首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past century, patterns of phenotypic inheritance have been observed that are not easily rationalised by Mendel's rules of inheritance. Now that we have begun to understand more about non-DNA based, or 'epigenetic', control of phenotype at the molecular level, the idea that the transgenerational inheritance of these epigenetic states could explain non-Mendelian patterns of inheritance has become attractive. There is a growing body of evidence that abnormal epigenetic states, termed epimutations, are associated with disease in humans. For example, in several cases of colorectal cancer, epimutations have been identified that silence the human mismatch repair genes, MLH1 and MSH2. But strong evidence that the abnormal epigenetic states are primary events that occur in the absence of genetic change and are inherited across generations is still absent.  相似文献   

2.
3.
Abstract

Environmental exposure is a growing public health burden associated with several negative health effects. An estimated 4.2 million deaths occur each year from ambient air pollution alone. Biomarkers that reflect specific exposures have the potential to measure the real integrated internal dose from all routes of complex environmental exposure. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, have been studied as biomarkers in various diseases and have also shown potential as environmental exposure biomarkers. Here, we review the available human epidemiological and experimental evidence of miRNA expression changes in response to specific environmental exposures including airborne particulate matter. In doing so, we establish that miRNA exposure biomarker development remains in its infancy and future studies will need to carefully consider biological and analytical ‘design rules’ in order to facilitate clinical translation.  相似文献   

4.
The early-life environment, in particular maternal diet during pregnancy, influences a wide range of organs and systems in adult offspring. Mounting evidence suggests that developmental programming can also influence health and disease in grand-offspring. Transgenerational effects can be defined as those persisting into an F2 generation, where the F0 mother experiences suboptimal diet during her pregnancy. In this review, we critically examine evidence for transgenerational developmental programming effects in human populations, focusing on metabolic and reproductive outcomes. We discuss evidence from historical cohorts suggesting that grandchildren of women exposed to famine and other dietary alterations during pregnancy may experience increased rates of later health complications than their control counterparts. The methodological difficulties with transgenerational studies in human cohorts are explored. In particular, the problems with assessing reproductive outcomes in human populations are discussed. In light of the relative paucity of evidence available from human cohorts, we consider key insights from transgenerational experimental animal models of developmental programming by maternal diet; data are drawn from a range of rodent models, as well as the guinea-pig and the sheep. The evidence for different potential mechanisms of transgenerational inheritance or re-propagation of developmental programming effects is evaluated. Transgenerational effects could be transmitted through methylation of the gametes via the paternal and maternal lineage, as well as other possible mechanisms via the maternal lineage. Finally, future directions for exploring these underlying mechanisms further are proposed, including utilizing large, well-characterized, prospective pregnancy cohorts that include biobanks, which have been established in various populations during the last few decades.  相似文献   

5.
6.
Epigenetic mechanisms have gained relevance in human health and environmental studies, due to their pivotal role in disease, gene × environment interactions and adaptation to environmental change and/or contamination. Epigenetic mechanisms are highly responsive to external stimuli and a wide range of chemicals has been shown to determine specific epigenetic patterns in several organisms. Furthermore, the mitotic/meiotic inheritance of such epigenetic marks as well as the resulting changes in gene expression and cell/organismal phenotypes has now been demonstrated. Therefore, epigenetic signatures are interesting candidates for linking environmental exposures to disease as well as informing on past exposures to stressors. Accordingly, epigenetic biomarkers could be useful tools in both prospective and retrospective risk assessment but epigenetic endpoints are currently not yet incorporated into risk assessments. Achieving a better understanding on this apparent impasse, as well as identifying routes to promote the application of epigenetic biomarkers within environmental risk assessment frameworks are the objectives of this review. We first compile evidence from human health studies supporting the use of epigenetic exposure‐associated changes as reliable biomarkers of exposure. Then, specifically focusing on environmental science, we examine the potential and challenges of developing epigenetic biomarkers for environmental fields, and discuss useful organisms and appropriate sequencing techniques to foster their development in this context. Finally, we discuss the practical incorporation of epigenetic biomarkers in the environmental risk assessment of chemicals, highlighting critical data gaps and making key recommendations for future research within a regulatory context.  相似文献   

7.
8.
《Aging cell》2022,21(6)
DNA methylation (DNAm) has been reported to be associated with many diseases and with mortality. We hypothesized that the integration of DNAm with clinical risk factors would improve mortality prediction. We performed an epigenome‐wide association study of whole blood DNAm in relation to mortality in 15 cohorts (= 15,013). During a mean follow‐up of 10 years, there were 4314 deaths from all causes including 1235 cardiovascular disease (CVD) deaths and 868 cancer deaths. Ancestry‐stratified meta‐analysis of all‐cause mortality identified 163 CpGs in European ancestry (EA) and 17 in African ancestry (AA) participants at < 1 × 10−7, of which 41 (EA) and 16 (AA) were also associated with CVD death, and 15 (EA) and 9 (AA) with cancer death. We built DNAm‐based prediction models for all‐cause mortality that predicted mortality risk after adjusting for clinical risk factors. The mortality prediction model trained by integrating DNAm with clinical risk factors showed an improvement in prediction of cancer death with 5% increase in the C‐index in a replication cohort, compared with the model including clinical risk factors alone. Mendelian randomization identified 15 putatively causal CpGs in relation to longevity, CVD, or cancer risk. For example, cg06885782 (in KCNQ4) was positively associated with risk for prostate cancer (Beta = 1.2, P MR = 4.1 × 10−4) and negatively associated with longevity (Beta = −1.9, P MR = 0.02). Pathway analysis revealed that genes associated with mortality‐related CpGs are enriched for immune‐ and cancer‐related pathways. We identified replicable DNAm signatures of mortality and demonstrated the potential utility of CpGs as informative biomarkers for prediction of mortality risk.  相似文献   

9.
Gene expression patterns change during the initiation, progression, and development of cancer, as a result of both genetic and epigenetic mechanisms. Genetic changes arise due to irreversible changes in the nucleotide sequence, whereas epigenetic changes occur due to changes in chromatin conformation, histone acetylation, and methylation of the CpG islands located primarily in the promoter region of a gene. Both genetic and epigenetic markers can potentially be utilized to identify different stages of tumor development. Several such markers exhibit high sensitivity and specificity for different tumor types and can be assayed in biofluids and other specimens collected by noninvasive technologies. In spite of the availability of large numbers of diagnostic markers, only a few have been clinically validated so far. The current status and the challenges in the field of genetic and epigenetic markers in cancer diagnosis, risk assessment, and disease stratification are discussed.  相似文献   

10.
Environmental arsenic compounds and their methylated metabolites do not form adducts with DNA, but do cause oxidative DNA damage. Chromosome aberrations are seen at toxic concentrations. Genetic effects that occur at non-toxic concentrations include aneuploidy, comutagenesis (resulting from indirect effects on DNA repair), and delayed mutagenesis (probably secondary to aneuploidy and/or epigenetic effects). Effects of trivalent arsenicals on poly(ADP ribose) polymerase and P53 activation may mediate effects on DNA repair and aneuploidy. A growing literature points to the epigenetic effects of arsenic compounds in cells and in vivo. A review of the current literature on DNA methylation, histone modifications and microRNA effects is presented.  相似文献   

11.
《Epigenetics》2013,8(11):1236-1244
Many human diseases are multifactorial, involving multiple genetic and environmental factors impacting on one or more biological pathways. Much of the environmental effect is believed to be mediated through epigenetic changes. Although many genome-wide genetic and epigenetic association studies have been conducted for different diseases and traits, it is still far from clear to what extent the genomic loci and biological pathways identified in the genetic and epigenetic studies are shared. There is also a lack of statistical tools to assess these important aspects of disease mechanisms. In the present study, we describe a protocol for the integrated analysis of genome-wide genetic and epigenetic data based on permutation of a sum statistic for the combined effects in a locus or pathway. The method was then applied to published type 1 diabetes (T1D) genome-wide- and epigenome-wide-association studies data to identify genomic loci and biological pathways that are associated with T1D genetically and epigenetically. Through combined analysis, novel loci and pathways were also identified, which could add to our understanding of disease mechanisms of T1D as well as complex diseases in general.  相似文献   

12.
13.
ABSTRACT

Introduction: Metalloproteinases play key roles in health and disease, by generating novel proteoforms with variable structure and function.

Areas covered: This review focuses on the role of endogenous [a Disintegrin and Metalloproteinase (ADAMs), ADAMs with thrombospondin motifs (ADAMTS), and matrix metalloproteinases (MMPs)] and exogenous metalloproteinases in various disease conditions, and describes the application of mass spectrometry-based proteomics to detect qualitative and quantitative changes in protein profiles in tissues and body fluids in disease. Emphasis is placed on the proteomic analysis of exudates collected from affected tissues, including methods that enrich newly generated protein fragments derived from proteolysis in cells, stroma, or extracellular matrix. The use of proteomic analysis of exudates in the study of the local tissue damage induced by metalloproteinases derived from viperid snake venoms is discussed, particularly in relation to extracellular matrix degradation and to the overall pathology of these envenomings.

Expert commentary: The information provided by these proteomics approaches is paving the way for the identification of biomarkers based on particular proteolytic signatures associated with different pathologies. Together with other methodological approaches, a comprehensive view of the mechanisms and dynamics of diseases can be achieved. Such basis of knowledge allows for the design of novel diagnostic and therapeutic approaches within the frame of ‘precision’ or ‘personalized’ medicine.  相似文献   

14.
Several authors have reported the high hepatic incidence of γhexachlorocyclohexane (γHCH), pentachlorophenol (PCP) and hexachlorobenzene (HCB) which are widely used as pesticides. Their genotoxicity status was not clearly known and no m utagenic effects, using the Salmonella assay, were reported. In the first part of this report, DNA-adduct form ation is evaluated in three types of cultured hepatic cells (rodent, bird and hum an) as a biomarker of exposure to genotoxic com pounds. γHCH-, PCP- and HCB-DNA adducts were analysed, using the sensitive 32P-postlabelling assay in its nuclease P1 enrichm ent version. The genotoxicity of lindane and PCP is clearly established. Total DNA-adducts reached a m axim um in foetal rat hepatocytes (17 and 15 adducts per 109 nucleotides) after an exposure to pentachlorophenol and lindane respectively. After HCB treatm ent, lim ited am ounts of DNA-adducts were found in the different cells used. The finding that DNA adducts were not the sam e in all species tested m ight be due to m etabolic differences. Each type of cultured cells preferentially express different cytochrome P450 fam ilies. These P450s m etabolize a wide variety of xenobiotics and bioactivate carcinogens into reactive m etabolites able to form DNA-adducts. The objective of the present study was to exam ine the possible association between DNA-adduction and particular C YP450 induction. The induced cytochrom e P450s were m easured by northern blot analysis. In rat and hum an cells, lindane treatm ent strongly induces CYP2B and CYP3A m RNA levels, whereas pentachlorophenol treatm ent induces CYP1A, CYP2B and CYP3A.  相似文献   

15.
Hafer N  Ebil S  Uller T  Pike N 《Biology letters》2011,7(5):755-758
Transgenerational effects of environmental conditions can have several important ecological and evolutionary implications. We conducted a fully factorial experiment manipulating food availability across three generations in the collembolan Folsomia candida, a springtail species that inhabits soil and leaf litter environments which vary in resource availability. Maternal and grandmaternal food availability influenced age at maturity and reproductive output. These effects appear to be cumulative rather than adaptive transgenerational life-history adjustments. Such cumulative effects can profoundly influence eco-evolutionary dynamics in both stable and fluctuating environments.  相似文献   

16.
17.
Single‐cell biology is considered a new approach to identify and validate disease‐specific biomarkers. However, the concern raised by clinicians is how to apply single‐cell measurements for clinical practice, translate the message of single‐cell systems biology into clinical phenotype or explain alterations of single‐cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single‐cell gene sequencing in the identification and development of disease‐specific biomarkers, the definition and significance of single‐cell biology and single‐cell systems biology in the understanding of single‐cell full picture, the development and establishment of whole‐cell models in the validation of targeted biological function and the figure and meaning of single‐molecule imaging in single cell to trace intra‐single‐cell molecule expression, signal, interaction and location. We headline the important role of single‐cell biology in the discovery and development of disease‐specific biomarkers with a special emphasis on understanding single‐cell biological functions, e.g. mechanical phenotypes, single‐cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi‐dimensional, multi‐layer, multi‐crossing and stereoscopic single‐cell biology definitely benefits the discovery and development of disease‐specific biomarkers.  相似文献   

18.
19.
20.
The presence of specific nuclear receptors to thyroid hormones, described in prepubertal Sertoli cells, implies the existence of an early and critical influence of these hormones on testis development. Although the mechanism of action thyroid hormones has been classically established as a genomic action regulating testis development, our research group has demonstrated that these hormones exert several effects in Sertoli cells lacking nuclear receptor activation. These findings led to the identification of non-classical thyroid hormone binding elements in the plasma membrane of testicular cells. Through binding to these sites, thyroid hormones could exert nongenomic effects, including those on ion fluxes at the plasma membrane, on signal transduction via kinase pathways, on amino acid accumulation, on modulation of extracellular nucleotide levels and on vimentin cytoskeleton. The evidence of the participation of different K(+), Ca(2+) and Cl(-) channels in the mechanism of action of thyroid hormones, characterizes the plasma membrane as an important microenvironment able to coordinate strategic signal transduction pathways in rat testis. The physiological responses of the Sertoli cells to hormones are dependent on continuous cross-talking of different signal transduction pathways. Apparently, the choice of the signaling pathways to be activated after the interaction of the hormone with cell surface binding sites is directly related to the physiological action to be accomplished. Yet, the enormous complexity of the nongenomic actions of thyroid hormones implies that different specific binding sites located on the plasma membrane or in the cytosol are believed to initiate specific cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号