首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
  1. Download : Download high-res image (139KB)
  2. Download : Download full-size image
  相似文献   

3.
Extremophiles - Technological advances in the field of life sciences have led to discovery of organisms that live in harsh environmental conditions referred to as extremophiles. These organisms...  相似文献   

4.
Background: Old‐age is the last stage of human evolution and, unfortunately, the ageing of the oral cavity and masticatory system seems accelerated. As a consequence, there is a reduction in the amount of food ingested, which can lead to an imbalance in nutrition. Objective: The purpose of this study was to investigate the levels of muscular activation of elderly individuals, during chewing, and to compare with young individuals. Materials and Methods: An electromyographical analysis of the masticatory system in 10 individuals aged between 60 and 75 years (elderly group) and a similar number between 23–30 years old (young group ‐ control) was carried out. The analysis was performed using a MyoSystem‐Br1 electromyographer with differential active electrodes. The test was recorded during functional conditions, and the muscles assessed were the temporalis and masseter. Data were normalised by maximum voluntary contraction (MVC), and the results were analysed using an independent t‐test for comparison between the groups. Results: The normalised electromyographic data obtained showed significant differences in both groups. Comparing the normalised values obtained for MVC, the mean values for the masseter and temporalis muscles of elderly group were statistically lower (p ≤ 0.05) than control group for harder foods, but there were no significant differences for food with the lowest consistency. Conclusion: It can be concluded that elderly individuals show slight hypoactivity of their masticatory musculature during chewing when compared to young individuals.  相似文献   

5.
To meet the demand of its fast growing economy, China has become already the second largest buyer of crude oil. China is facing critical problems of energy shortage and environment deterioration. Rational and efficient energy use and environment protection are both getting more attention in China. Biomass energy is renewable energy made from biological sources. China's biomass resources are abundant, which could provide energy for future social and economic development. However technologies for biomass resource conversion in China are still just beginning. In this paper, current biomass resource distribution and technologies of biomass energy, including power generation, biofuel production and biomass-based chemical production are reviewed.  相似文献   

6.
There are substantial variations in bulbing (bulb formation) efficiency among micropropagated tulip cultivars. The mechanisms involved are poorly understood, but presumably involve cytokinins (CKs) for several reasons. Therefore, we explored CK profiles and dynamics in ‘Blue Parrot’ and ‘Prominence’ cultivars (which have low and high bulbing efficiency, respectively) during the in vitro propagation stages: the last shoot multiplication subculture extended to 14 weeks (S1–S2), the shoot cooling at 5 °C for induction of bulb formation (S3–S4) and the bulb growth initiation after the end of cooling (S5–S6). The CK thidiazuron (TDZ) is routinely used in tulip micropropagation at the shoot multiplication stage, but replacing it with isopentenyladenine (iP) during the last multiplication subculture substantially changed CK dynamics in later stages, and significantly increased bulb formation rates in both cultivars. Generally, the most abundant CKs in both cultivars were the isoprenoid CK types, trans-zeatin (tZ), iP, cis-zeatin and dihydrozeatin. However, ‘Prominence’ shoots had much lower cis- to trans-Z-type CK ratios than ‘Blue Parrot’ shoots, and generally higher levels of physiologically active CKs (free bases tZ, iP and their ribosides) until the last phase of bulb formation, S6 (bulb growth initiation, i.e. swelling of shoot bases), 6 weeks after the end of cold treatment. In this phase total active CK and O-glucoside contents sharply declined in ‘Prominence’ shoots, but not in ‘Blue Parrot’ shoots pretreated with iP. In contrast, the low bulbing ability observed in ‘Prominence’ shoots pretreated with TDZ and ‘Blue Parrot’ shoots pretreated with either TDZ or iP was associated with a gradual rise in active CK and O-glucoside contents after the end of cooling. The results suggest that low bulbing efficiency may be related to down-regulation of tZ biosynthesis, and high bulbing efficiency to a transient increase in active CK forms (mainly tZs) in response to cold treatment during the bulb induction phase, S4 (at the end of cold treatment), followed by a rapid decrease during bulb formation, S6 (6 weeks after the end of cooling).  相似文献   

7.
Within the biorefinery paradigm, many non-monomeric sugar compounds have been shown to be inhibitory to enzymes and microbial organisms that are used for hydrolysis and fermentation. Here, two novel separation technologies, polyelectrolyte polymer adsorption and resin-wafer electrodeionization (RW-EDI), have been evaluated to detoxify a dilute acid pretreated biomass slurry. Results showed that detoxification of a dilute acid pretreated ponderosa pine slurry by sequential polyelectrolyte and RW-EDI treatments was very promising, with significant removal of acetic acid, 5-hydroxymethyl furfural, and furfural (up to 77%, 60%, and 74% removed, respectively) along with >97% removal of sulfuric acid. Removal of these compounds increased the cellulose conversion to 94% and elevated the hydrolysis rate to 0.69 g glucose/L/h. When using Saccharomyces cerevisiae D5A for fermentation of detoxified slurry, the process achieved 99% of the maximum theoretical ethanol yield and an ethanol production rate nearly five-times faster than untreated slurry.  相似文献   

8.
Advanced control of glutathione fermentation process   总被引:18,自引:0,他引:18  
A study was performed to understand the fermentation process for production of glutathione fermentation (GSH) with an improved strain of baker's yeast. Simultaneous utilization of sugar and ethanol has been found to be a key factor in the industrial process to produce GSH using Saccharomyces cerevisiae KY6186. Based on this observation, the optimal sugar feed profile for the fed-batch operation has been determined. A feedforward/feedback control system was developed to regulate the sugar feed rate so as to maximize GSH production yields. Using the feedforward/feedback control system and the on-line data of oxygen and ethanol concentration in exhaust gas, the successful scaleup to the production level was accomplished. An average of 40% improvement of glutathione production compared to a conventionally programmed control of exponential fed-batch operation was found in the new process. (c) 1992 John Wiley & Sons, Inc.  相似文献   

9.
Geopolitical concerns (unstable supply of gasoline, environmental pollution, and regular price hikes), economic, and employment concerns have been prompting researchers, entrepreneurs, and policy makers to focus on harnessing the potential of lignocellulosic feedstock for fuel ethanol production and its commercialization. The carbohydrate skeleton of plant cell walls needs to be depolymerised into simpler sugars for their application in fermentation reactions as a chief carbon source of suitable ethnologic strains for ethanol production. The role of cellulolytic enzymes in the degradation of structural carbodydrates of the plant cell wall into ready-to-fermentable sugar stream is inevitable. Cellulase synergistically acts upon plant cell wall polysaccharides to release glucose into the liquid media. Cellulase predominantly dominates all the plant cell wall degrading enzymes due to their vast and diverse range of applications. Apart from the major applications of cellulases such as in detergent formulations, textile desizing, and development of monogastric feed for ruminants, their role in biorefinery is truly remarkable. This is a major area where new research tools based upon fermentation based formulations, biochemistry, and system biology to expedite the structure–function relationships of cellulases including cellulosomes and new designer enzymatic cocktails are required. In the last two decades, a considerable amount of research work has been performed on cellulases and their application in biomass saccharification. However, there are still technical and economic impediments to the development of an inexpensive commercial cellulase production process. Advancements in biotechnology such as screening of microorganisms, manipulation of novel cellulase encoding traits, site-specific mutagenesis, and modifications to the fermentation process could enhance the production of cellulases. Commercially, cheaper sources of carbohydrates and modified fermentation conditions could lead to more cost-effective production of cellulases with the goal to reduce the cost of ethanol production from lignocellulosics. Implementation of integrated steps like cellulase production and cellulase mediated saccharification of biomass in conjunction with the fermentation of released sugars in ethanol in a single step so called consolidated bio-processing (CBP) is very important to reduce the cost of bioethanol. This paper aims to explore and review the important findings in cellulase biotechnology and the forward path for new cutting edge opportunities in the success of biorefineries.  相似文献   

10.
We examined masseter recruitment and firing patterns during chewing in four adult ring-tailed lemurs (Lemur catta), using electromyography (EMG). During chewing of tougher foods, the working-side superficial masseter tends to show, on average, 1.7 times more scaled EMG activity than the balancing-side superficial masseter. The working-side deep masseter exhibits, on average, 2.4 times the scaled EMG activity of the balancing-side deep masseter. The relatively larger activity in the working-side muscles suggests that ring-tailed lemurs recruit relatively less force from their balancing-side muscles during chewing. The superficial masseter working-to-balancing-side (W/B) ratio for lemurs overlaps with W/B ratios from anthropoid primates. In contrast, the lemur W/B ratio for the deep masseter is more similar to that of greater galagos, while both are significantly larger than W/B ratios of anthropoids. Because ring-tailed lemurs have unfused and hence presumably weaker symphyses, these data are consistent with the symphyseal fusion-muscle recruitment hypothesis stating that symphyseal fusion in anthropoids provides increased strength for resisting forces created by the balancing-side jaw muscles during chewing. Among the masseter muscles of ring-tailed lemurs, the working-side deep masseter peaks first on average, followed in succession by the balancing-side deep masseter, balancing-side superficial masseter, and finally the working-side superficial masseter. Ring-tailed lemurs are similar to greater galagos in that their balancing-side deep masseter peaks well before their working-side superficial masseter. We see the opposite pattern in anthropoids, where the balancing-side deep masseter peaks, on average, after the working-side superficial masseter. This late activity of the balancing-side deep masseter in anthropoids is linked to lateral-transverse bending, or wishboning, of their mandibular symphyses. Subsequently, the stresses incurred during wishboning are hypothesized to be a proximate reason for strengthening, and hence fusion, of the anthropoid symphysis. Thus, the absence of this muscle-firing pattern in ring-tailed lemurs with their weaker, unfused symphyses provides further correlational support for the symphyseal fusion late-acting balancing-side deep masseter hypothesis linking wishboning and symphyseal strengthening in anthropoids. The early peak activity of the working-side deep masseter in ring-tailed lemurs is unlike galagos and most similar to the pattern seen in macaques and baboons. We hypothesize that this early activity of the working-side deep masseter moves the lower jaw both laterally toward the working side and vertically upward, to position it for the upcoming power stroke. From an evolutionary perspective, the differences in peak firing times for the working-side deep masseter between ring-tailed lemurs and greater galagos indicate that deep masseter firing patterns are not conserved among strepsirrhines.  相似文献   

11.
赵建  曲音波 《生命科学》2014,(5):489-496
开发利用可再生性的木质纤维素资源来生产液体燃料和大宗化学品,对于解决人类发展面临的资源与环境危机具有重要的意义。然而,作为其代表性工艺的纤维素乙醇生产却因为经济上无法过关而迟迟不能真正实现产业化。采用生物精炼技术,充分利用木质纤维素材料中各种组分,生产包括部分高值产品的多种产品,是克服其转化技术产业化经济可行性问题的有效措施。综述了木质纤维素原料生物精炼技术的研究发展现状,着重阐述了玉米芯的生物精炼技术产业化进展,并对木质纤维素的生物精炼前景进行了展望。  相似文献   

12.
Geopolitical concerns (unstable supply of gasoline, environmental pollution, and regular price hikes), economic, and employment concerns have been prompting researchers, entrepreneurs, and policy makers to focus on harnessing the potential of lignocellulosic feedstock for fuel ethanol production and its commercialization. The carbohydrate skeleton of plant cell walls needs to be depolymerised into simpler sugars for their application in fermentation reactions as a chief carbon source of suitable ethnologic strains for ethanol production. The role of cellulolytic enzymes in the degradation of structural carbohydrates of the plant cell wall into ready-to-fermentable sugar stream is inevitable. Cellulase synergistically acts upon plant cell wall polysaccharides to release glucose into the liquid media. Cellulase predominantly dominates all the plant cell wall degrading enzymes due to their vast and diverse range of applications. Apart from the major applications of cellulases such as in detergent formulations, textile desizing, and development of monogastric feed for ruminants, their role in biorefinery is truly remarkable. This is a major area where new research tools based upon fermentation based formulations, biochemistry, and system biology to expedite the structure-function relationships of cellulases including cellulosomes and new designer enzymatic cocktails are required. In the last two decades, a considerable amount of research work has been performed on cellulases and their application in biomass saccharification. However, there are still technical and economic impediments to the development of an inexpensive commercial cellulase production process. Advancements in biotechnology such as screening of microorganisms, manipulation of novel cellulase encoding traits, site-specific mutagenesis, and modifications to the fermentation process could enhance the production of cellulases. Commercially, cheaper sources of carbohydrates and modified fermentation conditions could lead to more cost-effective production of cellulases with the goal to reduce the cost of ethanol production from lignocellulosics. Implementation of integrated steps like cellulase production and cellulase mediated saccharification of biomass in conjunction with the fermentation of released sugars in ethanol in a single step so called consolidated bio-processing (CBP) is very important to reduce the cost of bioethanol. This paper aims to explore and review the important findings in cellulase biotechnology and the forward path for new cutting edge opportunities in the success of biorefineries.  相似文献   

13.
The paper discusses the dynamics of the accumulation of microscopic fungi, depending on the sludge load (Bx), in activated sludge used for landfill leachate pretreatment. The propagule washout from the sludge into pretreated leachates is determined, including genera and species that may threaten environmental health. An increased accumulation of microscopic fungi in sludge flocs occurred at Bx=0.23−0.45 mg chemical oxygen demand (COD) mg−1 d−1. Microscopic fungi were eluted at the maximal Bx value tested of 1.64 mg COD mg−1 d−1. Both the activated sludge and the leachate runoff from the sequencing batch reactor (SBR) pose health risks to the environment due to the occurrence of fungi such as Aspergillus fumigatus, Purpureocillium lilacinum, Cyberlindnera jadinii (C. utilis), Geotrichum candidum and G. fragrans. Their count is sufficient to cause multi-organ infections in homeothermal animals and in humans.  相似文献   

14.
Our understanding of human jaw biomechanics has been enhanced by computational modelling, but comparatively few studies have addressed the dynamics of chewing. Consequently, ambiguities remain regarding predicted jaw-gapes and forces on the mandibular condyles. Here, we used a new platform to simulate unilateral chewing. The model, based on a previous study, included curvilinear articular guidance, a mobile hyoid apparatus, and a compressible food bolus. Muscles were represented by Hill-type actuators with drive profiles tuned to produce target jaw and hyoid movements. The cycle duration was 732 ms. At maximum gape, the lower incisor-point was 20.1mm down, 5.8mm posterior, and 2.3mm lateral to its initial, tooth-contact position. Its maximum laterodeviation to the working-side during closing was 6.1mm, at which time the bolus was struck. The hyoid's movement, completed by the end of jaw-opening, was 3.4mm upward and 1.6mm forward. The mandibular condyles moved asymmetrically. Their compressive loads were low during opening, slightly higher on the working-side at bolus-collapse, and highest bilaterally when the teeth contacted. The model's movements and the directions of its condylar forces were consistent with experimental observations, resolving seeming discordances in previous simulations. Its inclusion of hyoid dynamics is a step towards modelling mastication.  相似文献   

15.
Factors affecting food comminution during chewing in ruminants: a review   总被引:4,自引:0,他引:4  
A review is presented of the chewing effectiveness of herbivorous mammals dealing with the relationship between food comminution (i.e. reduction of particle size), morphological features of teeth, chewing behaviour (i.e. time spent chewing and chewing rate), and the chemical and physical properties of plant tissues. Chewing is the main food processing mechanism in herbivores, increasing the surface/volume ratio of the food, which is a key factor affecting the efficiency of digestion and, therefore, body condition, reproductive success and life history. Chewing effectiveness (CE) is defined as the reduction of a pre-determined amount and particle size of a given food after a known, but not necessarily determined, number of chews. The two main animal-centred factors influencing CE are tooth effectiveness and chewing behaviour. The most frequently used predictors of tooth effectiveness are molar occlusal surface area, molar occlusal contact area (defined as any surface of the upper and lower teeth in or near contact during occlusion) and the length of the enamel cutting edges of the occlusal surface. There is expected to be a direct positive relationship between the predictors of tooth effectiveness and chewing effectiveness. Chewing behaviour has particular importance to food particle reduction in ruminants, because they spend long periods chewing during both initial ingestion and ruminating. The majority of studies find significant unexplained variance when CE is predicted using tooth features or chewing behaviour parameters. There is also little agreement as to what is the key morphological factor determining tooth effectiveness, or what is the relationship between tooth effectiveness and chewing behaviour. The type, maturity stage and physical presentation of the food also contribute to the final particle size after food has been chewed, because of the involvement of the concentration of chemical components of the cell walls (acid detergent and neutral detergent fibres, lignin) and the architectural structure of the plant tissues in particle breakdown. The relationships between body mass and tooth effectiveness, chewing behaviour and CE are also discussed.  相似文献   

16.
We examined masseter and temporalis recruitment and firing patterns during chewing in five male Belanger's treeshrews (Tupaia belangeri), using electromyography (EMG). During chewing, the working-side masseters tend to show almost three times more scaled EMG activity than the balancing-side masseters. Similarly, the working-side temporalis muscles have more than twice the scaled EMG activity of the balancing-side temporalis. The relatively higher activity in the working-side muscles suggests that treeshrews recruit less force from their balancing-side muscles during chewing. Most of the jaw-closing muscles in treeshrews can be sorted into an early-firing or late-firing group, based on occurrence of peak activity during the chewing cycle. Specifically, the first group of jaw-closing muscles to reach peak activity consists of the working-side anterior and posterior temporalis and the balancing-side superficial masseter. The balancing-side anterior and posterior temporalis and the working-side superficial masseter peak later in the power stroke. The working-side deep masseter peaks, on average, slightly before the working-side superficial masseter. The balancing-side deep masseter typically peaks early, at about the same time as the balancing-side superficial masseter. Thus, treeshrews are unlike nonhuman anthropoids that peak their working-side deep masseters early and their balancing-side deep masseters late in the power stroke. Because in anthropoids the late firing of the balancing-side deep masseter contributes to wishboning of the symphysis, the treeshrew EMG data suggest that treeshrews do not routinely wishbone their symphyses during chewing. Based on the treeshrew EMG data, we speculate that during chewing, primitive euprimates 1) recruited more force from the working-side jaw-closing muscles as compared to the balancing-side muscles, 2) fired an early group of jaw-closing muscles followed by a second group of muscles that peaked later in the power stroke, 3) did not fire their working-side deep masseter significantly earlier than their working-side superficial masseter, and 4) did not routinely fire their balancing-side deep masseter after the working-side superficial masseter.  相似文献   

17.
木质纤维素预处理抑制物产生及脱除方法的研究进展   总被引:1,自引:0,他引:1  
利用纤维素酶将木质纤维素降解成可发酵性糖,然后发酵生产氢气、乙醇、丁醇等生物燃料及高附加值产品,是当今全球研究的热点。预处理是生物质转化过程中至关重要的步骤,而预处理过程中产生的抑制物对木质纤维素后续的酶解和发酵微生物有负面影响。因此了解预处理方法及其过程中产生的抑制物及脱除方法是能否高效转化生物质的基础。文中首先介绍了木质纤维素常用的两类预处理方法即化学法和物理化学法。随后阐述了不同抑制物的产生及其抑制机制,并重点介绍了多种脱毒方法。最后展望了脱除木质纤维素预处理抑制物的研究趋势:应用交联聚乙烯亚胺和金属有机骨架化合物等新型材料脱除抑制物或通过基因工程、代谢工程技术等构建抑制物耐受性菌株等。  相似文献   

18.
Abstract Although they are the largest taxonomic group of animals, relatively few insects have been examined for symbiotic relationships with micro-organisms. However, this is rapidly changing because of the potential for examination of the natural insect–microbe–lignocellulose interactions to provide insights for biofuel technology. Micro-organisms associated with lignocellulose-consuming insects often facilitate the digestion of the recalcitrant plant diet; therefore these microbial communities may be mined for novel lignocellulose-degrading microbes, or for robust and inexpensive biocatalysts necessary for economically feasible biofuel production from lignocellulose. These insect–microbe interactions are influenced by the ecosystem and specific lignocellulose diet, and appreciating the whole ecosystem–insect–microbiota–lignocellulose as a natural biorefinery provides a rich and diverse framework from which to design novel industrial processes. One such natural biorefinery, the Tipula abdominalis larvae in riparian ecosystems, is reviewed herein with applications for biochemical processes and overcoming challenges involved in conversion of lignocellulosic biomass to fuel ethanol. From the dense and diverse T. abdominalis larval hindgut microbial community, a cellulolytic bacterial isolate, 27C64, demonstrated enzymatic activity toward many model plant polymers and also produced a bacterial antibiotic. 27C64 was co-cultured with yeast in fermentation of pine to ethanol, which allowed for a 20% reduction of commercial enzyme. In this study, a micro-organism from a lignocellulose-consuming insect was successfully applied for improvement of biomass-to-biofuel technology.  相似文献   

19.
Objectives: To evaluate the pattern of maxillary complete denture movement during chewing for free‐end removable partial dentures (RPD) wearers, compared to maxillary and mandibular complete denture wearers. Materials and methods: Eighteen edentulous participants (group I) and 10 volunteers with bilateral posterior edentulous mandibles (group II) comprised the sample. Measures of mean denture movement and its variability were obtained by a kinesiographic instrument K6‐I Diagnostic System, during the mastication of bread and a polysulphide block. Data were analysed using two‐way anova (α = 0.05). Results: Upper movement during chewing was significantly lower for group II, regardless of the test food. The test food did not influence the vertical or lateral position of the denture bases, but more anterior dislocation was found when polysulphide blocks were chewed. Group II presented lower intra‐individual variability for the vertical axis. Vertical displacement was also more precise with bread as a test food. Conclusion: It can be concluded that mandibular free‐end RPD wearers show smaller and more precise movements than mandibular complete denture wearers.  相似文献   

20.
Three-dimensional (3D) tongue movements are central to performance of feeding functions by mammals and other tetrapods, but 3D tongue kinematics during feeding are poorly understood. Tongue kinematics were recorded during grape chewing by macaque primates using biplanar videoradiography. Complex shape changes in the tongue during chewing are dominated by a combination of flexion in the tongue''s sagittal planes and roll about its long axis. As hypothesized for humans, in macaques during tongue retraction, the middle (molar region) of the tongue rolls to the chewing (working) side simultaneous with sagittal flexion, while the tongue tip flexes to the other (balancing) side. Twisting and flexion reach their maxima early in the fast close phase of chewing cycles, positioning the food bolus between the approaching teeth prior to the power stroke. Although 3D tongue kinematics undoubtedly vary with food type, the mechanical role of this movement—placing the food bolus on the post-canine teeth for breakdown—is likely to be a powerful constraint on tongue kinematics during this phase of the chewing cycle. The muscular drivers of these movements are likely to include a combination of intrinsic and extrinsic tongue muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号