首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
beta-O-linked N-acetylglucosamine (O-GlcNAc) is an abundant posttranslational modification of resident nuclear and cytoplasmic proteins in eukaryotes. Increasing evidence suggests that O-GlcNAc plays a regulatory role in numerous cellular processes. Here we report on the production and characterization of a highly specific mouse monoclonal antibody, MAb CTD110.6, that specifically reacts with O-GlcNAc. The antibody recognizes O-GlcNAc in beta-O-glycosidic linkage to both serine and threonine. We could detect no cross-reactivity with alpha-linked Ser/Thr-O-GlcNAc, alpha-linked Ser-O-linked N-acetylgalactosamine (O-GalNAc), or N-linked oligosaccharides on ovalbumin and immunoglobulin G. The monosaccharide GlcNAc, but not GalNAc, abolishes immunoreactivity, further demonstrating specificity toward O-GlcNAc. Furthermore, galactose capping of O-GlcNAc sites also inhibits CTD110.6 immunoreactivity. Enrichment of GlcNAc-containing glycoproteins using the lectin wheat germ agglutinin dramatically enriches for CTD110.6-reactive proteins. The antibody reacts with a large number of proteins from cytoplasmic and nuclear extracts and readily detects in vivo changes in O-GlcNAc modification. These studies demonstrate that CTD110.6 is highly specific toward O-GlcNAc, with no cross-reactivity toward similar carbohydrate antigens or toward peptide determinants.  相似文献   

2.
Interaction of Notch receptors with Delta- and Serrate-type ligands is an evolutionarily conserved mechanism that mediates direct communication between adjacent cells and thereby regulates multiple developmental processes. Posttranslational modifications of both receptors and ligands are pivotal for normal Notch pathway function. We have identified by mass spectrometric analysis two serine and one threonine phosphorylation sites in the intracellular domain of the mouse Notch ligand DLL1. Phosphorylation requires cell membrane association of DLL1 and occurs sequentially at the two serine residues. Phosphorylation of one serine residue most likely by protein kinase B primes phosphorylation of the other serine. A DLL1 variant, in which all three identified phosphorylated serine/threonine residues are mutated to alanine and valine, was more stable than wild-type DLL1 but had reduced relative levels on the cell surface and was more effectively cleaved in the extracellular domain. In addition, the mutant variant activated Notch1 significantly less efficient than wild-type DLL1 in a coculture assay in vitro. Mice, however, whose endogenous DLL1 was replaced with the phosphorylation-deficient triple mutant developed normally, suggesting compensatory mechanisms under physiological conditions in vivo.  相似文献   

3.
The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified by electrophoresis and gel-staining with ProQ Diamond and the protein was digested by either trypsin or chymotrypsin for maximum sequence coverage to facilitate identification of phosphorylated positions. Prior to analysis by mass spectrometry, samples were either desalted, passed over TiO(2) or both for improved phosphopeptide detection. As MAP kinases generally phosphorylate serine or threonine followed by proline (Ser/Thr-Pro), theoretical masses of potentially phosphorylated peptides were calculated and mass spectrometric peaks matching these masses were fragmented and searched for a neutral-loss signal at approximately 98 Da indicative of phosphorylation. Additionally, mass spectrometric peaks present in the MPK4-treated MKS1, but not in the control peptide map of untreated MKS1, were fragmented. Fragmentation spectra were subjected to a MASCOT database search which identified three of the twelve Ser-Pro serine residues (Ser72, Ser108, Ser120) in the phosphorylated form.  相似文献   

4.
Isono T 《PloS one》2011,6(4):e18959
Modification of serine and threonine residues in proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation is a feature of many cellular responses to the nutritional state and to stress. O-GlcNAc modification is reversibly regulated by O-linked β-N-acetylglucosamine transferase (OGT) and β-D-N-acetylglucosaminase (O-GlcNAcase). O-GlcNAc modification of proteins is dependent on the concentration of uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), which is a substrate of OGT and is synthesized via the hexosamine biosynthetic pathway. Immunoblot analysis using the O-GlcNAc-specific antibody CTD110.6 has indicated that glucose deprivation increases protein O-GlcNAcylation in some cancer cells. The mechanism of this paradoxical phenomenon has remained unclear. Here we show that the increased glycosylation induced by glucose deprivation and detected by CTD110.6 antibodies is actually modification by N-GlcNAc(2), rather than by O-GlcNAc. We found that this induced glycosylation was not regulated by OGT and O-GlcNAcase, unlike typical O-GlcNAcylation, and it was inhibited by treatment with tunicamycin, an N-glycosylation inhibitor. Proteomics analysis showed that proteins modified by this induced glycosylation were N-GlcNAc(2)-modified glycoproteins. Furthermore, CTD110.6 antibodies reacted with N-GlcNAc(2)-modified glycoproteins produced by a yeast strain with a ts-mutant of ALG1 that could not add a mannose residue to dolichol-PP-GlcNAc(2). Our results demonstrated that N-GlcNAc(2)-modified glycoproteins were induced under glucose deprivation and that they cross-reacted with the O-GlcNAc-specific antibody CTD110.6. We therefore propose that the glycosylation status of proteins previously classified as O-GlcNAc-modified proteins according to their reactivity with CTD110.6 antibodies must be re-examined. We also suggest that the repression of mature N-linked glycoproteins due to increased levels of N-GlcNAc(2)-modified proteins is a newly recognized pathway for effective use of sugar under stress and deprivation conditions. Further research is needed to clarify the physiological and pathological roles of N-GlcNAc(2)-modified proteins.  相似文献   

5.
Thrombospondin-1 is a trimeric, modular calcium-binding glycoprotein. The subunit is composed of an N-terminal module; oligomerization domain; stalk modules including a von Willebrand factor type C module, three properdin or thrombospondin type 1 repeat (TSR) modules, and two thrombospondin-type EGF-like modules; and a C-terminal signature domain comprising single copies of the epidermal growth factor (EGF)-like, wire, and lectin-like modules. Conformational changes in the signature domain influence ligand binding to the N-terminal modules. Interactions have been demonstrated among the modules of the signature domain and the thrombospondin-type EGF-like modules. We have extended this analysis to the rest of the stalk modules. Differential scanning calorimetry revealed interactions between the most C-terminal TSR module and the EGF-like modules. Calorimetry and differences in expression levels of single versus tandem modules indicated that the three TSRs interact with each other as well. No evidence of interactions between the von Willebrand factor type C and TSR modules were detected by differential scanning calorimetry, circular dichroism, or intrinsic fluorescence. These results indicate that the TSR and thrombospondin-type EGF-like stalk modules act as a unit that may relay conformational information between the N-terminal and C-terminal parts of the protein.Thrombospondin-1 (TSP-1)2 is a major secreted protein of platelets that plays multiple roles after vascular injury (1, 2). TSPs are a family of multimodular, calcium-binding, extracellular glycoproteins. There are five family members in tetropods, each of which has a specific pattern of expression in embryonic and adult tissues (3). TSPs have two unique features, a signature domain comprising single copies of EGF-like, Ca2+-binding wire, and lectin-like modules and the TSP-type EGF-like module in which Cys4 and Cys5 are separated by two rather than one residue (3, 4). The family falls into two groups: A or trimeric TSPs, TSP-1 and TSP-2; and B or pentameric TSPs, TSP-3, TSP-4, and TSP-5. As depicted in Fig. 1, a subunit of the group A TSPs is composed of an N-terminal module tethered to an oligomerization domain, a von Willebrand Factor type C (vWF-C) module, three properdin or TSP type 1 repeat (TSR) modules, two TSP-type EGF-like modules, and the signature domain (3, 4). Subunits of group B TSPs lack vWF-C and TSR modules and have an extra TSP-type EGF-like module (4). Multiple interactions have been demonstrated among the modules of the signature domain of Ca2+-replete TSP-2 and TSP-5 (5, 6) and between the signature domain wire and second TSP-type EGF-like module of Ca2+-replete TSP-2 (5, 7).Open in a separate windowFIGURE 1.Schematics of (A) TSP-1 stalk modules studied in this paper, (B) TSP-1 in its Ca2+-depleted conformation, and (C) TSP-1 in its Ca2+-replete formation. Parts of TSP-1 in panels A and B are labeled as follows: N, N-terminal module; T, tether; C, vWF-C module; P, properdin or TSR module, E, EGF-like module; wire, Ca2+-binding repeats with 26 Ca2+-binding sites; and L, lectin-like module. The TSP-type EGF-like modules, E1 and E2, contain central shading. Sites of binding to heparin sulfate proteoglycan (HSPG), latent transforming growth factor-β (TGF), and CD36 are indicated in panel C. The schematics have been drawn based on structures described in the text. Sites of fucosylation of TSRs are indicated by open diamonds, and inter-module CPIXG sequences between P2 and P3 and between P3 and E1 are indicated with dots. As per the “Discussion,” changes in conformation and charge density of the signature domain due to gain or loss of Ca2+ are proposed to be propagated throughout trimeric TSP-1 by the stalk modules.TSP-1 has a distinctive appearance when examined by rotary shadowing electron microscopy: three bunched globules, which are thought to be the N-terminal modules, are connected by three stalks to three larger globules thought to be the C-terminal signature domains (4). Rotary shadowing electron microscopy demonstrates a striking conformational change upon removal of Ca2+ from the C-terminal signature domain with apparent lengthening of the stalk and loss of size of the C-terminal globules (810). Considerations of structures of the parts of TSP-1 indicate that the vWF-C, TSR, and TSP-type EGF-like modules form the stalk in Ca2+-replete TSP-1 (4), as depicted in Fig. 1. Immunochemical studies suggest that lengthening of the stalk is due, at least in part, to unraveling of two of the 13 Ca2+-binding repeats of the wire module (11).Removal of Ca2+ from binding sites on the C-terminal signature domain impacts binding of ligands or antibodies to the N-terminal modules of TSP-1 (12). The N700S polymorphism in TSP-1 that alters coordination of Ca2+ by the first Ca2+-binding wire repeat (13) also impacts interactions of the N-terminal modules with ligands (14). These observations indicate that TSP-1 possesses an allosteric mechanism whereby changes in the C-terminal signature domain are transmitted to the N-terminal modules. We have reported that the two TSP-type EGF-like modules and the signature domain EGF-like module interact with each other, suggesting a mechanism by which conformational changes in the signature domain can be propagated N-terminal as far as the first TSP-type EGF-like module (15). We have now explored the potential of EGF-like modules to work with TSR and vWF-C modules to transmit conformational information between the two ends of TSP-1.  相似文献   

6.
O-linked-β-N-acetylglucosamine (O-GlcNAc) modification is a unique cytoplasmic and nuclear protein modification that is common in nearly all eukaryotes, including filamentous fungi, plants, and animals. We had recently reported that epidermal growth factor (EGF) repeats of Notch and Dumpy are O-GlcNAcylated by an atypical O-GlcNAc transferase, EOGT, in Drosophila. However, no study has yet shown whether O-GlcNAcylation of extracellular proteins is limited to insects such as Drosophila or whether it occurs in other organisms, including mammals. Here, we report the characterization of A130022J15Rik, a mouse gene homolog of Drosophila Eogt (Eogt 1). Enzymatic analysis revealed that Eogt1 has a substrate specificity similar to that of Drosophila EOGT, wherein the Thr residue located between the fifth and sixth conserved cysteines of the folded EGF-like domains is modified. This observation is supported by the fact that the expression of Eogt1 in Drosophila rescued the cell-adhesion defect caused by Eogt downregulation. In HEK293T cells, Eogt1 expression promoted modification of Notch1 EGF repeats by O-GlcNAc, which was further modified, at least in part, by galactose to generate a novel O-linked-N-acetyllactosamine structure. These results suggest that Eogt1 encodes EGF domain O-GlcNAc transferase and that O-GlcNAcylation reaction in the secretory pathway is a fundamental biochemical process conserved through evolution.  相似文献   

7.
Epidermal growth factor (EGF)-like modules are defined in part by six cysteines joined by disulfides in a 1–3, 2–4, and 5–6 pattern. Thrombospondin-1 (TSP-1) is a multimodular glycoprotein with three EGF-like modules, E1, E2, and E3, arranged in tandem. These modules likely propagate conformational changes between surrounding C-terminal and N-terminal elements of TSP-1 and interact with other extracellular molecules. E1, E2, and their homologs in other TSPs are unique among EGF-like modules in having two residues rather than one between Cys-4 and Cys-5. In addition, E2 has a calcium-binding site and an unusually long loop between Cys-5 and Cys-6. The structure of E1, E2, or E3 expressed alone changed little upon heating as monitored by far-UV CD, whereas more marked changes occurred in E12, E23, and E123 tandem constructs. The individual modules denatured in differential scanning calorimetry experiments only at >85 °C. E12, E23, or E123 tandem constructs, however, had a transition in the range of 44–70 °C. The temperature of the transition was higher when calcium was present and higher with E123 than with E12 or E23. Isothermal titration calorimetry demonstrated KD values of binding of calcium to E2, E12, E23, or E123 at 25 °C of 11.5, 2.9, 2.2, or 0.3 μm, respectively. Monoclonal antibodies HB8432 and C6.7, which recognize epitopes in E2, bound to E12, E23, or E123 with greater affinity than to E2 alone. These results indicate that interactions among the modules of E123 influence the tertiary structure and calcium binding of E2.Thrombospondins (TSPs)2 are multimodule, calcium-binding extracellular glycoproteins with various functions (1). TSP-1, which was the first TSP to be discovered and remains the best characterized, and TSP-2 are trimers. Each subunit is composed of an N-terminal module, oligomerization domain, von Willebrand factor type C module, three properdin or TSP type 1 modules, and the C-terminal signature domain that includes three EGF-like modules (E123), 13 aspartate-rich calcium-binding repeats of the wire module, and a lectin-like module (24). The five mammalian TSPs fall into two groups, trimeric (TSP-1 and TSP-2) and pentameric (TSP-3, TSP-4, and TSP-5) (1). All have a signature domain, with the major difference being the presence of four rather than three EGF-like modules in the signature domain of pentameric TSPs.EGF-like modules exist in more than 300 human extracellular proteins and play important roles in biological processes such as blood clotting and cell-cell signaling (57). The modules are 30–50 residues long and characterized by six cysteine residues that form three disulfide bonds in the order 1–3, 2–4, and 5–6 (Fig. 1) (6, 7). The backbone structure of the EGF-like modules consists of two submodules, referred to as the major (N-terminal) and minor (C-terminal) submodules (6, 8, 9).Open in a separate windowFIGURE 1.Model of the structure of E123. The model is built based on the crystal structure of EGF modules in the TSP-2 signature domain (Protein Data Bank code 1YO8) using SYBYL 7.0. E1 is shown in red, E2 in pink, and E3 in purple. The cysteines are colored yellow; the backbones of the residues between the fourth and fifth Cys are in blue; Glu-609 recognized by HB8432 and C6.7 is shown in green; and the long loop in E2 between the fifth and sixth Cys is hot pink. Ca2+ bound to the binding site on E2 near the interface between E1 and E2 is depicted as a red ball.The crystal structure of the three EGF-like modules of TSP-2 has been solved as part of the TSP-2 signature domain in 2 mm calcium (Ca2+) (Fig. 1) (4). All have the 1–3, 2–4, and 5–6 disulfide pattern. There is one Ca2+-binding site in the second EGF-like module (E2), located near the interface between the first and second EGF-like modules (E1 and E2) (Fig. 1). There is only one residue between the fourth and fifth cysteines in most EGF-like modules (6). However, E1 and E2 of TSP-1 and TSP-2 and three of the four EGF-like modules (E1, E2, and E2′) of pentameric TSPs have two residues between the fourth and fifth Cys. This difference is potentially important because the N-terminal major submodule of the repeat containing the 1–3 and 2–4 disulfides and the C-terminal submodule with the 5–6 disulfide have the potential to undergo hinge-like motions around the residues between the fourth and fifth Cys (6, 8, 9). Having two rather than one residue between these two Cys increases the potential flexibility. In addition, E2 modules in all five TSPs contain an unusually long loop of 23 residues between the fifth and sixth Cys (Fig. 1). In the TSP-2 signature domain structure, residues from the long loop interact with repeat 12N of the wire module (4). E3, which has one residue between the fourth and fifth Cys, interacts with the wire and the lectin-like module (3, 4). A common polymorphism (N700S) in wire repeat 1C of human TSP-1 influences the stability of the EGF-like modules (10). This finding suggests that the interactions between the EGF-like modules and more C-terminal elements of the signature domain allow conformational changes in the more C-terminal elements to be propagated N-terminally.The EGF-like modules (E123) of TSP-1 denature in differential scanning calorimetry (DSC) with a melting temperature of ∼68 °C in 2 mm Ca2+ (10), although most EGF-like modules are stable to heating (7). We have investigated this transition in detail to learn its origins and the influence of Ca2+. The results indicate interactions among the modules of E123 that enhance Ca2+ binding and influence the tertiary structure of E2.  相似文献   

8.
9.
Thrombospondins (TSPs) undergo conformational changes upon removal of calcium. The eight C-type and five N-type calcium-binding repeats of TSP-2 form a circuitous wire that, in 2 mm calcium, interacts at its ends with more N-terminal epidermal growth factor (EGF)-like modules, EGF2 and EGF3, and the C-terminal lectin-like module. These components, along with the other EGF-like module(s), form the signature domain of TSPs. Characterization of conformation-sensitive epitopes of monoclonal antibodies to human TSP-2 and its TSP-1 homolog have given insights into the structure of the signature domain in the absence of calcium. The epitope for 4B6.13 anti-TSP-2 was localized to His-722 and Leu-703 in repeat 1C of the wire; recognition only occurred in constructs that included EGF3, the rest of the wire, and the lectin-like module and in the presence of calcium. The epitope for C6.7 anti-TSP-1 was localized to Glu-609 in the EGF2 module. The C6.7 epitope was preferentially recognized when EGF2 was expressed in the context of EGF1, EGF3, the wire, and the lectin-like module. Preferential recognition of the C6.7 epitope did not require calcium. Rotary shadowing electron microscopy of TSP-1 has shown elongation of the stalk and diminution of the C-terminal globule. We propose a model whereby at low calcium concentrations the lectin-like module drops away from EGF3 concomitant with changes in conformation of the wire and loss of the 4B6.13 epitope. A critical feature of the model is interaction of repeat 12N of the wire with EGF2 in both the presence and absence of calcium.  相似文献   

10.
11.
TESK1 (testis-specific protein kinase 1) is a protein kinase with a structure composed of an N-terminal protein kinase domain and a C-terminal proline-rich domain. Whereas the 3.6-kilobase TESK1 mRNA is expressed predominantly in the testis, a faint 2.5-kilobase TESK1 mRNA is expressed ubiquitously. The kinase domain of TESK1 contains in the catalytic loop in subdomain VIB an unusual DLTSKN sequence, which is not related to the consensus sequence of either serine/threonine kinases or tyrosine kinases. In this study, we show that TESK1 has kinase activity with dual specificity on both serine/threonine and tyrosine residues. In an in vitro kinase reaction, the kinase domain of TESK1 underwent autophosphorylation on serine and tyrosine residues and catalyzed phosphorylation of histone H3 and myelin basic protein on serine, threonine, and tyrosine residues. Site-directed mutagenesis analyses revealed that Ser-215 within the "activation loop" of the kinase domain is the site of serine autophosphorylation of TESK1. Replacement of Ser-215 by alanine almost completely abolished serine autophosphorylation and histone H3 kinase activities. In contrast, replacement of Ser-215 by glutamic acid abolished serine autophosphorylation activity but retained histone H3 kinase activity. These results suggest that autophosphorylation of Ser-215 is an important step to positively regulate the kinase activity of TESK1.  相似文献   

12.
Notch receptors are glycoproteins that mediate a wide range of developmental processes. Notch is modified in its epidermal growth factor-like domains by the addition of fucose to serine or threonine residues. O-Fucosylation is mediated by protein O-fucosyltransferase 1, and down-regulation of this enzyme by RNA interference or mutation of the Ofut1 gene in Drosophila or by mutation of the Pofut1 gene in mouse prevents Notch signaling. To investigate the molecular basis for the requirement for O-linked fucose on Notch, we assayed the ability of tagged, soluble forms of the Notch extracellular domain to bind to its ligands, Delta and Serrate. Down-regulation of OFUT1 by RNA interference in Notch-secreting cells inhibits both Delta-Notch and Serrate-Notch binding, demonstrating a requirement for O-linked fucose for efficient binding of Notch to its ligands. Conversely, overexpression of OFUT1 in cultured cells increases Serrate-Notch binding but inhibits Delta-Notch binding. These effects of OFUT1 are consistent with the consequences of OFUT1 overexpression on Notch signaling in vivo. Intriguingly, they are also opposite to, and are suppressed by, expression of the glycosyltransferase Fringe, which specifically modifies O-linked fucose. Thus, Notch-ligand interactions are dependent upon both the presence and the type of O-fucose glycans.  相似文献   

13.
Epidermal growth factor (EGF)-like modules are involved in protein-protein interactions and are found in numerous extracellular proteins and membrane proteins. Among these proteins are enzymes involved in blood coagulation, fibrinolysis and the complement system as well as matrix proteins and cell surface receptors such as the EGF precursor, the low density lipoprotein receptor and the developmentally important receptor, Notch. The coagulation enzymes, factors VII, IX and X and protein C, all have two EGF-like modules, whereas the cofactor of activated protein C, protein S, has four EGF-like modules in tandem. Certain of the cell surface receptors have numerous EGF modules in tandem. A subset of EGF modules bind one Ca(2+). The Ca(2+)-binding sequence motif is coupled to a sequence motif that brings about beta-hydroxylation of a particular Asp/Asn residue. Ca(2+)-binding to an EGF module is important to orient neighboring modules relative to each other in a manner that is required for biological activity. The Ca(2+) affinity of an EGF module is often influenced by its N-terminal neighbor, be it another EGF module or a module of another type. This can result in an increase in Ca(2+) affinity of several orders of magnitude. Point mutations in EGF modules that involve amino acids which are Ca(2+) ligands result in the biosynthesis of biologically inactive proteins. Such mutations have been identified, for instance, in factor IX, causing hemophilia B, in fibrillin, causing Marfan syndrome, and in the low density lipoprotein receptor, causing hypercholesterolemia. In this review the emphasis will be on the coagulation factors.  相似文献   

14.
15.
Rare types of glycosylation often occur in a domain-specific manner and are involved in specific biological processes. In particular, O-fucose glycans are reported to regulate the functions of EGF domain-containing proteins such as Notch receptors. In the course of mass spectrometric analysis of O-glycans displayed on Drosophila Notch receptors expressed in S2 cells, we found an unusual O-linked N-acetylhexosamine (HexNAc) modification which occurs at a site distinct from those of O-fucose and O-glucose glycosylations. Modification site mapping by mass spectrometry and amino acid substitution studies revealed that O-HexNAc modification occurs on a serine or threonine located between the fifth and sixth cysteines within the EGF domain. This modification occurs simultaneously along with other closely positioned O-glycosylations. This modification was determined to be O-beta-GlcNAc by galactosyltransferase labeling and beta-N-acetyl-hexosaminidase digestion experiments and by immunoblotting with a specific antibody. O-GlcNAc modification occurs at multiple sites on Notch epidermal growth factor repeats. O-GlcNAc modification was also found on the extracellular domain of Delta, a ligand for Notch receptors. Although the O-GlcNAc modification is known to regulate a wide range of cellular processes, the list of known modified proteins has previously been limited to intracellular proteins in animals. Thus, the finding of O-GlcNAc modification in extracellular environments predicts a distinct glycosylation process that might be associated with a novel regulatory mechanism for Notch receptor activity.  相似文献   

16.
17.
18.
19.
The carboxyl-terminal domain (CTD) of the largest subunit of eukaryotic RNA polymerase II can be phosphorylated by a p34cdc2/CDC28-containing CTD kinase. Phosphorylated serine (or threonine) is located at positions 2 and 5 in the repetitive heptapeptide consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. We show here that phosphorylation of the mouse CTD retards its electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels in a way similar to that observed for the II0 form of the largest subunit of RNA polymerase II phosphorylated in vivo. At the maximum level of phosphorylation by CTD kinase in vitro, there are 15-20 phosphates evenly distributed among the 52 heptapeptide repeats that comprise the mouse CTD. Gel filtration chromatography and sucrose gradient ultracentrifugation analyses indicate that phosphorylation induces a dramatic conformational change in the CTD with the phosphorylated form adopting a far more extended structure than the unphosphorylated CTD.  相似文献   

20.
The recently published genome sequence of Drosophila melanogaster predicts seven caspases in the fly. Five of these caspases have been previously characterised. Here, we describe the Drosophila caspase, STRICA. STRICA is a caspase with a long amino-terminal prodomain that lacks any caspase recruitment domain or death effector domain. Instead, the prodomain of STRICA consists of unique serine/threonine stretches. Low levels of strica expression were detected in embryos, larvae, pupae and adult animals. STRICA is a cytoplasmic protein that, upon overexpression, caused apoptosis in cultured Drosophila SL2 cells that was partially suppressed by DIAP1. Interestingly, unlike other fly caspases, STRICA showed physical association with DIAP2, in cotransfection experiments. These results suggest that STRICA may have a unique cellular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号