首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thyroid dysfunction is common in individuals with diabetes mellitus (DM) and may contribute to the associated cardiac dysfunction. However, little is known about the extent and pathophysiological consequences of low thyroid conditions on the heart in DM. DM was induced in adult female Sprague Dawley (SD) rats by injection of nicotinamide (N; 200 mg/kg) followed by streptozotocin (STZ; 65 mg/kg). One month after STZ/N, rats were randomized to the following groups (N = 10/group): STZ/N or STZ/N + 0.03 μg/mL T3; age-matched vehicle-treated rats served as nondiabetic controls (C). After 2 months of T3 treatment (3 months post-DM induction), left ventricular (LV) function was assessed by echocardiography and LV pressure measurements. Despite normal serum thyroid hormone (TH) levels, STZ/N treatment resulted in reductions in myocardial tissue content of THs (T3 and T4: 39% and 17% reduction versus C, respectively). Tissue hypothyroidism in the DM hearts was associated with increased DIO3 deiodinase (which converts THs to inactive metabolites) altered TH transporter expression, reexpression of the fetal gene phenotype, reduced arteriolar resistance vessel density, and diminished cardiac function. Low-dose T3 replacement largely restored cardiac tissue TH levels (T3 and T4: 43% and 10% increase versus STZ/N, respectively), improved cardiac function, reversed fetal gene expression and preserved the arteriolar resistance vessel network without causing overt symptoms of hyperthyroidism. We conclude that cardiac dysfunction in chronic DM may be associated with tissue hypothyroidism despite normal serum TH levels. Low-dose T3 replacement appears to be a safe and effective adjunct therapy to attenuate and/or reverse cardiac remodeling and dysfunction induced by experimental DM.  相似文献   

2.

Background

A large body of evidence suggests that thyroid hormones (THs) are beneficial for the treatment of cardiovascular disorders. We have shown that 3 days of triiodo-L-thyronine (T3) treatment in myocardial infarction (MI) rats increased left ventricular (LV) contractility and decreased myocyte apoptosis. However, no clinically translatable protocol is established for T3 treatment of ischemic heart disease. We hypothesized that low-dose oral T3 will offer safe therapeutic benefits in MI.

Methods and Results

Adult female rats underwent left coronary artery ligation or sham surgeries. T3 (~6 μg/kg/day) was available in drinking water ad libitum immediately following MI and continuing for 2 month(s) (mo). Compared to vehicle-treated MI, the oral T3-treated MI group at 2 mo had markedly improved anesthetized Magnetic Resonance Imaging-based LV ejection fraction and volumes without significant negative changes in heart rate, serum TH levels or heart weight, indicating safe therapy. Remarkably, T3 decreased the incidence of inducible atrial tachyarrhythmias by 88% and improved remodeling. These were accompanied by restoration of gene expression involving several key pathways including thyroid, ion channels, fibrosis, sympathetic, mitochondria and autophagy.

Conclusions

Low-dose oral T3 dramatically improved post-MI cardiac performance, decreased atrial arrhythmias and cardiac remodeling, and reversed many adverse changes in gene expression with no observable negative effects. This study also provides a safe and effective treatment/monitoring protocol that should readily translate to humans.  相似文献   

3.
4.
Diabetic cardiomyopathy is a specific disease process distinct from coronary artery disease and hypertension. The disease features cardiac remodeling stimulated by hyperglycemia of the left ventricle wall and disrupts contractile functions. Cardiac mast cells may be activated by metabolic byproducts resulted from hyperglycermia and then participate in the remodeling process by releasing a multitude of cytokines and bioactive enzymes. Nedocromil, a pharmacologic stabilizer of mast cells, has been shown to normalize cytokine levels and attenuate cardiac remodeling. In this study, we describe the activation of cardiac mast cells by inducing diabetes in normal mice using streptozotocin (STZ). Next, we treated the diabetic mice with nedocromil for 12 weeks and then examined their hearts for signs of cardiac remodeling and quantified contractile function. We observed significantly impaired heart function in diabetic mice, as well as increased cardiac mast cell density and elevated mast cell secretions that correlated with gene expression and aberrant cytokine levels associated with cardiac remodeling. Nedocromil treatment halted contractile dysfunction in diabetic mice and reduced cardiac mast cell density, which correlated with reduced bioactive enzyme secretions, reduced expression of extracellular matrix remodeling factors and collagen synthesis, and normalized cytokine levels. However, the results showed nedocromil treatments did not return diabetic mice to a normal state. We concluded that manipulation of cardiac mast cell function is sufficient to attenuate cardiomyopathy stimulated by diabetes, but other cellular pathways also contribute to the disease process.  相似文献   

5.
Hyperhomocysteinemia (Hhe), linked to cardiovascular disease by epidemiological studies, may be an important factor in adverse cardiac remodeling in hypertension. Specifically, convergence of myocardial and vascular alterations promoted by Hhe and hypertension may exacerbate cardiac remodeling and myocardial dysfunction. We studied male spontaneously hypertensive rats fed one of three diets: control, intermediate Hhe inducing, or severe Hhe inducing. After 10 wk of dietary intervention, cardiac function was assessed in vitro, and cardiac and coronary arteriolar remodeling were monitored by histomorphometric, immunohistochemical, and biochemical techniques. Results showed that Hhe induced diastolic dysfunction, as characterized by the diastolic pressure-volume curve, without significant changes in baseline systolic function. Perivascular collagen levels were increased by Hhe, and there was an increase in left ventricular hydroxyproline levels. Myocyte size was not affected. Coronary arteriolar wall thickness increased with Hhe due to smooth muscle hyperplasia. Mast cells increased in parallel with Hhe and collagen accumulation. In summary, 10 wk of Hhe caused coronary arteriolar remodeling, myocardial collagen deposition, and diastolic dysfunction in hypertensive rats.  相似文献   

6.
Although metformin is widely prescribed in diabetes, its use with associated cardiac dysfunction remains debatable. In the current study, we investigated the effect of metformin on coronary microvasculature in experimental diabetic cardiomyopathy (DCM) induced by streptozotocin. Administration of metformin after induction of DCM, reversed almost all cardiomyocyte degenerative changes induced by DCM. Metformin diminished the significantly increased (p?<?0.05) collagen deposited in the DCM. In addition metformin had improved the density of the significantly decreased arteriolar (αSMA+) and capillary (CD31+) coronary microvasculature compared to that of the DCM and non-diabetics (ND) with downregulation of the significantly increased expression (p?<?0.05) of COL-I, III, TGF-β, CTGF, ICAM and VCAM genes. Therefore metformin may be beneficial in limiting the fibrotic and the vascular remodeling occurring in DCM at the genetic as well as the structural levels.  相似文献   

7.

Background

An increasing body of evidence indicates that left ventricular (LV) remodeling, especially the degree of reactive myocardial hypertrophy after myocardial infarction (MI), differs in males and females. Surprisingly, to date, the sex-specific post-MI alterations of the coronary vasculature remain undetermined. Therefore, we tested the hypothesis that adaptive coronary arteriolar and capillary modifications occurring in response to reactive myocyte hypertrophy differ between middle-aged male and female post-MI rats.

Methods

A large MI was induced in 12-month-old male (M-MI) and female (F-MI) Sprague–Dawley rats by ligation of the left coronary artery. Four weeks after surgery, rats with transmural infarctions, greater than 50% of the LV free wall (FW), were evaluated. Sham-operated male (M-Sham) and female (F-Sham) rats served as an age-matched controls.

Results

F-MI and M-MI rats had similar sized infarcts (61.3%?±?3.9% vs. 61.5%?±?1.2%) and scale of LV remodeling, as indicated analogous remodeling indices (1.41?±?0.11 vs. 1.39?±?0.09). The degree of reactive post-MI myocardial hypertrophy was adequate to normalize LV weight-to-body weight ratio in both sexes; however, the F-MI rats, in contrast to males, showed no myocyte enlargement in the LVFW epimyocardium. At the same time, a greater than 50% expansion of myocyte area in the male epimyocardium and in the female endomyocardium was accompanied by a 23% (P?<?0.05) increase in capillary-to-myocyte ratio, indicative of adaptive angiogenesis. Based on arteriolar length density in post-MI hearts, the resistance vessels grew in the male LVFW as well as the septum by 24% and 29%, respectively. In contrast, in females, a significant (30%) expansion of arteriolar bed was limited only to the LVFW. Moreover, in F-MI rats, the enlargement of the arteriolar bed occurred predominantly in the vessels with diameters <30 μm, whereas in M-MI rats, a substantial (two- to threefold) increase in the density of larger arterioles (30 to 50 μm in diameter) was also documented.

Conclusion

Our data reveal that while both sexes have a relatively similar pattern of global LV remodeling and adaptive angiogenesis in response to a large MI, male and female middle-aged rats differ markedly in the regional scale of reactive cardiac myocyte hypertrophy and adaptive arteriogenesis.  相似文献   

8.
Organ fibrosis has been viewed as a major medical problem that leads to progressive dysfunction of the organ and eventually the death of patients. Stress-related hormone norepinephrine (NE) has been reported to exert fibrogenic actions in the injured organ. Nix plays a critical role in pressure overload-induced cardiac remodeling and heart failure through mediating cardiomyocyte apoptosis. However, cardiac remodeling also includes fibrosis. Whether Nix is involved in stress-induced fibrosis remains unclear. The present study was designed to determine the role of Nix in NE-induced NIH/3T3 fibroblasts. The results showed that Nix was upregulated and closely associated with cell proliferation, collagen and fibronectin expression in NIH/3T3 fibroblasts following NE treatment. Overexpression of Nix promoted collagen and fibronectin expression, whereas the suppression of Nix resulted in a strong reduction in collagen and fibronectin expression. Moreover, the increases in collagen and fibronectin expression induced by NE were successively increased when Nix was overexpressed and reduced when Nix was inhibited. Furthermore, we demonstrated that the PKC activation is responsible for the upregulation of Nix induced by NE. Inhibition of Nix expression with α-adrenoceptor antagonist, β-adrenoceptor antagonist or PKC inhibitor attenuated NE-induced collagen and fibronectin expression. Our data revealed that Nix is a novel mediator of NE-induced fibrosis. Thus, it would provide a new insight into the development of effective preventative measures and therapies of tissue fibrosis.  相似文献   

9.
Myocardial infarction (MI) is characterized by ventricular remodeling, hypertrophy of the surviving myocardium, and an insufficient angiogenic response. Thyroxine is a powerful stimulus for myocardial angiogenesis. Male rats that underwent coronary artery ligation and subsequent MI were given 3,5-diiodothyropropionic acid (DITPA; MI+DITPA group) during a 3-wk period. We evaluated ventricular remodeling using echocardiography and histology and myocardial vessel growth using image analysis. Protein expression was assessed using Western blotting and immunohistochemistry. This study tested the hypothesis that the thyroxine analog DITPA facilitates angiogenesis and influences postinfarction remodeling in the surviving hypertrophic myocardium. The increase in the region of akinesis (infarct expansion) was blunted in the MI+DITPA rats compared with the MI group (3 vs. 21%); the treated rats had smaller percent increases in the left ventricular (LV) volume (64 +/- 14 vs. 95 +/- 12) and the LV volume-to-mass ratio (47 +/- 13 vs. 84 +/- 10) as well as a blunted decrease in ejection fraction (-9 +/- 8 vs. -30 +/- 7%). Arteriolar length density was higher after treatment in the largest (>50% of the free wall) infarcts (64 +/- 3 vs. 43 +/- 7). Angiogenic growth factors [vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF)] and the angiopoietin receptor tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Tie-2) values were elevated during the first week after infarction. DITPA did not cause additional increases in VEGF or Tie-2 values but did induce an increase in bFGF value after 3 days of treatment. This study provides the first evidence for an anatomical basis, i.e., attenuated ventricular remodeling and arteriolar growth, for improved function attributed to DITPA therapy of the infarcted heart. The favorable influences of DITPA on LV remodeling after large infarction are principally due to border zone preservation.  相似文献   

10.
The link between thyroid dysfunction and cardiovascular diseases has been recognized for more than 100 years. Although overt hypothyroidism leads to impaired cardiac function and possibly heart failure, the cardiovascular consequences of borderline low thyroid function are not clear. Establishment of a suitable animal model would be helpful. In this study, we characterized a rat model to study the relationship between cardiovascular function and graded levels of thyroid activity. We used rats with surgical thyroidectomy and subcutaneous implantation of slow release pellets with three different T(4) doses for 3 wk. In terminal experiments, cardiac function was evaluated by echocardiograms and hemodynamics. Myocardial arteriolar density was also quantified morphometrically. Thyroid hormone levels in serum and heart tissue were determined by RIA assays. Thyroidectomy alone led to cardiac atrophy, severe cardiac dysfunction, and a dramatic loss of arterioles. The low T(4) dose normalized serum T(3) and T(4) levels, but cardiac tissue T(3) and T(4) remained below normal. Low-dose T(4) failed to prevent cardiac atrophy or restore cardiac function and arteriolar density to normal values. All cardiac function parameters and myocardial arteriolar density were normalized with the middle dose of T(4), whereas the high dose produced hyperthyroidism. Our results show that thyroid hormones are important regulators of cardiac function and myocardial arteriolar density. This animal model will be useful in studying the pathophysiological consequences of mild thyroid dysfunction. Results also suggest that cardiac function may provide valuable supplemental information in proper diagnosis of mild thyroid conditions.  相似文献   

11.
We examined the effects of thyroid hormones (THs) on left ventricular (LV) function and myocyte remodeling in rats with spontaneously hypertensive heart failure (SHHF). SHHF rats were treated with three different TH doses from 20-21 mo of age. In terminal experiments, LV function (as determined by echocardiography and catheterization) and isolated myocyte shape were examined in SHHF rat groups and age-matched Wistar-Furth control animals. Compared with Wistar-Furth rats, the ratio of alpha- to beta-myosin was reduced in untreated SHHF rats. The alpha-to-beta-myosin ratio increased in all TH groups, which suggests a reversal of the fetal gene program. Low-dose TH produced no changes in LV myocyte size or function, but high-dose TH produced signs of hyperthyroidism (e.g., increased heart weight, tachycardia). The chamber diameter-to-wall thickness ratio declined with increasing dose due to reduced chamber diameter and increased wall thickness. This resulted in a 38% reduction in LV systolic wall stress in the middle- and high-dose groups despite sustained hypertension. Isolated myocyte data indicated that chamber remodeling and reduced wall stress were due to a unique alteration in myocyte transverse shape (e.g., reduced major diameter and increased minor diameter). Based on our present understanding of ventricular remodeling and wall stress, we believe these changes are likely beneficial. Results suggest that TH may be an important regulator of myocyte transverse shape in heart disease.  相似文献   

12.
We examined a possible mechanistic interaction between leptin and thyroid hormones in rats with hypothyroidism induced by thyroidectomy (TX) and propylthiouracil administration. In study 1, the TX rats were treated by vehicle (V, n = 9) or by recombinant murine leptin (L, 0.3 mg. kg(-1). day(-1), n = 9) or were pair-fed (PF, n = 9) against L. In study 2, the TX rats were all given 3, 3'5'-triiodo-L-thyronine (T(3)) replacement (T, 5 microg. kg(-1). day(-1)) to correct hypothyroidism. They were then subdivided into three groups, namely, vehicle (T+V, n = 9), leptin (T+L, n = 10), and pair-feeding (T+PF, n = 9), similar to study 1 except for T(3) (T). Reduced food consumption and weight gain in the TX rats were reversed by T(3) replacement. Leptin suppressed food intake in the TX rats regardless of T(3) replacement. O(2) consumption (VO(2)) and CO(2) production (VCO(2)) were reduced in TX rats (P < 0.05 vs. normal) but were normalized by either T(3) or leptin treatment. T+L additively increased VO(2) and VCO(2) (P < 0.05 vs. TX, T(3), and L). The respiratory exchange ratio was unaltered in TX rats, with and without T(3), but was significantly reduced by L or T+L treatments. These results indicate that the metabolic actions of leptin are not dependent on a normal thyroid status and that the effects of leptin and T(3) on oxidative metabolism are additive.  相似文献   

13.
Previous studies from our laboratory and those of others have shown thyroxine to be a stimulator of coronary microvascular growth. The present study tested the hypothesis that 3,5-diiodothyropropionic acid (DITPA), a thyroid hormone analog with inotropic but not chronotopic characteristics, is angiogenic in the nonischemic heart. Daily injections (3.75 mg/kg sc) of DITPA to Sprague-Dawley rats affected protein increases in vascular endothelial growth factor (VEGF)(164), VEGF(188,) basic fibroblast growth factor (bFGF) (FGF-2), angiopoietin-1, and Tie-2 during the first few days of treatment. After 3 wk of treatment, arteriolar length density and the relative number of terminal arterioles (<10 microm diameter) increased in the left ventricle as determined by image analysis of perfuse-fixed hearts. These findings occurred in hearts that did not undergo changes in mass nor in increases in capillary length density. We conclude that DITPA, which is known to improve ventricular function after infarction, is angiogenic in normal nonischemic hearts.  相似文献   

14.
This work aimed to evaluate cardiac morphology/function and histological changes induced by bone marrow cells (BMCs) and cultured mesenchymal stem cells (MSCs) injected at the myocardium of spontaneously hypertensive rats (SHR) submitted to surgical coronary occlusion. Female syngeneic adult SHR, submitted (MI) or not (C) to coronary occlusion, were treated 24 h later with in situ injections of normal medium (NM), or with MSCs (MSC) or BMCs (BM) from male rats. The animals were evaluated after 1 and 30 days by echocardiography, histology of heart sections and PCR for the Y chromosome. Improved ejection fraction and reduced left ventricle infarcted area were observed in MSC rats as compared to the other experimental groups. Treated groups had significantly reduced lesion tissue score, increased capillary density and normal (not-atrophied) myocytes, as compared to NM and C groups. The survival rate was higher in C, NM and MSC groups as compared to MI and BM groups. In situ injection of both MSCs and BMCs resulted in improved cardiac morphology, in a more physiological model of myocardial infarction represented by surgical coronary occlusion of spontaneously hypertensive rats. Only treatment with MSCs, however, ameliorated left ventricle dysfunction, suggesting a positive role of these cells in heart remodeling in infarcted hypertensive subjects.  相似文献   

15.
Xu W  Hou D  Jiang X  Lu Z  Guo T  Liu Y  Wang D  Zen K  Yu B  Zhang CY 《Journal of cellular physiology》2012,227(9):3243-3253
Heart failure is a major cause of death throughout the world. Hyperthyroidism has been shown to induce cardiac hypertrophy, which is a contributing factor to heart failure. However, the mechanism underling effect of thyroid hormone is not completely clear. The present study investigates the role of peroxisome proliferator-activated receptor (PPAR) γ coactivator-1α (PGC-1α) in cardiac hypertrophy induced by Triiodothyronine (T3). We investigated PGC-1α mRNA expression in rat hearts exposed to T3 in vivo and ex vivo. Surprisingly, we found that the extended periods of T3 treatment led to an increase in PGC-1α expression compared to shorter treatment times, which resulted in a reduction of PGC-1α expression. Mechanistic studies showed that suppression of PGC-1α by small interfering RNA in cardiomyocytes amplified the cellular hypertrophic response to T3 stimulation, whereas overexpression of PGC-1α was protective. Furthermore, we presented evidence to show that T3 decreased PGC-1α expression via p38 mitogen-activated protein kinases (MAPK) pathway. Our studies also revealed that overexpression of PGC-1α in cardiomyocytes inhibited basal and T3-induced p38 MAPK phosphorylation. These data indicate for the first time that PGC-1α plays protective role in T3-induced cardiac hypertrophy and that hypertrophic growth induced by T3 involves a regulatory pathway between PGC-1α and p38 MAPK.  相似文献   

16.
We tested the hypothesis that chronically reducing the heart rate in infarcted middle-aged rats using ivabradine (IVA) would induce arteriolar growth and attenuate perivascular collagen and, thereby, improve maximal perfusion and coronary reserve in the surviving myocardium. Myocardial infarction (MI) was induced in 12-mo-old male Sprague-Dawley rats, which were then treated with either IVA (10.5 mg.kg(-1).day(-1); MI + IVA) or placebo (MI) via intraperitoneal osmotic pumps for 4 wk. Four weeks of IVA treatment limited the increase in left ventricular end-diastolic pressure and the decrease in ejection fraction but did not affect the size of the infarct, the magnitude of myocyte hypertrophy, or the degree of arteriolar and capillary growth. However, treatment reduced interstitial and periarteriolar collagen in the surviving myocardium of MI + IVA rats. The reduced periarteriolar collagen content was associated with improvement in maximal myocardial perfusion and coronary reserve. Although the rates of proliferation of periarteriolar fibroblasts were similar in the MI and MI + IVA groups, the expression levels of the AT(1) receptor and transforming growth factor (TGF)-beta(1) in the myocardium, as well as the plasma level of the ANG II peptide, were lower in treated rats 14 days after MI. Therefore, our data reveal that improved maximal myocardial perfusion and coronary reserve in MI + IVA rats are most likely the result of reduced periarteriolar collagen rather than enhanced arteriolar growth.  相似文献   

17.
Embryonic heart valve primordia (cushions) maintain unidirectional blood flow during development despite an increasingly demanding mechanical environment. Recent studies demonstrate that atrioventricular (AV) cushions stiffen over gestation, but the molecular mechanisms of this process are unknown. Transforming growth factor-beta (TGFβ) and serotonin (5-HT) signaling modulate tissue biomechanics of postnatal valves, but less is known of their role in the biomechanical remodeling of embryonic valves. In this study, we demonstrate that exogenous TGFβ3 increases AV cushion biomechanical stiffness and residual stress, but paradoxically reduces matrix compaction. We then show that TGFβ3 induces contractile gene expression (RhoA, aSMA) and extracellular matrix expression (col1α2) in cushion mesenchyme, while simultaneously stimulating a two-fold increase in proliferation. Local compaction increased due to an elevated contractile phenotype, but global compaction appeared reduced due to proliferation and ECM synthesis. Blockade of TGFβ type I receptors via SB431542 inhibited the TGFβ3 effects. We next showed that exogenous 5-HT does not influence cushion stiffness by itself, but synergistically increases cushion stiffness with TGFβ3 co-treatment. 5-HT increased TGFβ3 gene expression and also potentiated TGFβ3 induced gene expression in a dose-dependent manner. Blockade of the 5HT2b receptor, but not 5-HT2a receptor or serotonin transporter (SERT), resulted in complete cessation of TGFβ3 induced mechanical strengthening. Finally, systemic 5-HT administration in ovo induced cushion remodeling related defects, including thinned/atretic AV valves, ventricular septal defects, and outflow rotation defects. Elevated 5-HT in ovo resulted in elevated remodeling gene expression and increased TGFβ signaling activity, supporting our ex-vivo findings. Collectively, these results highlight TGFβ/5-HT signaling as a potent mechanism for control of biomechanical remodeling of AV cushions during development.  相似文献   

18.
Adequate growth of coronary vasculature in the remaining left ventricular (LV) myocardium after myocardial infarction (post-MI) is a crucial factor for myocyte survival and performance. We previously demonstrated that post-MI coronary angiogenesis can be stimulated by bradycardia induced with the ATP-sensitive K(+) channel antagonist alinidine. In this study, we tested the hypothesis that heart rate reduction with beta-blockade may also induce coronary growth in the post-MI heart. Transmural MI was induced in 12-mo-old male Sprague-Dawley rats by occlusion of the left anterior descending coronary artery. Bradycardia was induced by administration of the beta-adrenoceptor blocker atenolol (AT) via drinking water (30 mg/day). Three groups of rats were compared: 1) control/sham (C/SH), 2) MI, and 3) MI + AT. In the MI + AT rats, heart rate was consistently reduced by 25-28% compared with C/SH rats. At 4 wk after left anterior descending coronary ligation, infarct size was similar in MI and MI + AT rats (67.1 and 61.5%, respectively), whereas a greater ventricular hypertrophy occurred in bradycardic rats, as indicated by a higher ventricular weight-to-body weight ratio (3.4 +/- 0.1 vs. 2.8 +/- 0.1 mg/g in MI rats). Analysis of LV function revealed a smaller drop in ejection fraction in the MI + AT than in the MI group ( approximately 24 vs. approximately 35%). Furthermore, in MI + AT rats, maximal coronary conductance and coronary perfusion reserve were significantly improved compared with the MI group. The better myocardial perfusion indexes in MI + AT rats were associated with a greater increase in arteriolar length density than in the MI group. Thus chronic reduction of heart rate induced with beta-selective blockade promotes growth of coronary arterioles and, thereby, facilitates regional myocardial perfusion in post-MI hearts.  相似文献   

19.
The study examines the dynamics of thyroid hormone (TH) trafficking between rainbow trout (Oncorhynchus mykiss) oocytes and ovarian fluid (OF) to explore the processes involved in the transfer of hormone to the oocytes. We also examined the effects of enhancing oocyte T(3) content and subsequent embryo survival. Oocytes incubated in OF alone had significant losses of THs within 12 h, whereas the T(3) content of oocytes retained in T(3)-enriched OF (10 and 100 microg ml(-1)) was significantly elevated in a dose-dependant manner within 3 h. When transferred to non-supplemented OF, the T(3) content of the 10 micro ml(-1) treatment group decreased significantly within 24 h with a concomitant significant increase in OF T(3) concentration. Although there was no significant change in the 100 microg ml(-1) treatment group the significant increase in the OF T(3) concentration was evidence for marked T(3) efflux during this period. These findings provide evidence for the independent trafficking of T(3) based on concentration gradients across the oocyte cell membrane, and suggest that it is not vitellogenin-dependent. Fertilization of in ovo T(3)-supplemented oocytes resulted in a small, albeit significant, increase in mortality rate, but there was no significant effect of treatment on embryo growth rates up to the hatching stage of development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号