首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of the platelet-activating factor (PAF) receptor leads to a decrease in outward current in murine ventricular myocytes by inhibiting the TASK-1 channel. TASK-1 carries a background or "leak" current and is a member of the two-pore domain potassium channel family. Its inhibition is sufficient to delay repolarization, causing prolongation of the action potential duration, and in some cases, early after depolarizations. We set out to determine the cellular mechanisms that control regulation of TASK-1 by PAF. Inhibition of TASK-1 via activation of the PAF receptor is protein kinase C (PKC)-dependent. Using isoform-specific PKC inhibitor or activator peptides in patch clamp experiments, we now demonstrate that activation of PKCepsilon is both necessary and sufficient to regulate murine TASK-1 current in a heterologous expression system and to induce repolarization abnormalities in isolated myocytes. Furthermore, site-directed mutagenesis studies have identified threonine 381, in the C-terminal tail of murine TASK-1, as a critical residue in this regulation.  相似文献   

2.
In a preceding study we showed that the highly negative resting membrane potential of rat adrenal glomerulosa cells is related to background potassium channel(s), which belong to the two-pore domain channel family. TWIK-related acid-sensitive K+ channel (TASK-1) expression was found in glomerulosa tissue, and the currents elicited by injection of glomerulosa mRNA (I(glom)) or TASK-1 cRNA (I(TASK-1)) showed remarkable similarity in Xenopus laevis oocytes. However, based on the different sensitivity of these currents to acidification, we concluded that TASK-1 may be responsible for a maximum of 25% of the weakly pH-dependent glomerulosa background K+ current. Here we demonstrate that TASK-3, a close relative of TASK-1, is expressed abundantly in glomerulosa cells. Northern blot detected TASK-3 message in adrenal glomerulosa, but not in other tissues. Quantitative RT-PCR experiments indicated even higher mRNA expression of TASK-3 than TASK-1 in glomerulosa tissue. Similarly to the glomerulosa background current, the current expressed by injection of TASK-3 cRNA (I(TASK-3)) was less acid-sensitive than I(TASK-1). Ruthenium red in the micromolar range inhibited I(glom) and I(TASK-3), but not I(TASK-1). Like I(TASK-1), I(TASK-3) was inhibited by stimulation of AT1a angiotensin II receptor coexpressed with the potassium channel. The high level of expression and its pharmacological properties suggest that TASK-3 dominates the resting potassium conductance of glomerulosa cells.  相似文献   

3.
Tandem pore domain (2P) K channels constitute the most diverse family of K channels and are responsible for background (leak or baseline) K currents. Of the 15 human 2P K channels, TASK-1, TASK-2, and TASK-3 are uniquely sensitive to physiologic pH changes as well as being inhibited by local anesthetics and activated by volatile anesthetics. In this study polyclonal antibodies selective for TASK-3 have been used to localize its expression in the rat central nervous system (CNS). TASK-3 immunostaining was found in rat cortex, hypothalamus, and hippocampus. Double immunofluorescent studies identified a discrete population of TASK-3 expressing neurons scattered throughout cortex. Using immunogold electron microscopy TASK-3 was identified at the cell surface associated with synapses and within the intracellular synthetic compartments. These results provide a more finely detailed picture of TASK-3 expression and indicate a role for TASK-3 in modulating cerebral synaptic transmission and responses to CNS active drugs.  相似文献   

4.
5.
TASK-1 belongs to the 2P domain K+ channel family and is the prototype of background K+ channels that set the resting membrane potential and tune action potential duration. Its activity is highly regulated by hormones and neurotransmitters. Although numerous auxiliary proteins have been described to modify biophysical, pharmacological and expression properties of different voltage- and Ca2+-sensitive K+ channels, none of them is known to modulate 2P domain K+ channel activity. We show here that p11 interacts specifically with the TASK-1 K+ channel. p11 is a subunit of annexin II, a cytoplasmic protein thought to bind and organize specialized membrane cytoskeleton compartments. This association with p11 requires the integrity of the last three C-terminal amino acids, Ser-Ser-Val, in TASK-1. Using series of C-terminal TASK-1 deletion mutants and several TASK-1-GFP chimeras, we demonstrate that association with p11 is essential for trafficking of TASK-1 to the plasma membrane. p11 association with the TASK-1 channel masks an endoplasmic reticulum retention signal identified as Lys-Arg-Arg that precedes the Ser-Ser-Val sequence.  相似文献   

6.
TASK-1 encodes an acid- and anaesthetic-sensitive background K(+) current, which sets the resting membrane potential of both cerebellar granule neurons and somatic motoneurons. We demonstrate that TASK-1, unlike the other two pore (2P) domain K(+) channels, is directly blocked by submicromolar concentrations of the endocannabinoid anandamide, independently of the CB1 and CB2 receptors. In cerebellar granule neurons, anandamide also blocks the TASK-1 standing-outward K(+) current, IKso, and induces depolarization. Anandamide-induced neurobehavioural effects are only partly reversed by antagonists of the cannabinoid receptors, suggesting the involvement of alternative pathways. TASK-1 constitutes a novel sensitive molecular target for this endocannabinoid.  相似文献   

7.
Rat mature cerebellar granule, unlike hippocampal neurons, die by apoptosis when cultured in a medium containing a physiological concentration of K+ but survive under high external K+ concentrations. Cell death in physiological K+ parallels the developmental expression of the TASK-1 and TASK-3 subunits that encode the pH-sensitive standing outward K+ current IKso. Genetic transfer of the TASK subunits in hippocampal neurons, lacking IKso, induces cell death, while their genetic inactivation protects cerebellar granule neurons. Neuronal death of cultured rat granule neurons is also prevented by conditions that specifically reduce K+ efflux through the TASK-3 channels such as extracellular acidosis and ruthenium red. TASK leak K+ channels thus play an important role in K+-dependent apoptosis of cerebellar granule neurons in culture.  相似文献   

8.
9.
Platelet-activating factor (PAF), an inflammatory phospholipid, induces ventricular arrhythmia via an unknown ionic mechanism. We can now link PAF-mediated cardiac electrophysiological effects to inhibition of a two-pore domain K(+) channel [TWIK-related acid-sensitive K(+) background channel (TASK-1)]. Superfusion of carbamyl-PAF (C-PAF), a stable analog of PAF, over murine ventricular myocytes causes abnormal automaticity, plateau phase arrest of the action potential, and early afterdepolarizations in paced and quiescent cells from wild-type but not PAF receptor knockout mice. C-PAF-dependent currents are insensitive to Cs(+) and are outwardly rectifying with biophysical properties consistent with a K(+)-selective channel. The current is blocked by TASK-1 inhibitors, including protons, Ba(2+), Zn(2+), and methanandamide, a stable analog of the endogenous lipid ligand of cannabinoid receptors. In addition, when TASK-1 is expressed in CHO cells that express an endogenous PAF receptor, superfusion of C-PAF decreases the expressed current. Like C-PAF, methanandamide evoked spontaneous activity in quiescent myocytes. C-PAF- and methanandamide-sensitive currents are blocked by a specific protein kinase C (PKC) inhibitor, implying overlapping signaling pathways. In conclusion, C-PAF blocks TASK-1 or a closely related channel, the effect is PKC dependent, and the inhibition alters the electrical activity of myocytes in ways that would be arrhythmogenic in the intact heart.  相似文献   

10.
TASK-5, a new member of the tandem-pore K(+) channel family.   总被引:7,自引:0,他引:7  
TASKs are members of the recently identified K(+) channel family (KCNKx). Four TASKs (TASK1-4) identified so far form functional K(+) channels and encode background K(+) channels in various cell types. Recently, another member (TASK-5) was identified in the human genome. We cloned it and studied its tissue expression and functional properties. TASK-5 shares 51% amino acid identity with TASK-1 and TASK-3. Northern blot analysis showed that TASK-4 mRNA was expressed primarily in the adrenal gland and pancreas. Single nucleotide polymorphism (SNP) was found at amino acid position 95 that normally forms part of the K(+) channel selectivity filter. Neither form of TASK-5 showed channel activity when transfected in COS-7 cells. Exchange of C-termini of TASK-3 and TASK-5 failed to generate whole-cell currents. Thus, TASK-5 is a new member of the tandem-pore K(+) channel family but does not produce a functional plasma membrane K(+) current by itself.  相似文献   

11.
董学海  肖骏  李先涛 《生物磁学》2011,(19):3790-3793
双孔钾离子通道是一种背景钾离子通道,广泛分布于各种兴奋和非兴奋细胞中,并具有许多重要的生理功能。TASK-1是双孔钾离子通道家族的重要一员,它对缺氧和细胞外酸化敏感,参与形成心肌动作电住平台期,调节呼吸、肺动脉平滑肌收缩和醛固酮的分泌,并且是麻醉剂的作用靶点,人们不断对其进行研究并取得了很多重要结果,本文将概述双孔钾通道TASK-1的研究进展。  相似文献   

12.
TASK-1 and TASK-3, members of the two-pore-domain channel family, are widely expressed leak potassium channels responsible for maintenance of cell membrane potential and input resistance. They are sites of action for a variety of modulatory agents, including volatile anesthetics and neurotransmitters/hormones, the latter acting via mechanisms that have remained elusive. To clarify these mechanisms, we generated mutant channels and found that alterations disrupting anesthetic (halothane) activation of these channels also disrupted transmitter (thyrotropin-releasing hormone, TRH) inhibition and did so to a similar degree. For both TASK-1 and TASK-3, mutations (substitutions with corresponding residues from TREK-1) in a six-residue sequence at the beginning of the cytoplasmic C terminus virtually abolished both anesthetic activation and transmitter inhibition. The only sequence motif identified with a classical signaling mechanism in this region is a potential phosphorylation site; however, mutation of this site failed to disrupt modulation. TASK-1 and TASK-3 differed insofar as a large portion of the C terminus was necessary for the full effects of halothane and TRH on TASK-3 but not on TASK-1. Finally, tandem-linked TASK-1/TASK-3 heterodimeric channels were fully modulated by anesthetic and transmitter, and introduction of the identified mutations either into the TASK-1 or the TASK-3 portion of the channel was sufficient to disrupt both effects. Thus, both anesthetic activation and transmitter inhibition of these channels require a region at the interface between the final transmembrane domain and the cytoplasmic C terminus that has not been associated previously with receptor signal transduction. Our results also indicate a close molecular relationship between these two forms of modulation, one endogenous and the other clinically applied.  相似文献   

13.
Motor neurons are large cholinergic neurons located in the brain stem and spinal cord. In recent years, a functional role for TASK channels in cellular excitability and vulnerability to anesthetics of motor neurons has been described. Using a polyclonal monospecific antibody against the tandem pore domain K+ channel (K2P channel) TWIK-related acid-sensitive K+ channel (TASK-3), we analyzed the expression of the TASK-3 protein in motor systems of the rat CNS. Immunocytochemical staining showed strong TASK-3 expression in motor neurons of the facial, trigeminal, ambiguus, and hypoglossal nuclei. Oculomotor nuclei (including trochlear and abducens nucleus) were also strongly positive for TASK-3. The parasympathetic Edinger-Westphal nucleus and dorsal vagal nucleus showed significant, but weaker expression compared with somato- and branchiomotoric neurons. In addition, motor neurons in the anterior horn of the spinal cord were also strongly labeled for TASK-3 immunoreactivity. Based on morphological criteria, TASK-3 was found in the somatodendritic compartment of motor neurons. Cellular staining using methyl green and immunofluorescence double-labeling with anti-vesicular acetylcholine transporter (anti-vAChT) indicated ubiquitous TASK-3 expression in motor neurons, whereas in other brain regions TASK-3 showed a widespread but not ubiquitous expression. In situ hybridization using a TASK-3 specific riboprobe verified the expression of TASK-3 in motor neurons at the mRNA level.  相似文献   

14.

Background

Background K+ channels are the principal determinants of the resting membrane potential (RMP) in cardiac myocytes and thus, influence the magnitude and time course of the action potential (AP).

Methods

RT-PCR and in situ hybridization are used to study the distribution of TASK-1 and whole-cell patch clamp technique is employed to determine the functional expression of TASK-1 in embryonic chick heart.

Results

Chicken TASK-1 was expressed in the early tubular heart, then substantially decreased in the ventricles by embryonic day 5 (ED5), but remained relatively high in ED5 and ED11 atria. Unlike TASK-1, TASK-3 was uniformly expressed in heart at all developmental stages. In situ hybridization studies further revealed that TASK-1 was expressed throughout myocardium at Hamilton-Hamburger stages 11 and 18 (S11 &; S18) heart. In ED11 heart, TASK-1 expression was more restricted to atria. Consistent with TASK-1 expression data, patch clamp studies indicated that there was little TASK-1 current, as measured by the difference currents between pH 8.4 and pH 7.4, in ED5 and ED11 ventricular myocytes. However, TASK-1 current was present in the early embryonic heart and ED11 atrial myocytes. TASK-1 currents were also identified as 3 μM anandamide-sensitive currents. 3 μM anandamide reduced TASK-1 currents by about 58% in ED11 atrial myocytes. Zn2+ (100 μM) which selectively inhibits TASK-3 channel at this concentration had no effect on TASK currents. In ED11 ventricle where TASK-1 expression was down-regulated, IK1 was about 5 times greater than in ED11 atrial myocytes.

Conclusion

Functional TASK-1 channels are differentially expressed in the developing chick heart and TASK-1 channels contribute to background K+ conductance in the early tubular embryonic heart and in atria. TASK-1 channels act as a contributor to background K+ current to modulate the cardiac excitability in the embryonic heart that expresses little IK1.  相似文献   

15.
TASK-3, a new member of the tandem pore K(+) channel family   总被引:18,自引:0,他引:18  
  相似文献   

16.
Previously, we demonstrated an autoregulatory feedback loop in the rat carotid body (CB), involving presynaptic GABA(B) receptor-mediated activation of the background K(+) channel TASK-1. Here, we examined the effects of the selective GABA(B) receptor agonist baclofen on K(+) currents in immortalised adrenomedullary chromaffin (MAH) cells, which share the same sympathoadrenal lineage as CB type I cells. Under symmetrical K(+) conditions, 50 microM baclofen enhanced a K(+) current which was linear and reversed close to 0 mV. Under physiological K(+) conditions, baclofen enhanced outward K(+) current and caused membrane hyperpolarisation, effects inhibited by 100 nM CGP 55845. Current enhancement was virtually abolished in the presence of 300 microM Zn(2+), a selective inhibitor of TASK-1. When recording membrane potential from MAH cells in clusters, hypoxic depolarisation was augmented by 100 nM CGP 55845. These data demonstrate that GABA(B) receptors mediate autoreceptor feedback in the adrenal medulla presumably via TASK-1, demonstrating a common autoregulatory feedback pathway in neurosecretory, chemosensitive cells.  相似文献   

17.
18.
NOX4 as an oxygen sensor to regulate TASK-1 activity   总被引:1,自引:0,他引:1  
Lee YM  Kim BJ  Chun YS  So I  Choi H  Kim MS  Park JW 《Cellular signalling》2006,18(4):499-507
When oxygen sensing cells are excited by hypoxia, background K+ currents are inhibited. TASK-1, which is commonly expressed in oxygen sensing cells and makes a background K+ current, is inactivated by hypoxia. Thus TASK-1 is a candidate molecule responsible for hypoxic excitation. However, TASK-1 per se cannot sense oxygen and may require a regulatory protein that can. In the present study, we propose that the NADPH oxidase NOX4 functions as an oxygen-sensing partner and that it modulates the oxygen sensitivity of TASK-1. Confocal imaging revealed the co-localization of TASK-1 and NOX4 in the plasma membrane. In HEK293 cells expressing NOX4 endogenously, the activity of expressed TASK-1 was moderately inhibited by hypoxia, and this oxygen response was significantly augmented by NOX4. Moreover, the oxygen sensitivity of TASK-1 was abolished by NOX4 siRNA and NADPH oxidase inhibitors. These results suggest a novel function for NOX4 in the oxygen-dependent regulation of TASK-1 activity.  相似文献   

19.
双孔钾离子通道是一种背景钾离子通道,广泛分布于各种兴奋和非兴奋细胞中,并具有许多重要的生理功能。TASK-1是双孔钾离子通道家族的重要一员,它对缺氧和细胞外酸化敏感,参与形成心肌动作电位平台期,调节呼吸、肺动脉平滑肌收缩和醛固酮的分泌,并且是麻醉剂的作用靶点,人们不断对其进行研究并取得了很多重要结果,本文将概述双孔钾通道TASK-1的研究进展。  相似文献   

20.
Glutamine, the preferred precursor for neurotransmitter glutamate and GABA, is likely to be the principal substrate for the neuronal System A transporter SNAT1 in vivo. We explored the functional properties of SNAT1 (the product of the rat Slc38a1 gene) by measuring radiotracer uptake and currents associated with SNAT1 expression in Xenopus oocytes and determined the neuronal-phenotypic and cellular distribution of SNAT1 by confocal laser-scanning microscopy alongside other markers. We found that SNAT1 mediates transport of small, neutral, aliphatic amino acids including glutamine (K0.5 approximately 0.3 mm), alanine, and the System A-specific analogue 2-(methylamino)isobutyrate. Amino acid transport is driven by the Na+ electrochemical gradient. The voltage-dependent binding of Na+ precedes that of the amino acid in a simultaneous transport mechanism. Li+ (but not H+) can substitute for Na+ but results in reduced Vmax. In the absence of amino acid, SNAT1 mediates Na+-dependent presteady-state currents (Qmax approximately 9 nC) and a nonsaturable cation leak with selectivity Na+, Li+ > H+, K+. Simultaneous flux and current measurements indicate coupling stoichiometry of 1 Na+ per 1 amino acid. SNAT1 protein was detected in somata and proximal dendrites but not nerve terminals of glutamatergic and GABAergic neurons throughout the adult CNS. We did not detect SNAT1 expression in astrocytes but detected its expression on the luminal membranes of the ependyma. The functional properties and cellular distribution of SNAT1 support a primary role for SNAT1 in glutamine transport serving the glutamate/GABA-glutamine cycle in central neurons. Localization of SNAT1 to certain dopaminergic neurons of the substantia nigra and cholinergic motoneurons suggests that SNAT1 may play additional specialized roles, providing metabolic fuel (via alpha-ketoglutarate) or precursors (cysteine, glycine) for glutathione synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号