首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
In most quantitative trait loci (QTL) mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may affect the accuracy of QTL detection, leading to detection of false positive QTL. To improve the robustness of QTL mapping methods, we replace the normal distribution assumption for residuals in a multiple QTL model with a Student-t distribution that is able to accommodate residual outliers. A Robust Bayesian mapping strategy is proposed on the basis of the Bayesian shrinkage analysis for QTL effects. The simulations show that Robust Bayesian mapping approach can substantially increase the power of QTL detection when the normality assumption does not hold and applying it to data already normally distributed does not influence the result. The proposed QTL mapping method is applied to mapping QTL for the traits associated with physics–chemical characters and quality in rice. Similarly to the simulation study in the real data case the robust approach was able to detect additional QTLs when compared to the traditional approach. The program to implement the method is available on request from the first or the corresponding author. Xin Wang and Zhongze Piao contributed equally to this study.  相似文献   

2.
Z Li  J M?tt?nen  M J Sillanp?? 《Heredity》2015,115(6):556-564
Linear regression-based quantitative trait loci/association mapping methods such as least squares commonly assume normality of residuals. In genetics studies of plants or animals, some quantitative traits may not follow normal distribution because the data include outlying observations or data that are collected from multiple sources, and in such cases the normal regression methods may lose some statistical power to detect quantitative trait loci. In this work, we propose a robust multiple-locus regression approach for analyzing multiple quantitative traits without normality assumption. In our method, the objective function is least absolute deviation (LAD), which corresponds to the assumption of multivariate Laplace distributed residual errors. This distribution has heavier tails than the normal distribution. In addition, we adopt a group LASSO penalty to produce shrinkage estimation of the marker effects and to describe the genetic correlation among phenotypes. Our LAD-LASSO approach is less sensitive to the outliers and is more appropriate for the analysis of data with skewedly distributed phenotypes. Another application of our robust approach is on missing phenotype problem in multiple-trait analysis, where the missing phenotype items can simply be filled with some extreme values, and be treated as outliers. The efficiency of the LAD-LASSO approach is illustrated on both simulated and real data sets.  相似文献   

3.
Mao Y  Xu S 《Genetical research》2004,83(3):159-168
Many quantitative traits are measured as percentages. As a result, the assumption of a normal distribution for the residual errors of such percentage data is often violated. However, most quantitative trait locus (QTL) mapping procedures assume normality of the residuals. Therefore, proper data transformation is often recommended before statistical analysis is conducted. We propose the probit transformation to convert percentage data into variables with a normal distribution. The advantage of the probit transformation is that it can handle measurement errors with heterogeneous variance and correlation structure in a statistically sound manner. We compared the results of this data transformation with other transformations and found that this method can substantially increase the statistical power of QTL detection. We develop the QTL mapping procedure based on the maximum likelihood methodology implemented via the expectation-maximization algorithm. The efficacy of the new method is demonstrated using Monte Carlo simulation.  相似文献   

4.
Without consideration of other linked QTLs responsible for dynamic trait, original functional mapping based on a single QTL model is not optimal for analyzing multiple dynamic trait loci. Despite that composite functional mapping incorporates the effects of genetic background outside the tested QTL in mapping model, the arbitrary choice of background markers also impact on the power of QTL detection. In this study, we proposed Bayesian functional mapping strategy that can simultaneously identify multiple QTL controlling developmental patterns of dynamic traits over the genome. Our proposed method fits the change of each QTL effect with the time by Legendre polynomial and takes the residual covariance structure into account using the first autoregressive equation. Also, Bayesian shrinkage estimation was employed to estimate the model parameters. Especially, we specify the gamma distribution as the prior for the first-order auto-regressive coefficient, which will guarantee the convergence of Bayesian sampling. Simulations showed that the proposed method could accurately estimate the QTL parameters and had a greater statistical power of QTL detection than the composite functional mapping. A real data analysis of leaf age growth in rice is used for the demonstration of our method. It shows that our Bayesian functional mapping can detect more QTLs as compared to composite functional mapping.  相似文献   

5.
Xu C  Li Z  Xu S 《Genetics》2005,169(2):1045-1059
Joint mapping for multiple quantitative traits has shed new light on genetic mapping by pinpointing pleiotropic effects and close linkage. Joint mapping also can improve statistical power of QTL detection. However, such a joint mapping procedure has not been available for discrete traits. Most disease resistance traits are measured as one or more discrete characters. These discrete characters are often correlated. Joint mapping for multiple binary disease traits may provide an opportunity to explore pleiotropic effects and increase the statistical power of detecting disease loci. We develop a maximum-likelihood method for mapping multiple binary traits. We postulate a set of multivariate normal disease liabilities, each contributing to the phenotypic variance of one disease trait. The underlying liabilities are linked to the binary phenotypes through some underlying thresholds. The new method actually maps loci for the variation of multivariate normal liabilities. As a result, we are able to take advantage of existing methods of joint mapping for quantitative traits. We treat the multivariate liabilities as missing values so that an expectation-maximization (EM) algorithm can be applied here. We also extend the method to joint mapping for both discrete and continuous traits. Efficiency of the method is demonstrated using simulated data. We also apply the new method to a set of real data and detect several loci responsible for blast resistance in rice.  相似文献   

6.
Cui Y  Kim DY  Zhu J 《Genetics》2006,174(4):2159-2172
Statistical methods for mapping quantitative trait loci (QTL) have been extensively studied. While most existing methods assume normal distribution of the phenotype, the normality assumption could be easily violated when phenotypes are measured in counts. One natural choice to deal with count traits is to apply the classical Poisson regression model. However, conditional on covariates, the Poisson assumption of mean-variance equality may not be valid when data are potentially under- or overdispersed. In this article, we propose an interval-mapping approach for phenotypes measured in counts. We model the effects of QTL through a generalized Poisson regression model and develop efficient likelihood-based inference procedures. This approach, implemented with the EM algorithm, allows for a genomewide scan for the existence of QTL throughout the entire genome. The performance of the proposed method is evaluated through extensive simulation studies along with comparisons with existing approaches such as the Poisson regression and the generalized estimating equation approach. An application to a rice tiller number data set is given. Our approach provides a standard procedure for mapping QTL involved in the genetic control of complex traits measured in counts.  相似文献   

7.
Broman KW 《Genetics》2003,163(3):1169-1175
A common departure from the usual normality assumption in QTL mapping concerns a spike in the phenotype distribution. For example, in measurements of tumor mass, some individuals may exhibit no tumors; in measurements of time to death after a bacterial infection, some individuals may recover from the infection and fail to die. If an appreciable portion of individuals share a common phenotype value (generally either the minimum or the maximum observed phenotype), the standard approach to QTL mapping can behave poorly. We describe several alternative approaches for QTL mapping in the case of such a spike in the phenotype distribution, including the use of a two-part parametric model and a nonparametric approach based on the Kruskal-Wallis test. The performance of the proposed procedures is assessed via computer simulation. The procedures are further illustrated with data from an intercross experiment to identify QTL contributing to variation in survival of mice following infection with Listeria monocytogenes.  相似文献   

8.
Yang R  Li J  Xu S 《Genetica》2008,132(3):323-329
Many traits are defined as ratios of two quantitative traits. Methods of QTL mapping for regular quantitative traits are not optimal when applied to ratios due to lack of normality for traits defined as ratios. We develop a new method of QTL mapping for traits defined as ratios. The new method uses a special linear combination of the two component traits, and thus takes advantage of the normal property of the new variable. Simulation study shows that the new method can substantially increase the statistical power of QTL detection relative to the method which treats ratios as regular quantitative traits. The new method also outperforms the method that uses Box-Cox transformed ratio as the phenotype. A real example of QTL mapping for relative growth rate in soybean demonstrates that the new method can detect more QTL than existing methods of QTL mapping for traits defined as ratios.  相似文献   

9.
Wu R  Ma CX  Lin M  Wang Z  Casella G 《Biometrics》2004,60(3):729-738
The incorporation of developmental control mechanisms of growth has proven to be a powerful tool in mapping quantitative trait loci (QTL) underlying growth trajectories. A theoretical framework for implementing a QTL mapping strategy with growth laws has been established. This framework can be generalized to an arbitrary number of time points, where growth is measured, and becomes computationally more tractable, when the assumption of variance stationarity is made. In practice, however, this assumption is likely to be violated for age-specific growth traits due to a scale effect. In this article, we present a new statistical model for mapping growth QTL, which also addresses the problem of variance stationarity, by using a transform-both-sides (TBS) model advocated by Carroll and Ruppert (1984, Journal of the American Statistical Association 79, 321-328). The TBS-based model for mapping growth QTL cannot only maintain the original biological properties of a growth model, but also can increase the accuracy and precision of parameter estimation and the power to detect a QTL responsible for growth differentiation. Using the TBS-based model, we successfully map a QTL governing growth trajectories to a linkage group in an example of forest trees. The statistical and biological properties of the estimates of this growth QTL position and effect are investigated using Monte Carlo simulation studies. The implications of our model for understanding the genetic architecture of growth are discussed.  相似文献   

10.
In biology, many quantitative traits are dynamic in nature. They can often be described by some smooth functions or curves. A joint analysis of all the repeated measurements of the dynamic traits by functional quantitative trait loci (QTL) mapping methods has the benefits to (1) understand the genetic control of the whole dynamic process of the quantitative traits and (2) improve the statistical power to detect QTL. One crucial issue in functional QTL mapping is how to correctly describe the smoothness of trajectories of functional valued traits. We develop an efficient Bayesian nonparametric multiple-loci procedure for mapping dynamic traits. The method uses the Bayesian P-splines with (nonparametric) B-spline bases to specify the functional form of a QTL trajectory and a random walk prior to automatically determine its degree of smoothness. An efficient deterministic variational Bayes algorithm is used to implement both (1) the search of an optimal subset of QTL among large marker panels and (2) estimation of the genetic effects of the selected QTL changing over time. Our method can be fast even on some large-scale data sets. The advantages of our method are illustrated on both simulated and real data sets.  相似文献   

11.
A major consideration in multitrait analysis is which traits should be jointly analyzed. As a common strategy, multitrait analysis is performed either on pairs of traits or on all of traits. To fully exploit the power of multitrait analysis, we propose variable selection to choose a subset of informative traits for multitrait quantitative trait locus (QTL) mapping. The proposed method is very useful for achieving optimal statistical power for QTL identification and for disclosing the most relevant traits. It is also a practical strategy to effectively take advantage of multitrait analysis when the number of traits under consideration is too large, making the usual multivariate analysis of all traits challenging. We study the impact of selection bias and the usage of permutation tests in the context of variable selection and develop a powerful implementation procedure of variable selection for genome scanning. We demonstrate the proposed method and selection procedure in a backcross population, using both simulated and real data. The extension to other experimental mapping populations is straightforward.  相似文献   

12.
Zou F  Yandell BS  Fine JP 《Genetics》2003,165(3):1599-1605
This article addresses the identification of genetic loci (QTL and elsewhere) that influence nonnormal quantitative traits with focus on experimental crosses. QTL mapping is typically based on the assumption that the traits follow normal distributions, which may not be true in practice. Model-free tests have been proposed. However, nonparametric estimation of genetic effects has not been studied. We propose an estimation procedure based on the linear rank test statistics. The properties of the new procedure are compared with those of traditional likelihood-based interval mapping and regression interval mapping via simulations and a real data example. The results indicate that the nonparametric method is a competitive alternative to the existing parametric methodologies.  相似文献   

13.
Complex traits important for humans are often correlated phenotypically and genetically. Joint mapping of quantitative-trait loci (QTLs) for multiple correlated traits plays an important role in unraveling the genetic architecture of complex traits. Compared with single-trait analysis, joint mapping addresses more questions and has advantages for power of QTL detection and precision of parameter estimation. Some statistical methods have been developed to map QTLs underlying multiple traits, most of which are based on maximum-likelihood methods. We develop here a multivariate version of the Bayes methodology for joint mapping of QTLs, using the Markov chain-Monte Carlo (MCMC) algorithm. We adopt a variance-components method to model complex traits in outbred populations (e.g., humans). The method is robust, can deal with an arbitrary number of alleles with arbitrary patterns of gene actions (such as additive and dominant), and allows for multiple phenotype data of various types in the joint analysis (e.g., multiple continuous traits and mixtures of continuous traits and discrete traits). Under a Bayesian framework, parameters--including the number of QTLs--are estimated on the basis of their marginal posterior samples, which are generated through two samplers, the Gibbs sampler and the reversible-jump MCMC. In addition, we calculate the Bayes factor related to each identified QTL, to test coincident linkage versus pleiotropy. The performance of our method is evaluated in simulations with full-sib families. The results show that our proposed Bayesian joint-mapping method performs well for mapping multiple QTLs in situations of either bivariate continuous traits or mixed data types. Compared with the analysis for each trait separately, Bayesian joint mapping improves statistical power, provides stronger evidence of QTL detection, and increases precision in estimation of parameter and QTL position. We also applied the proposed method to a set of real data and detected a coincident linkage responsible for determining bone mineral density and areal bone size of wrist in humans.  相似文献   

14.
Yang R  Yi N  Xu S 《Genetica》2006,128(1-3):133-143
The maximum likelihood method of QTL mapping assumes that the phenotypic values of a quantitative trait follow a normal distribution. If the assumption is violated, some forms of transformation should be taken to make the assumption approximately true. The Box–Cox transformation is a general transformation method which can be applied to many different types of data. The flexibility of the Box–Cox transformation is due to a variable, called transformation factor, appearing in the Box–Cox formula. We developed a maximum likelihood method that treats the transformation factor as an unknown parameter, which is estimated from the data simultaneously along with the QTL parameters. The method makes an objective choice of data transformation and thus can be applied to QTL analysis for many different types of data. Simulation studies show that (1) Box–Cox transformation can substantially increase the power of QTL detection; (2) Box–Cox transformation can replace some specialized transformation methods that are commonly used in QTL mapping; and (3) applying the Box–Cox transformation to data already normally distributed does not harm the result.  相似文献   

15.
Johannes F 《Genetics》2007,175(2):855-865
Existing methods for mapping quantitative trait loci (QTL) in time-to-failure experiments assume that the QTL effect is constant over the course of the study. This assumption may be violated when the gene(s) underlying the QTL are up- or downregulated on a biologically meaningful timescale. In such situations, models that assume a constant effect can fail to detect QTL in a whole-genome scan. To investigate this possibility, we utilize an extension of the Cox model (EC model) within an interval-mapping framework. In its simplest form, this model assumes that the QTL effect changes at some time point t0 and follows a linear function before and after this change point. The approximate time point at which this change occurs is estimated. Using simulated and real data, we compare the mapping performance of the EC model to the Cox proportional hazards (CPH) model, which explicitly assumes a constant effect. The results show that the EC model detects time-dependent QTL, which the CPH model fails to detect. At the same time, the EC model recovers all of the QTL the CPH model detects. We conclude that potentially important QTL may be missed if their time-dependent effects are not accounted for.  相似文献   

16.
MOTIVATION: Functional mapping that embeds the developmental mechanisms of complex traits shows great power to study the dynamic pattern of genetic effects triggered by individual quantitative trait loci (QTLs). A full-sib family, produced by crossing two heterozygous parents, is characteristic of uncertainties about cross-type at a locus and linkage phase between different loci. Integrating functional mapping into a full-sib family requires a model selection procedure capable of addressing these uncertainties. 3FunMap, written in VC++ 6.0, provides a flexible and extensible platform to perform full-sib functional mapping of dynamic traits. Functions in the package encompass linkage phase determination, marker map construction and the pattern identification of QTL segregation, dynamic tests of QTL effects, permutation tests and numerical simulation. We demonstrate the features of 3FunMap through real data analysis and computer simulation. AVAILABILITY: http://statgen.psu.edu/software.  相似文献   

17.
Ma CX  Casella G  Wu R 《Genetics》2002,161(4):1751-1762
Unlike a character measured at a finite set of landmark points, function-valued traits are those that change as a function of some independent and continuous variable. These traits, also called infinite-dimensional characters, can be described as the character process and include a number of biologically, economically, or biomedically important features, such as growth trajectories, allometric scalings, and norms of reaction. Here we present a new statistical infrastructure for mapping quantitative trait loci (QTL) underlying the character process. This strategy, termed functional mapping, integrates mathematical relationships of different traits or variables within the genetic mapping framework. Logistic mapping proposed in this article can be viewed as an example of functional mapping. Logistic mapping is based on a universal biological law that for each and every living organism growth over time follows an exponential growth curve (e.g., logistic or S-shaped). A maximum-likelihood approach based on a logistic-mixture model, implemented with the EM algorithm, is developed to provide the estimates of QTL positions, QTL effects, and other model parameters responsible for growth trajectories. Logistic mapping displays a tremendous potential to increase the power of QTL detection, the precision of parameter estimation, and the resolution of QTL localization due to the small number of parameters to be estimated, the pleiotropic effect of a QTL on growth, and/or residual correlations of growth at different ages. More importantly, logistic mapping allows for testing numerous biologically important hypotheses concerning the genetic basis of quantitative variation, thus gaining an insight into the critical role of development in shaping plant and animal evolution and domestication. The power of logistic mapping is demonstrated by an example of a forest tree, in which one QTL affecting stem growth processes is detected on a linkage group using our method, whereas it cannot be detected using current methods. The advantages of functional mapping are also discussed.  相似文献   

18.
In most QTL mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may lead to detection of false positive QTL. To improve the robustness of Bayesian QTL mapping methods, the normal distribution for residuals is replaced with a skewed Student-t distribution. The latter distribution is able to account for both heavy tails and skewness, and both components are each controlled by a single parameter. The Bayesian QTL mapping method using a skewed Student-t distribution is evaluated with simulated data sets under five different scenarios of residual error distributions and QTL effects.  相似文献   

19.
Li M  Boehnke M  Abecasis GR  Song PX 《Genetics》2006,173(4):2317-2327
Mapping and identifying variants that influence quantitative traits is an important problem for genetic studies. Traditional QTL mapping relies on a variance-components (VC) approach with the key assumption that the trait values in a family follow a multivariate normal distribution. Violation of this assumption can lead to inflated type I error, reduced power, and biased parameter estimates. To accommodate nonnormally distributed data, we developed and implemented a modified VC method, which we call the "copula VC method," that directly models the nonnormal distribution using Gaussian copulas. The copula VC method allows the analysis of continuous, discrete, and censored trait data, and the standard VC method is a special case when the data are distributed as multivariate normal. Through the use of link functions, the copula VC method can easily incorporate covariates. We use computer simulations to show that the proposed method yields unbiased parameter estimates, correct type I error rates, and improved power for testing linkage with a variety of nonnormal traits as compared with the standard VC and the regression-based methods.  相似文献   

20.
Variance-component (VC) methods are flexible and powerful procedures for the mapping of genes that influence quantitative traits. However, traditional VC methods make the critical assumption that the quantitative-trait data within a family either follow or can be transformed to follow a multivariate normal distribution. Violation of the multivariate normality assumption can occur if trait data are censored at some threshold value. Trait censoring can arise in a variety of ways, including assay limitation or confounding due to medication. Valid linkage analyses of censored data require the development of a modified VC method that directly models the censoring event. Here, we present such a model, which we call the "tobit VC method." Using simulation studies, we compare and contrast the performance of the traditional and tobit VC methods for linkage analysis of censored trait data. For the simulation settings that we considered, our results suggest that (1) analyses of censored data by using the traditional VC method lead to severe bias in parameter estimates and a modest increase in false-positive linkage findings, (2) analyses with the tobit VC method lead to unbiased parameter estimates and type I error rates that reflect nominal levels, and (3) the tobit VC method has a modest increase in linkage power as compared with the traditional VC method. We also apply the tobit VC method to censored data from the Finland-United States Investigation of Non-Insulin-Dependent Diabetes Mellitus Genetics study and provide two examples in which the tobit VC method yields noticeably different results as compared with the traditional method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号