首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The syndromes of thyroid hormone resistance may affect overall or only some tissues. The generalized resistance is an inherited disease which involves a familial eumetabolic or hypometabolic goiter, increased free thyroid hormones with normal or elevated plasma TSH levels; children may present mental retardation, deafness, short stature and delayed bone age. The disease is frequently misdiagnosed. In vivo and in vitro tests may be used to assess the diagnosis. The defect of increment of sex hormone-binding globulin after administration of T3 may be useful in the demonstration of the disease. Therapy uses high T4 or T3 doses in hypometabolic patients. The generalized thyroid hormone resistance could be linked to abnormalities at the T3 receptor and c-erb A gene level, as a consequence of different point mutations or deletions involving the hormone-binding domain.  相似文献   

2.
The connection of the coronary vasculature to the aorta is one of the last essential steps of cardiac development. However, little is known about the signaling events that promote normal coronary artery formation. The bone morphogenetic protein (BMP) signaling pathway regulates multiple aspects of endothelial cell biology but has not been specifically implicated in coronary vascular development. BMP signaling is tightly regulated by numerous factors, including BMP-binding endothelial cell precursor-derived regulator (BMPER), which can both promote and repress BMP signaling activity. In the embryonic heart, BMPER expression is limited to the endothelial cells and the endothelial-derived cushions, suggesting that BMPER may play a role in coronary vascular development. Histological analysis of BMPER−/− embryos at early embryonic stages demonstrates that commencement of coronary plexus differentiation is normal and that endothelial apoptosis and cell proliferation are unaffected in BMPER−/− embryos compared with wild-type embryos. However, analysis between embryonic days 15.5–17.5 reveals that, in BMPER−/− embryos, coronary arteries are either atretic or connected distal to the semilunar valves. In vitro tubulogenesis assays indicate that isolated BMPER−/− endothelial cells have impaired tube formation and migratory ability compared with wild-type endothelial cells, suggesting that these defects may lead to the observed coronary artery anomalies seen in BMPER−/− embryos. Additionally, recombinant BMPER promotes wild-type ventricular endothelial migration in a dose-dependent manner, with a low concentration promoting and high concentrations inhibiting migration. Together, these results indicate that BMPER-regulated BMP signaling is critical for coronary plexus remodeling and normal coronary artery development.  相似文献   

3.
4.
5.
The capacity for myocardial perfusion depends on the structure of the coronary microvascular bed. Coronary microvessels may adapt their structure to various stimuli. We tested whether the local pressure profile affects tone and remodeling of porcine coronary microvessels. Subendocardial vessels (approximately 160 microm, n=53) were cannulated and kept in organoid culture for 3 days under different transvascular pressure profiles: Osc 80: mean 80 mmHg, 60 mmHg peak-peak sine wave pulsation amplitude at 1.5 Hz; St 80: steady 80 mmHg; Osc 40: mean 40 mmHg, 30 mmHg amplitude; St 40: steady 40 mmHg. Under the Osc 80 profile, modest tone developed, reducing the diameter to 81+/-14% (mean+/-SE, n=6) of the maximal, passive diameter. No inward remodeling was found here, as determined from the passive pressure-diameter relation after 3 days of culture. Under all other profiles, much more tone developed (e.g., Osc 40: to 26+/-3%, n=7). In addition, these vessels showed eutrophic (i.e., without a change in wall cross-sectional area) inward remodeling (e.g., Osc 40: passive diameter reduction by 24+/-3%). The calcium blocker amlodipine induced maintained dilation in St 40 vessels and reversed the 22+/-3% (n=6) inward remodeling to 15+/-3% (n=8) outward remodeling toward day 3. Vessels required a functional endothelium to maintain structural integrity in culture. Our data indicate that reduction of either mean pressure or pulse pressure leads to microvascular constriction followed by inward remodeling. These effects could be reversed by amlodipine. Although microvascular pressure profiles distal to stenoses are poorly defined, these data suggest that vasodilator therapy could improve subendocardial microvascular function and structure in coronary artery disease.  相似文献   

6.
D B Hoover 《Peptides》1991,12(5):983-988
Effects of spantide ([D-Arg1,D-Trp7,9,Leu11]substance P) on coronary resistance vessels were studied in isolated guinea pig hearts perfused at constant rate with isotonic buffer containing 20 or 40 mM KCl. Spantide (1 microM) caused a 20-fold rightward shift of the substance P (SP) dose-response curve for vasodilation with no change in maximum (KB = 5.3 x 10(-8) M). Bolus injections of 0.25 to 250 pmol spantide had no effect, but higher doses caused a brief vasodilation followed by a larger, more prolonged vasoconstriction. Histamine produced similar changes in perfusion pressure. Antihistamines (H1 and H2) reduced or blocked responses to spantide and histamine. These findings indicate spantide is a competitive antagonist to SP in guinea pig coronary resistance vessels. In addition, high doses of spantide can cause prominent vascular effects which are mediated by histamine.  相似文献   

7.
Euthyroid sick syndrome characterized by reduced levels of thyroid hormones (THs) is observed in patients with meningococcal shock. It has been found that the level of THs reflects disease severity and is predictive for mortality. The present study was conducted to investigate the impact of THs on host defense during meningococcal infection. We found that supplementation of thyroxine to mice infected with Neisseria meningitidis enhanced bacterial clearance, attenuated the inflammatory responses and promoted survival. In vitro studies with macrophages revealed that THs enhanced bacteria-cell interaction and intracellular killing of meningococci by stimulating inducible nitric oxide synthase (iNos)-mediated NO production. TH treatment did not activate expression of TH receptors in macrophages. Instead, the observed TH-directed actions were mediated through nongenomic pathways involving the protein kinases PI3K and ERK1/2 and initiated at the membrane receptor integrin αvβ3. Inhibition of nongenomic TH signaling prevented iNos induction, NO production and subsequent intracellular bacterial killing by macrophages. These data demonstrate a beneficial role of THs in macrophage-mediated N. meningitidis clearance. TH replacement might be a novel option to control meningococcal septicemia.  相似文献   

8.
9.
10.
11.
CO is a biologically active gas that produces cellular effects by multiple mechanisms. Because cellular binding of CO by heme proteins is increased in hypoxia, we tested the hypothesis that CO interferes with hypoxic pulmonary vascular remodeling in vivo. Rats were exposed to inspired CO (50 parts/million) at sea level or 18,000 ft of altitude [hypobaric hypoxia (HH)], and changes in vessel morphometry and pulmonary pressure-flow relationships were compared with controls. Vascular cell single strand DNA (ssDNA) and proliferating cell nuclear antigen (PCNA) were assessed, and changes in gene and protein expression of smooth muscle alpha-actin (sm-alpha-actin), beta-actin, and heme oxygenase-1 (HO-1) were evaluated by Western analysis, RT-PCR, and immunohistochemistry. After 21 days of HH, vascular pressure at constant flow and vessel wall thickness increased and lumen diameter of small arteries decreased significantly. The presence of CO, however, further increased both pulmonary vascular resistance (PVR) and the number of small muscular vessels compared with HH alone. CO + HH also increased vascular PCNA and nuclear ssDNA expression compared with hypoxia, suggesting accelerated cell turnover. CO in hypoxia downregulated sm-alpha-actin and strongly upregulated beta-actin. CO also increased lung HO activity and HO-1 mRNA and protein expression in small pulmonary arteries during hypoxia. These data indicate an overall propensity of CO in HH to promote vascular remodeling and increase PVR in vivo.  相似文献   

12.
Thyroid hormone and myocardial ischaemia   总被引:1,自引:0,他引:1  
Thyroid hormone has various effects on the cardiovascular system and its effects on cardiac contractility, heart rhythm and vascular function has long been recognized. However, new evidence is emerged on the importance of thyroid hormone in the response of the myocardium to ischaemic stress and cardiac remodelling following myocardial infarction. Based on this new information, this review highlights the role of thyroid hormone in myocardial ischaemia and cardiac remodelling, the possible underlying mechanisms and the potential therapeutic implications. Thyroid hormone or analogs may prove new therapeutic agents for treating ischaemic heart disease.  相似文献   

13.
Measurements of fluorescence at >420 nm and extracted NADPH in mitochondria obtained from the livers of hypothyroid rats show that the addition of Pi, ADP and glutamate rapidly reduces over 90% of the total reducible intrinsic pyridine nucleotides in State 3, compared with 20% in normals. The total fluorescence intensity change and reducible NADP+ is about twice normal in hypothyroid mitochondria. Adding 6–30 µMl-thyroxine to hypothyroid mitochondriain vitro decreases and delays the substrate-induced reduction of pyridine nucleotides, and excludes both NADP+ from such reduction and NADPH from oxidation by added ADP + Pi, without changing the high NADP(H) content. The correcting actions of the hormone are rapidly reversed by albumin, probably by binding free hormone. Changes in respiration do not appear to account for these observations. There is indirect evidence for decreased phosphorylation of added ADP in hypothyroid mitochondria, and a correction by added hormone. The hormonal actions on NADP(H) redox reactions are not reproduced by 1 to 6 µM dinitrophenolin vitro.l-Thyroxine appears to specifically block the participation of NADP (H) in redox reactions in mitochondria from hypothyroid rats, perhaps by effecting a sequestration of the nucleotide, by inhibiting the pyridine nucleotide transhydrogenase, or by activating an energy-linked process that competes with transhydrogenation.Papers I–III in this series were published inArch. Biochem. Biophys.I–124 (1968) 238.II–124 (1968) 248.III–150 (1972) 618.This work was supported by grants from the NIH (AM13564) and from The John A. Hartford Foundation.  相似文献   

14.
15.
Thyroid hormone and uncoupling proteins   总被引:2,自引:0,他引:2  
p53 is a representative tumor suppressor whose dysfunction is a major cause of human cancer syndrome. Here we isolated flies lacking Dmp53, which encodes the single Drosophila orthologue of mammalian p53 family. Dmp53 null mutants well developed into adults, only displaying mild defects in longevity and fertility. However, genomic stability and viability of Dmp53 mutants dramatically decreased upon ionizing irradiation. Moreover, mutating Dmp53 abolished irradiation-induced apoptosis and reaper induction. These results indicate that Dmp53 is a central component of DNA damage-dependent apoptotic signaling.  相似文献   

16.
Resistance to thyroid hormone (RTH) syndrome is associated with mutations in the human thyroid hormone receptor-beta (hTRbeta), many of which show marked reduction in hormone binding. Here, we investigated the structural consequences of two RTH mutants (A234T and R243Q), residing in the flexible N-terminal portion of the ligand binding domain (LBD), which exhibit modestly reduced hormone binding with impaired release of corepressor. X-ray crystallography analyses revealed that these two RTH mutants modulate the position of this flexible region by either altering the movement of helix 1 (A234T) or disrupting a salt bridge (R243Q). The subsequent increased flexibility and mobility in regions after the two sites of mutation coincided with a disorganized LBD. Consistent with this finding, the ability of these mutant N-terminal regions (234-260) to recruit the remaining LBD was decreased in a ligand-dependent helix assembly assay. Collectively, these data suggest that structural information imparted by the flexible segment in the N-terminal LBD is critical for overall stability of the LBD. Thus, these structural analyses provide mechanistic insight into the etiology of RTH disease in human TRbeta mutants that exhibit hormone binding with decreased ligand-dependent corepressor release.  相似文献   

17.
Dietary supplementation with eicosapentaenoic acid (EPA) alters arachidonate metabolism. This study characterizes the effect of dietary EPA on endothelium-dependent vasodilation to acetylcholine (ACH) and ATP in guinea pig coronary resistance vessels. Guinea pigs were fed standard chow (n = 6), standard chow+sesame seed oil (n = 6), or standard chow+menhaden fish oil (17% EPA; n = 6). Coronary vasodilations were examined in the isolated, potassium-arrested heart utilizing a modified Langendorff preparation. Coronary vessels were constricted with prostaglandin F2 alpha and relaxed with ACH (5.5 x 10(-9)-10(-6) moles) or ATP (10(-10)-10(-7) moles). Endothelium-dependent dilations to ACH, but not ATP, were attenuated by dietary supplementation with EPA. To assess the role of the endothelium in modulating vascular responses to agonists following dietary manipulation, the perfusate was stimulated by electrolysis (9 V, 4 Hz, 2 msec) in order to generate free radicals, which we have shown to preferentially damage the endothelium. After endothelial damage, responses to ACH, ATP, and nitroprusside were similar between the dietary groups. In an additional group of standard diet animals (n = 6) experiments were performed to assess the role of prostanoid metabolism in affecting coronary vascular reactivity. Perfusion of hearts with indomethacin (14 microM) reduced endothelium-dependent vasodilations to ACH (5.5 x 10(-9)-10(-6) moles), but not to ATP (10(-10)-10(-7) moles). After endothelial damage, infusion of ACH resulted in vasoconstriction, whereas vasodilation responses to ATP were absent. We conclude that dietary supplementation with EPA inhibits endothelium-dependent dilations to ACH in guinea pig coronary microvessels. These diet-related differences in vascular reactivity may be related to the fish-oil-induced alteration of vasodilator prostaglandin metabolism. In the coronary bed, different endothelial factors appear to mediate relaxation to ACH and ATP.  相似文献   

18.
Resistance arteries are able to adapt to physiological and pathophysiological stimuli to maintain adequate perfusion according to the metabolic demand of the tissue. Although vasomotor control allows rapid adaptation of lumen diameter, vascular remodeling constitutes an active process that occurs in response to long-term alterations of hemodynamic parameters. Unfortunately, this initially adaptive process contributes to the pathology of vascular diseases. Recent studies have demonstrated the participation of Rho protein signaling pathways in several cardiovascular pathologies including hypertension, coronary artery spasm, effort angina, atherosclerosis, and restenosis. Functional analyses have further revealed that RhoA-dependent pathways are involved in excessive contraction, migration, and proliferation associated with arterial diseases. The present review focuses on the role of Rho proteins, in particular RhoA, in vascular smooth muscle cells and the involvement of Rho-dependent signaling pathways in resistance artery remodeling, more particularly in relation to hypertension.  相似文献   

19.
On the basis of in vitro experiments showing that endothelin (ET)-1 interferes with smooth muscle ATP-sensitive K(+) (K(ATP)) channel opening, which is pivotal in beta-adrenergic coronary dilation, we hypothesized that pathophysiological plasma ET-1 levels impair beta-adrenergic dilation of resistance coronary vessels. In conscious instrumented dogs, graded intravenous doses of dobutamine caused the expected inotropic responses. As myocardial O(2) consumption (MVo(2)) increased, the disproportionate rise in coronary sinus (CS) Po(2) indicates that increases in coronary blood flow (CBF) exceeded metabolic requirements, consistent with beta-adrenergic dilation. ET-1 intravenous infusions, to reach pathophysiological plasma levels, reduced slopes of the Po(2)-MVo(2) and CBF-MVo(2) relations. In contrast, the first derivative of left ventricular pressure over time responses to dobutamine were not impaired during ET-1 delivery. Clazosentan, an ET(A) receptor blocker, prevented reduction of the slope of Po(2)-MVo(2) and CBF-MVo(2) relations. After ganglionic blockade to exclude reflex influences, ET-1 still reduced slopes of Po(2)-MVo(2) and CBF-MVo(2) relations. To assess effects of ET-1 on endothelium-dependent and -independent coronary vascular responses, intracoronary ACh and nitroglycerin were given to directly target coronary vessels. CBF responses to ACh and nitroglycerin were maintained during ET-1 delivery. In contrast, responses to intracoronary K(ATP) channel-dependent dilators adenosine and lemakalim were impaired by ET-1. In conclusion, pathophysiological levels of ET-1 impaired beta-adrenergic dilation of resistance coronary vessels through an ET(A) receptor-dependent process. In contrast, left ventricular inotropic responses to dobutamine were not impaired during ET-1 delivery. Our data suggest that ET-1 may interfere with smooth muscle K(ATP) channels to impair beta-adrenergic coronary dilation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号