous period. The concentrations of plasma LH rose sharply with declining plasma levels of oestradiol-17β. The duration of elevated plasma LH levels (> 1 μg/l) was, on average, 26 h and the LH levels were higher during the first oestrus than during the second oestrus. The first rise in progesterone was observed 11–29 h after the LH levels had decreased to concentrations below 1 μg/l.  相似文献   

3.
Plasma oestradiol-17β and progesterone levels were measured in seven nulliparous, dairy heifers (British Friesian breed) that were administered cloprostenol (a synthetic analogue of prostaglandin F) between days 8 and 14 of the oestrous cycle and inseminated (AI) 72 and 96 h later, and in seven heifers inseminated (AI) at natural oestrus.In both treated and untreated heifers, the beginning of the progesterone fall and the oestradiol-17β rise associated with luteolysis appeared to be synchronous but, whereas the rate of fall in progesterone level was greater for the treated heifers, that of the oestradiol-17β rise did not differ between treated and untreated heifers. Mean pre-ovulatory peaks of oestradiol-17β were 8 pg/ml and 10 pg/ml for treated and untreated heifers respectively.A post-ovulatory peak of oestradiol-17β in plasma 5–6 days after the pre-ovulatory peak occurred in all heifers whether or not conception had taken place. It is suggested that 7 days after the initiation of oestradiol-17β secretion by the pre-ovulatory follicle, another follicle begins to mature and secrete oestradiol-17β and that the progress of the latter towards full maturation and potential ovulation is stopped by rising progesterone levels from the corpus luteum; as a result in normal, non-pregnant cattle an interval of about 21 days elapses before another ovulation (of another follicle) takes place. In the event of premature luteolysis (in the present study induced between the 8th and 14th day) there is no evidence that the timing of this luteolysis influences the time taken for a follicle to enter the final stages of pre-ovulatory maturation, when increasing amounts of oestradiol-17β are secreted. Thus the interval between ovulations may not be less than 7 days but, depending on corpus luteum survival, may vary between 7 and 21 days.In one heifer after natural luteolysis a normal plasma oestradiol-17β peak followed but this was not associated with ovulation and corpus luteum formation. The second oestradiol-17β peak 6 days after the first, however, evidently assumed the ovulatory role; presumably the secreting follicle concerned, not being subject to inhibition by progesterone rising to luteal levels, matured fully and ovulated. Thus the second, normally post-ovulatory, oestradiol-17β peak in cattle can, in the event of failure of ovulation at the normal time, itself assume the ovulatory function, the oestrous cycle length then being about 28 days.  相似文献   

4.
Fifty heifers were twice injected with I.C.I. 80, 996 and inseminated 72 h and 96 h after the second administration. Twenty eight of them (56%) became pregnant. Changes in plasma oestradiol-17 beta, progesterone and LH concentrations around the oestrus following the second injection were similar to those occurring in spontaneous oestrus. The pattern of testosterone secretion resembled that of oestradiol;-17 beta. The highest testosterone concentration (135 +/- 24 pg/ml) was measured on the third day after treatment with I.C.I. 80, 996.  相似文献   

5.
Concentrations of LH, progesterone, oestradiol-17 beta and androstenedione were measured in serum from blood samples collected from 6 fallow does every hour for 46 h during a spontaneous oestrus. Four does had similar serum hormone profiles, with a pronounced preovulatory LH surge (approximately 20 ng/ml) occurring within 4 h of the onset of oestrus, a small elevation (from 0.1 to 0.3 ng/ml) of progesterone at the onset of oestrus, a gradual but non-significant increase (up to 25 pg/ml) of oestradiol-17 beta and a marked 2-fold increase of serum androstenedione concentrations occurring immediately at the onset of oestrus. The remaining 2 does showed pronounced increases in serum progesterone concentrations at the onset of oestrus and a reduction in the initial LH surge. One of these does exhibited a second preovulatory LH surge within the sampling period.  相似文献   

6.
The opioid antagonist WIN-44441-3 (WIN-3, Sterling-Winthrop) caused significant increases in LH secretion in ovariectomized ewes treated with progesterone but not in ovariectomized animals treated with oestradiol-17 beta. In the non-breeding season, plasma LH concentrations in ovariectomized ewes without steroid therapy, given oestradiol-17 beta or oestradiol-17 beta and progesterone together were not affected by treatment with WIN-3 on Day 6 after ovariectomy (there was a significant increase in LH as a result of WIN-3 treatment 13 days after ovariectomy in sheep given no steroid therapy). However, WIN-3 treatment of ovariectomized sheep given progesterone resulted in a significant increase in plasma LH. WIN-3 was ineffective when given to intact ewes treated with progesterone during the non-breeding season. With ovariectomized sheep during the breeding season there was again no response to WIN-3 at 6 days after ovariectomy in sheep given oestradiol-17 beta, but significant LH elevations in animals given no steroid, those given progesterone and those given progesterone + oestradiol-17 beta. The lack of an LH response to WIN-3 in ovariectomized sheep treated with oestradiol-17 beta did not result from a reduced pituitary response to GnRH since such animals responded normally to exogenous GnRH treatment. Overall, these results are consistent with the idea that, irrespective of the time of year, progesterone exerts negative feedback upon LH release at least in part through an opioidergic mechanism, whereas oestradiol-17 beta exerts negative feedback through steps unlikely to involve opioids. Progesterone can override the effect of oestradiol-17 beta during the breeding season only. Further, there appears to be a steroid-independent opioid involvement in LH suppression, operating at both times of year.  相似文献   

7.
The patterns of LH, FSH, prolactin and oestradiol-17beta, before and during natural oestrus, and of progesterone during the following cycle were studied in four French Alpine dairy goats and compared with those obtained after synchronization of oestrus in the same animals. The highest concentration of oestradiol-17beta was measured at the beginning of oestrus and was followed 3 hours later by simultaneous rises of LH, FSH and prolactin. A second FSH peak was observed 48h after the first one. On D(3) (D(0) = day of oestrus) progesterone concentration was over 1 ng/ml. The luteal phase lasted 15 days. Peak concentrations of oestradiol-17beta and progesterone were higher in animals when oestrus was induced. This was attributed to their higher ovulation rate. The second FSH peak was lower, and the interval between oestradiol-17beta peak and gonadotrophin surge longer, than at natural oestrus.  相似文献   

8.
In Exp. 1, injections of 10 ml bovine follicular fluid (bFF, i.v. or s.c.), given twice daily for 3 days after injection of a luteolytic dose of PGF-2 alpha, delayed the onset of oestrus in 3 of 6 heifers to 8 or 9 days after PGF-2 alpha, as compared with 2 or 3 days after PGF-2 alpha in control heifers. Mean plasma concentrations of FSH and LH during the injection period were not different from those in saline-injected heifers. In Exp. 2, i.v. injections of 20 ml bFF twice daily for 3 days uniformly delayed oestrus to 8 days after PGF-2 alpha (N = 4) and injections of 20 ml bFF i.v. every 6 h for 24h on the day of PGF-2 alpha injection delayed oestrus to 5.0 +/- 0.6 days after PGF-2 alpha as compared with 2.8 +/- 0.3 days for control heifers. In both treatment groups, plasma concentrations of FSH were suppressed during the injection period and increased transiently after treatment, but plasma concentrations of LH during the injection period were not different from those of control heifers. Plasma levels of oestradiol in heifers given bFF remained basal for 2 or 3 days after treatment, then increased several days before the delayed oestrus, in a manner similar to that in control heifers, and elicited normal preovulatory surges of LH and FSH. Plasma concentrations of progesterone and the length of the next oestrous cycle were normal, indicating formation of functional corpora lutea. Therefore, bFF treatments appear to delay oestrus by selectively suppressing plasma FSH, without affecting LH, and delaying the development of the preovulatory follicle. These results suggest that FSH may be critical to support the growth and development of the preovulatory follicle after luteolysis in cows.  相似文献   

9.
Suprabasal progesterone concentrations around oestrus have induced disturbances in oestrous behaviour and ovulation. To determine whether fertility in such an altered oestrus can be maintained at normal levels with additional inseminations (AI) until ovulation, fertility was compared in heifers (n = 11) inseminated in normal oestrous cycles and thereafter in cycles in which the animals were treated with progesterone in order to create suprabasal concentrations after luteolysis. The treatment consisted of silicone implants containing 10.6 mg kg−1 of progesterone inserted subcutaneously on Day 8 of the oestrous cycle (day of ovulation designated Day 0) and removed on Day 25. Both in control oestrous cycles and oestrous cycles under progesterone treatment, growth of the ovulatory follicle and ovulation were determined by frequent ultrasound scanning. Blood was collected frequently for further analysis of progesterone, oestradiol-17β and luteinising hormone (LH). Insemination was performed 12 h after onset of standing oestrus. if ovulation did not occur 24 h after AI, heifers were inseminated again until ovulation. Pregnancy was diagnosed by ultrasound 25 days after ovulation.In control oestrous cycles, plasma progesterone decreased to 0.3 ± 0.3 nmol 1−1. Duration of oestrus was 22.9 ± 2.0 h, the interval from onset of oestrus to ovulation was 32.4 ± 2.3 h and the interval from LH peak to ovulation was 28.6 ± 1.4 h. The interovulatory interval was 20.7 ± 0.6 days. In oestrous cycles in treated heifers, progesterone decreased to 1.0 ± 0.3 nmol l−1 (P > 0.10) and the interovulatory interval was prolonged to 23.5 ± 1.0 days (P < 0.05). Standing oestrus lasted 47.2 ± 12.0 h (P = 0.09, n = 7). The interval from the onset of oestrus to ovulation was 59.4 ± 13.0 h (P = 0.08) and the interval from LH peak to ovulation 25.8 ± 1.3 h (P > 0.10). The prolonged oestrus was associated with increased (P < 0.05) growth of the ovulatory follicle and higher (P < 0.05) release of oestradiol-17β. Conception rates were 90% and 46% (P < 0.05), and the numbers of AI per heifer were 1.1 ± 0.1 and 3.4 ± 0.6 (P < 0.01) for control oestrous cycles and after treatment, respectively.The induction of suprabasal concentrations of progesterone caused asynchronies similar to those observed in cases of repeat breeding. The repeated AI did not maintain fertility at normal levels. It is suggested that the extended growth of the ovulatory follicle may cause impaired oocyte maturation or it may alter the maternal milieu owing to the prolonged release of oestradiol.  相似文献   

10.
Occupied and unoccupied LH receptors in corpora lutea, and LH and progesterone concentrations in circulating plasma, were measured in non-pregnant gilts that had been treated with oestradiol-17 beta benzoate to prolong luteal function. Oestradiol benzoate (5 mg, administered on Day 12 after oestrus) delayed luteal regression and the decline in LH receptor levels at luteolysis and raised unoccupied receptor levels from 11.8 +/- 1.14 fmol/mg protein on Days 10--15 after oestrus to 31.8 +/- 3.26 fmol/mg protein on Days 15--21. There was no simultaneous rise in occupied receptor levels and occupancy decreased from 29.8 +/- 3.01 to 11.5 +/- 1.26%. Basal plasma LH concentrations were unchanged by oestradiol, but mean corpus luteum weight and plasma progesterone concentrations were slightly reduced. Oestradiol benzoate on Day 12 caused a similar increase in unoccupied receptor levels in gilts hysterectomized on Days 6--9 after oestrus, from 17.0 +/- 5.83 to 34.5 +/- 6.00 fmol/mg protein, determined on Days 15--18. Plasma concentrations of LH and progesterone were unchanged by oestradiol. Unoccupied receptor levels in corpora lutea and plasma LH and progesterone were unaltered by hysterectomy in untreated gilts. Occupied receptor levels were not influenced by hysterectomy or oestradiol. It is concluded that oestradiol-17 beta raises luteal LH receptor levels by a mechanism independent of the uterus.  相似文献   

11.
Peripheral plasma concentrations of LH, oestradiol-17 beta and progesterone were measured in 13 mature swamp buffalo cows at 4-h intervals from 36-40 h before until 36-40 h after the onset of oestrus. Mean LH concentrations increased sharply to a peak of 35 ng/ml and returned to basal levels of 5 ng/ml within a 12-h period beginning soon after the onset of oestrus. Mean oestradiol-17 beta concentrations were within the range 9-13 pg/ml from 36-40 h before until 12-16 h after the onset of oestrus, and within the range 7-9 pg/ml thereafter. Progesterone concentrations remained around 0.1 ng/ml throughout the sampling period. There were no significant differences in hormone concentrations or changes between cows that conceived and those that did not conceive to artificial insemination 12-24 h after onset of oestrus.  相似文献   

12.
Two experiments involving 24 and 54 Australian Merino ewes were conducted in which the establishment of a cervical population of spermatozoa and several endocrinological events were studied after several regimens for the synchronization of oestrus. Intravaginal sponges impregnated with 500 mg (Exp. 1) or 200, 400 or 600 mg (Exp. 2) progesterone resulted in the maintenance of plasma progesterone concentrations of 1.5-4.9 ng/ml over a 12-day insertion period compared with 1.9-6.9 ng/ml during dioestrus in control ewes. In Exp. 1 basal concentrations of less than or equal to 0.25 ng/ml plasma were attained by 4 h after sponge withdrawal and this decline was much more rapid than in normal luteolysis. This was associated with fewer spermatozoa recovered from the cervix 2 h after insemination, and PMSG had no significant effect. In Exp. 2 injection of a supplementary dose of progesterone at sponge withdrawal resulted in a rapid increase in plasma progesterone concentrations followed by an equally rapid decrease and an attenuation of the rise in plasma oestradiol-17 beta, the LH surge, and the onset of oestrus. The numbers of spermatozoa recovered 4 h after insemination were not increased, and PMSG had no significant effect. Two factors were significant, namely the dose of progesterone in the sponge (600 mg greater than 400 or 200 mg, P less than 0.05) and stage of oestrus when inseminated (mid- or late oestrus greater than early). The data demonstrated that an adequate dose of progesterone/progestagen incorporated into intravaginal sponges and accurate timing of insemination relative to the LH surge are the most important factors involved in penetration of the cervix by spermatozoa.  相似文献   

13.
In Exp. 1 non-pregnant female tammars were injected, on Day 26 (the day parturition would normally occur) after removal of pouch young, with saline, 200 micrograms ovine prolactin or 5 mg PG and changes in plasma concentrations of progesterone, prolactin, PGF-2 alpha metabolite (PGFM), oestradiol-17 beta and LH were determined. Luteolysis occurred in females treated with prolactin alone, while treatment with PG first induced a rapid rise in prolactin and subsequently a significant decrease in plasma progesterone. After prolactin treatment the oestradiol peak, oestrus and the LH surge were advanced significantly compared to the saline-treated females. In Exp. 2 the effects of the same treatments as used in Exp. 1 were determined on Day 23 and again on Day 26 after removal of pouch young in non-pregnant females. On Day 23 both prolactin and PG induced significant elevations in plasma progesterone, but luteolysis did not occur. On Day 26 the treatments initially induced significant elevations in plasma progesterone but these were followed by luteolysis within 8-12 h after treatment. PG treatment induced parturient behaviour in the non-pregnant females within 3-21 min and this persisted during the period that plasma concentrations of PGFM were elevated. The results show that PG induces birth behaviour and the release of prolactin, while prolactin first induces an elevation of plasma progesterone concentrations and, in the mature CL on Day 26, subsequently induces luteolysis.  相似文献   

14.
The hypothalamic LH-RH content and the concentrations of pituitary and plasma LH were measured at various ages in female rats treated daily with 10 micrograms testosterone propionate or 10 micrograms oestradiol-17beta from birth to Day 15. Persistent vaginal oestrus was induced in all the treated rats. Both hormones significantly reduced the hypothalamic LH-RH content and pituitary and plasma LH concentrations. Hypothalamic LH-RH increased after cessation of treatment but pituitary LH did not return to normal levels. Plasma LH levels were significantly lower than those in control rats. It is concluded that testosterone propionate and oestradiol-17beta (1) have a direct negative feed-back influence on the hypothalamus in the neonatal female rat; (2) alter the normal pattern of plasma and pituitary LH in developing female rats; (3) prevent the cyclic secretion of plasma LH after maturity; and (4) probably cause a chronic impairment in the release of LH-RH.  相似文献   

15.
Domestic cats experiencing a natural or FSH-induced oestrus were studied. Mated cats produced fewer (P less than 0.01) unfertilized oocytes and more (P less than 0.01) morulato blastocyst-stage embryos of better quality after a natural oestrus than after FSH treatment. Serum oestradiol-17 beta concentrations were lower (P less than 0.05) and progesterone levels rose earlier (P less than 0.05) in the induced oestrus compared to the natural oestrus group. Morula/blastocyst-stage embryos from both groups transferred to 15FSH/hCG-treated recipients produced 3 pregnancies and 2 live-born litters (1 from a natural oestrus donor and 1 from an FSH-treated donor). These results indicate that fertilization rates and embryo quality in domestic cats appear to be compromised by the FSH treatment, probably because of altered oestradiol-17 beta and progesterone concentrations.  相似文献   

16.
The present study was undertaken to determine if a short-term prolonged growth of the ovulatory follicle (12 to 18 h after expected time of ovulation), induced by progesterone implants, would cause ultrastructural changes in the follicular wall. Oestrous behaviour, follicular growth, follicular and blood plasma levels of oestradiol-17ß, progesterone and plasma luteinizing hormone (LH) were monitored in heifers oophorectomized at 9 to 12 h (controls) or 36 h after the onset of oestrus, in order to sample the pre-ovulatory follicle present. The suprabasal plasma progesterone concentrations (approximately 1.2 nmol L−1) allowed expression of oestrus at the expected time, but ovulation was delayed owing to the absence of a LH-surge. The resulting prolongation of follicle growth was associated with mild degenerative changes in the follicle wall, i.e. both granulosa and thecal cells presented increased electron density, higher amounts of secondary lysosomes and lipid droplets, increased intercellular spaces with presence of debris. No signs of luteinization were seen.  相似文献   

17.
Holstein heifers were given 5 injections (twice/day) of 10 ml charcoal-extracted bovine follicular fluid (bFF; N = 6) or 10 ml saline (N = 5) beginning 12 h after the onset of oestrus. Blood samples were collected for determination of plasma concentrations of FSH, LH, progesterone and oestradiol-17 beta. Treatment with bFF suppressed the secondary FSH surge (P less than 0.01). Cessation of bFF injections was followed by a rebound period during which FSH was elevated compared with controls (P less than 0.01). Daily ultrasonographic examinations revealed that follicular growth occurred in waves, with 4 of 5 control heifers exhibiting 3 waves and the other 2 waves. In contrast, 5 of 6 bFF-treated animals exhibited 2 waves and the other 3 waves. Appearance of follicles in the first wave was delayed in bFF-treated heifers (Day 3.3 +/- 0.3 compared with Day 1.4 +/- 0.2; P less than 0.0001) and appearance of the dominant follicle of the first wave was delayed (Day 4.5 +/- 0.3 compared with Day 1.8 +/- 0.2; P less than 0.0001). Follicles in the second wave appeared later in animals treated with bFF (Day 12.7 +/- 0.4 compared with Day 10.4 +/- 0.6; P less than 0.01), and the dominant follicle of this wave also appeared later (Day 13.0 +/- 0.5 compared with Day 10.6 +/- 0.5; P less than 0.01). Oestradiol-17 beta increased during the early luteal phase, but this increase occurred later in heifers treated with bFF (peak concentrations on Day 6.3 +/- 0.6 compared with Day 4.2 +/- 0.2; P less than 0.05). LH, progesterone and cycle length were not affected by bFF. Delayed follicular growth associated with suppression of FSH suggests that the secondary FSH surge is important in the initiation of follicular development early in the bovine oestrous cycle, and thus may play a role in the regulation of ovarian follicular dynamics.  相似文献   

18.
The peripheral blood plasma levels of LH, oestradiol-17β and progesterone were recorded during the second and fourth pro-oestrous—oestrous periods in six crossbred (Swedish Landrace X Swedish Yorkshire) gilts. The relationships between hormonal levels, external heat signs and ovarian function were studied.Blood samples were taken every third hour during the pro-oestrous—oestrous periods and during this time the heat detection was performed when blood was collected, otherwise twice daily. The ovaries were inspected by laparoscopy after the first, second and fourth oestrus. The gilts were slaughtered after the fifth oestrus and the genital organs examined.In the five gilts showing five successive regular heats the duration of the second pro-oestrus (reddening and swelling of the vulva) was significantly longer (56.4 ± 5.3 h) than that of the fourth (23.4 ± 6.3 h). The oestrus (standing reflex) duration did not differ, being 51.6 ± 5.4 h for the second and 52.2 ± 9.3 h for the fourth oestrus. The mean oestradiol-17β level was significantly increased during the fourth pro-oestrous—oestrous period (43.9 ± 0.75 pmol) as compared to the second (37.8 ± 0.73 pmol). The LH level was also significantly higher during the fourth (1.61 ± 0.08 μg/l) than during the second pro-oestrous—oestrous period (1.25 ± 0.08 μg/l). There was, however, no difference in the duration of elevated oestradiol levels (> 30 pmol/l). In spite of the higher oestradiol-17β levels, the duration of the external heat signs was reduced during the fourth pro-oestrus when compared to the second. This phenomenon might be explained by a change in susceptibility of vulvar hormonal receptor mechanisms.The sixth gilt displayed three normal heats, but failed to show standing reflex and to ovulate thereafter. The hormonal patterns were normal during the second pro-oestrous—oestrous period. At the expected fourth heat there was a rise of oestradiol but no preovulatory LH peak occurred.  相似文献   

19.
The object of this investigation was to determine the relationships between clinical findings and hormonal patterns in primiparous sows with different lactation length and litter size during lactation, weaning and to the first oestrus. Seven pairs of primiparous full sib sows were used to determine the effect of lactation length with normal litter size. One sow of each pair was assigned to nurse the piglets for 3 weeks (group A) while the other nusred for 5 weeks (group B). Another 8 primiparous sows (group C) were assigned to nurse 2–4 piglets during a 5-week lactation period. Oestrus detection was performed twice daily and laparoscopic examination every 2 weeks. If the sows did not come in oestrus within 3 weeks after weaning they were slaughtered. Peripheral plasma levels of progesterone, oestradiol-17β and LH were estimated by radioimmunoassays throughout the experimental period.  相似文献   

20.
Romney ewes were injected intramuscularly once or twice daily for 3 days with 0, 0.1, 0.5, 1 or 5 ml of bovine follicular fluid (bFF) treated with dextran-coated charcoal, starting immediately after injection of cloprostenol to initiate luteolysis on Day 10 of the oestrous cycle. There was a dose-related suppression of plasma concentrations of FSH, but not LH, during the treatment period. On stopping the bFF treatment, plasma FSH concentrations 'rebounded' to levels up to 3-fold higher than pretreatment values. The mean time to the onset of oestrus was also increased in a dose-related manner by up to 11 days. The mean ovulation rates of ewes receiving 1.0 ml bFF twice daily (1.9 +/- 0.2 ovulations/ewe, mean +/- s.e.m. for N = 34) or 5.0 ml once daily (2.0 +/- 0.2 ovulations/ewe, N = 25) were significantly higher than that of control ewes (1.4 +/- 0.1 ovulations/ewe, N = 35). Comparison of the ovaries of ewes treated with bFF for 24 or 48 h with the ovaries of control ewes revealed no differences in the number or size distribution of antral follicles. However, the large follicles (greater than or equal to 5 mm diam.) of bFF-treated ewes had lower concentrations of oestradiol-17 beta in follicular fluid, contained fewer granulosa cells and the granulosa cells had a reduced capacity to aromatize testosterone to oestradiol-17 beta and produce cyclic AMP when challenged with FSH or LH. No significant effects of bFF treatment were observed in small (1-2.5 mm diam.) or medium (3-4.5 mm diam.) sized follicles. Ewes receiving 5 ml bFF once daily for 27 days, from the onset of luteolysis, were rendered infertile during this treatment period. Oestrus was not observed and ovulation did not occur. Median concentrations of plasma FSH fell to 20% of pretreatment values within 2 days. Thereafter they gradually rose over the next 8 days to reach 60% of pretreatment values where they remained for the rest of the 27-day treatment period. Median concentrations of plasma LH increased during the treatment period to levels up to 6-fold higher than pretreatment values. When bFF treatment was stopped, plasma concentrations of FSH and LH quickly returned to control levels, and oestrus was observed within 2 weeks. The ewes were mated at this first oestrus and each subsequently delivered a single lamb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号