首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In disturbed habitats, vegetative regeneration is partly ruled by plant reserves and intrinsic growth rates. Under nutrient-limiting conditions, perennial plants tend to exhibit an increased allocation to storage organs. Under mechanically stressful conditions, plants also tend to increase allocation to below-ground biomass and storage organs. We tested whether those stresses acting differently on plants (nutrient level versus mechanical forces) led to similar effect on storage organs and regeneration ability. We measured, for an aquatic plant species, (1) the size and allocation to storage organs (stems) and (2) the regeneration ability of the storage organs. Plant stems were collected in 4 habitats ranked along a nutrient stress gradient, and having encountered null versus significant mechanical stress (flowing water). All stems were placed in similar neutral conditions and left for a period of 6 weeks before measuring their survival and growth. Dry mass allocation to the storage organ (stem) was higher in stressful habitats. Moreover, stress encountered by plants before the experiment significantly affected regeneration: stems of previously stressed plants (i.e. plants that had grown in nutrient-poor or mechanically stressful habitats) survived better than unstressed ones. Stems of plants having encountered mechanical stress before the experiment had increased growth in nutrient-rich habitats but reduced growth in the poorest habitats. These results demonstrate that regeneration could rely on the level of stress previously encountered by plants. Stress could lead to greater regeneration ability following mechanical failure. The possible mechanisms involved in these results are discussed.  相似文献   

2.
? Premise of study: Prior work using a large data set has shown that the mechanical properties of wood disproportionately increase with increasing wood density across diverse species, e.g., stems composed of denser wood are stiffer and stronger than stems with equivalent cross-sections composed of less dense wood. However, an alternative approach, introducing the precondition of constant construction cost for the same data set, adduces that for any given construction cost, stems composed of lesser dense woods are stiffer and stronger then stems composed of denser woods. ? Methods: We evaluated these two approaches using generic allometric principles and the same large data set. ? Key results: This evaluation shows that construction costs cannot be constant over an entire ensemble of stems composed of different species of wood. For any specified construction cost (denoted by a k-value), only a particular subgroup of stems is addressed. The conclusions derived for this subgroup cannot be generalized to the entire ensemble of stems composed of different species of wood. ? Conclusion: Stems composed of denser wood are, on average as stiff and strong, or stiffer and stronger than stems with equivalent cross-sections composed of less dense wood. Denser wood may have a higher carbon construction cost, but its mechanical benefits likely outweigh the extra cost.  相似文献   

3.
We find that in contrast to strongly adherent, slow moving cells such as fibroblasts, neutrophils exert contractile stresses largely in the rear of the cell (uropod) relative to the direction of motion. Rather than the leading edge pulling the cell, the rear is both anchoring the cell and the area in which the contractile forces are concentrated. These tractions rapidly reorient themselves during a turn, on a timescale of seconds to minutes, and their repositioning precedes and sets the direction of motion during a turn. We find the total average root mean-squared traction force to be 28+/-10 nN during chemokinesis, and 67+/-10 nN during chemotaxis. We hypothesize that the contraction forces in the back of the neutrophil not only break uropodial adhesive contacts but also create a rearward squeezing contractility, as seen in amoeboid or amoeboidlike cells and the formation of blebs in cells, causing a flow of intracellular material to the fluidlike lamellipod. Our findings suggest an entirely new model of neutrophil locomotion.  相似文献   

4.
Strong, actomyosin-dependent, pinching tractions in steadily locomoting (gliding) fish keratocytes revealed by traction imaging present a paradox, since only forces perpendicular to the direction of locomotion are apparent, leaving the actual propulsive forces unresolved. When keratocytes become transiently "stuck" by their trailing edge and adopt a fibroblast-like morphology, the tractions opposing locomotion are concentrated into the tail, leaving the active pinching and propulsive tractions clearly visible under the cell body. Stuck keratocytes can develop approximately 1 mdyn (10,000 pN) total propulsive thrust, originating in the wings of the cell. The leading lamella develops no detectable propulsive traction, even when the cell pulls on its transient tail anchorage. The separation of propulsive and adhesive tractions in the stuck phenotype leads to a mechanically consistent hypothesis that resolves the traction paradox for gliding keratocytes: the propulsive tractions driving locomotion are normally canceled by adhesive tractions resisting locomotion, leaving only the pinching tractions as a resultant. The resolution of the traction pattern into its components specifies conditions to be met for models of cytoskeletal force production, such as the dynamic network contraction model (Svitkina, T.M., A.B. Verkhovsky, K.M. McQuade, and G.G. Borisy. 1997. J. Cell Biol. 139:397-415). The traction pattern associated with cells undergoing sharp turns differs markedly from the normal pinching traction pattern, and can be accounted for by postulating an asymmetry in contractile activity of the opposed lateral wings of the cell.  相似文献   

5.
The cytoskeletal activity of motile or adherent cells is frequently seen to induce detectable displacements of sufficiently compliant substrata. The physics of this phenomenon is discussed in terms of the classical theory of small-strain, plane-stress elasticity. The main results of such analysis is a transform expressing the displacement field of the elastic substrate as an integral over the traction field. The existence of this transform is used to derive a Bayesian method for converting noisy measurements of substratum displacement into "images" of the actual traction forces exerted by adherent or locomoting cells. Finally, the Monte Carlo validation of the statistical method is discussed, some new rheological studies of films are presented, and a practical application is given.  相似文献   

6.
Computational modelling has received increasing attention to investigate multi-scale coupled problems in micro-heterogeneous biological structures such as cells. In the current study, we investigated for a single cell the effects of (1) different cell-substrate attachment (2) and different substrate modulus \(\textit{E}_\mathrm{s}\) on intracellular deformations. A fibroblast was geometrically reconstructed from confocal micrographs. Finite element models of the cell on a planar substrate were developed. Intracellular deformations due to substrate stretch of \(\lambda =1.1\), were assessed for: (1) cell-substrate attachment implemented as full basal contact (FC) and 124 focal adhesions (FA), respectively, and \(\textit{E}_\mathrm{s}\,=\,\)140 KPa and (2) \(\textit{E}_\mathrm{s}\,=\,10\), 140, 1000, and 10,000 KPa, respectively, and FA attachment. The largest strains in cytosol, nucleus and cell membrane were higher for FC (1.35\(\text {e}^{-2}\), 0.235\(\text {e}^{-2}\) and 0.6\(\text {e}^{-2}\)) than for FA attachment (0.0952\(\text {e}^{-2}\), 0.0472\(\text {e}^{-2}\) and 0.05\(\text {e}^{-2}\)). For increasing \(\textit{E}_\mathrm{s}\), the largest maximum principal strain was 4.4\(\text {e}^{-4}\), 5\(\text {e}^{-4}\), 5.3\(\text {e}^{-4}\) and 5.3\(\text {e}^{-4}\) in the membrane, 9.5\(\text {e}^{-4}\), 1.1\(\text {e}^{-4}\), 1.2\(\text {e}^{-3}\) and 1.2\(\text {e}^{-3}\) in the cytosol, and 4.5\(\text {e}^{-4}\), 5.3\(\text {e}^{-4}\), 5.7\(\text {e}^{-4}\) and 5.7\(\text {e}^{-4}\) in the nucleus. The results show (1) the importance of representing FA in cell models and (2) higher cellular mechanical sensitivity for substrate stiffness changes in the range of cell stiffness. The latter indicates that matching substrate stiffness to cell stiffness, and moderate variation of the former is very effective for controlled variation of cell deformation. The developed methodology is useful for parametric studies on cellular mechanics to obtain quantitative data of subcellular strains and stresses that cannot easily be measured experimentally.  相似文献   

7.
MDW4, a wheat germ agglutinin-resistant mutant of the metastatic murine tumor MDAY D2 has previously been shown to be poorly metastatic when injected intravenously and non-metastatic when injected subcutaneously into syngeneic mice. W4EB8, a Bandeiraea simplicifolia (BSII) lectin-selected subline of MDW4 has previously been shown to be intermediate between that of MDAY-D2 and MDW4 cell for sensitivity to lectin and metastatic phenotype when injected intravenously into mice. The Asn-linked oligosaccharides from MDAY-D2, MDW4 and W4EB8 cells were released enzymatically with peptide N-glycosidase, reduced with tritiated sodium borohydride and fractionated by Concanavalin-A--Sepharose affinity chromatography and high-performance liquid chromatography (HPLC). Structures of the major fractions were determined by a combination of glycosidase digestion and sizing, gas-liquid chromatography/mass spectrometry and by proton nuclear magnetic resonance. Wild-type and mutant cells processed high-mannose-type structures to biantennary (GlcNAc)2(Man)3(GlcNAc)2. In MDAY-D2 cells this structure was processed further to sialylated tetra-antennary complex with polylactosamine-containing antennae terminating in either sialic acid or alpha 1-3-linked galactose. MDW4 cells had four or five times more (GlcNAc)2(Man)3(GlcNAc)2 than MDAY-D2 cells and a major component of tri-antennary (GlcNAc)3(Man)3(GlcNAc)2 (i.e. 2,2,6-substituted tri-mannosyl core) that was not found in wild-type cells. The partial revertant, W4EB8 had intermediate levels of mutant (GlcNAc)3(Man)3(GlcNAc)2 and sialylated complex-type carbohydrates. The results indicate that a shift in expression from incomplete complex type to sialylated tri/tetra-antennary complex-type carbohydrates in tumor cell may enhance the metastatic potential of tumor cells in the experimental metastasis assay. In addition, somatic cell hybridization analysis indicated that the defect in MDW4 cells was identical to that of the Chinese hamster ovary mutant Lec8: a deficiency in UDP-galactose transport into the golgi.  相似文献   

8.
Four human colon adenocarcinoma cell line variants with different metastatic potential were used to examine whether a correlation exists between actin level, state of actin polymerization and invasiveness of tumour cells. Monomeric (G), total (T) and filamentous (F) actin were determined in the cytosolic fraction of these cells. A statistically significant decrease in G actin level and increase in the state of actin polymerization (measured by F:G actin ratio) were found in the cytosol of three cell variants with higher metastatic potential and invasiveness (EB3, 3LNLN, 5W) compared with the parental cell line (LS180). Our experimental data lead to the conclusion that there is a correlation between the metastatic capacity of human colon adenocarcinoma cells and the state of actin polymerization.  相似文献   

9.
10.
11.
Quantitative estimation of cellular traction has significant physiological and clinical implications. As an inverse problem, traction force recovery is essentially susceptible to noise in the measured displacement data. For traditional procedure of Fourier transform traction cytometry (FTTC), noise amplification is accompanied in the force reconstruction and small tractions cannot be recovered from the displacement field with low signal-noise ratio (SNR). To improve the FTTC process, we develop an optimal filtering scheme to suppress the noise in the force reconstruction procedure. In the framework of the Wiener filtering theory, four filtering parameters are introduced in two-dimensional Fourier space and their analytical expressions are derived in terms of the minimum-mean-squared-error (MMSE) optimization criterion. The optimal filtering approach is validated with simulations and experimental data associated with the adhesion of single cardiac myocyte to elastic substrate. The results indicate that the proposed method can highly enhance SNR of the recovered forces to reveal tiny tractions in cell-substrate interaction.  相似文献   

12.
Human colon adenocarcinoma LS180 parental cell line and selected variants, characterized by different metastatic capacity were used to examine, whether a correlation exists between beta-actin expression, its subcellular distribution and metastatic potential of these cells. Cytosolic fraction (supernatant 105000 x g), isolated from the tumor cells was used as a source for actin quantification. The higher level of beta-actin was observed in the cytosol of three selected sublines to compare with LS180 parental line. Statistically significant increase of beta-actin level in highly motile EB3 cells variant should be underlined to compare with the other sublines. Distinct differences in the phenotype of adenocarcinoma cell variants were found, such as the changes in cells shape, cells spreading and ability to attach to the surface of culture dish. Actin cytoskeleton was visualized with fluorescence microscopy application and microfilaments rhodamine-conjugated phalloidin staining. beta-actin subcellular localization was done by immunofluorescence staining with monoclonal anti-beta actin antibodies. In the elongated cells (LS180, 3LNLN), this isoactin is dispersed in the whole cell body and concentrates in pseudopods and at the leading edges, when in the rounded variant (EB3) beta-actin dominates mainly in cortical ring under cellular membrane and it is also seen in the subtle protrusions. Summary of our former (Nowak et al., 2002, Acta Biochim. Polon., 49: 823) and current data lead to the conclusion that there is a distinct correlation between metastatic capacity of examined human colon adenocarcinoma cells, the state of actin polymerization, actin cytoskeleton organization and beta-actin expression.  相似文献   

13.
14.
Mitochondria are the main source of energy in eukaryotic cells. They also play an important role in the number of other processes, such as regulation of calcium concentration and sequestration of apoptotic factors. Almost all functions of mitochondria depend on their ability to generate and maintain membrane potential by means of aerobic respiration. The level of mitochondrial potential is under the control of different inner and outer factors. However, mechanisms of this regulation are still poorly understood. In the present study we answer the question of how membrane potential of mitochondria depends on their motility. Using the potential-dependent dye MitoTracker Red, fluorescent microscopy of live cells, and the analysis of mitochondrial motility, two sub-populations of mitochondria were determined: (1) moving mitochondria transported along microtubules and (2) stationary mitochondria. We have shown that stationary mitochondria have higher membrane potential than moving mitochondria. It was also found that the level of potential of mitochondria is regulated by their interaction with vimentin intermediate filaments.  相似文献   

15.
The expression of tumor-associated transplantation antigens (TATA) by two metastatic variants, isolated from B16 melanoma in vivo, was examined. The first, YB16 melanoma (amelanotic), was selectioned after a successive s. c. transplantations of B16 melanoma cells on the coisogenic Yellow AY/a mutant mice of C57BL/6J mice. The second, MB16 melanoma, characterized by a variable pigmentation, was obtained from a s. c. transplantation of YB16 melanoma cells on C57BL/6J mice. The comparison of TATA expressed by the two variants and the B16 melanoma, made between different modes of inducing tumor-rejection activity, revealed that i) these two variants failed to induce an autologous antitumor response, ii) they were resistant to crossed immunization with an immunogenic preparations of B16 melanoma and iii) only MB16 melanoma preparations reduced significantly the tumoral incidence of B16 melanoma cells. These data leads us to suggest i) that the s. c. transplantation of B16 melanoma cells on Yellow AY/a mice resulted in the selection of nonimmunogenic, amelanotic and metastatic cell population of YB16 melanoma and ii) the existence of an epigenetic regulation of melanogenesis and expression of TATA in MB16 melanoma cells carried on C57BL/6J mice.  相似文献   

16.
Cell migration requires a tightly regulated, spatiotemporal coordination of underlying biochemical pathways. Crucial to cell migration is SCAR/WAVE-mediated dendritic F-actin polymerization at the cell's leading edge. Our goal is to understand the role the SCAR/WAVE complex plays in the mechanics of amoeboid migration. To this aim, we measured and compared the traction stresses exerted by Dictyostelium cells lacking the SCAR/WAVE complex proteins PIR121 (pirA(-)) and SCAR (scrA(-)) with those of wild-type cells while they were migrating on flat, elastic substrates. We found that, compared to wild type, both mutant strains exert traction stresses of different strengths that correlate with their F-actin levels. In agreement with previous studies, we found that wild-type cells migrate by repeating a motility cycle in which the cell length and strain energy exerted by the cells on their substrate vary periodically. Our analysis also revealed that scrA(-) cells display an altered motility cycle with a longer period and a lower migration velocity, whereas pirA(-) cells migrate in a random manner without implementing a periodic cycle. We present detailed characterization of the traction-stress phenotypes of the various cell lines, providing new insights into the role of F-actin polymerization in regulating cell-substratum interactions and stresses required for motility.  相似文献   

17.
18.
Cellular redox states can regulate cell metabolism, growth, differentiation, motility, apoptosis, signaling pathways, and gene expressions etc. A growing body of literature suggest the importance of redox status for cancer progression. While most studies on redox state were done on cells and tissue lysates, it is important to understand the role of redox state in a tissue in vivo/ex vivo and image its heterogeneity. Redox scanning is a clinical-translatable method for imaging tissue mitochondrial redox potential with a submillimeter resolution. Redox scanning data in mouse models of human cancers demonstrate a correlation between mitochondrial redox state and tumor metastatic potential. I will discuss the significance of this correlation and possible directions for future research.  相似文献   

19.
20.
An inverse correlation was found between cellular transglutaminase activity and metastatic potential of four cloned cell lines derived from a primary nickel-induced rat rhabdomyosarcoma. Cellular transglutaminase activity as assessed with endogenous cellular protein or exogenous methylated casein was greatest in the clone F9-4/8 which is the least metastasizing. When the putrescine-binding capacity of one cellular derived protein - fibronectin - was examined with exogenous transglutaminase, it was found that the fibronectin derived from the clone F9-4/8 showed the lowest binding capacity compared with those from the other clones. However, when the overall binding capacity of cellular proteins from each cell line was examined no differences could be detected. The results are discussed in the light of the well-known role of fibronectin in cellular adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号