首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In spite of the improvement in management and the breeding goal of increasing the number of piglets born alive, piglet mortality is still a substantial problem in pig breeding. The objective of the first part of the study was to estimate genetic parameters for different causes of piglet losses and to investigate the relationship to litter-size traits. Data were collected on a nucleus herd from January till December 2004. Records from 943 German Landrace sows with 1538 pure-bred litters and 13 971 individually weighted piglets were included. Four different causes of piglet losses (LOSS) were evaluated. Additional analysed traits were underweight and runting. Furthermore, the fertility traits number of piglets born alive, born in total and stillborn piglets as well as the individual birth and weaning weights were analysed. The different LOSS were treated as a binary trait and subsequently the heritabilities were estimated using a threshold model. The most important LOSS was crushing under the sow (12.4%). The survival rate and crushing had a heritability of h2 = 0.03. The fertility traits piglets born alive, born in total and stillborn piglets were analysed with a linear model and heritabilities rank from h2 = 0.05 (stillborn) to h2 = 0.10 (born alive). The estimated heritabilities for birth- and weaning weight were both h2 = 0.10. The genetic correlations between number of piglets born alive and each LOSS trait were analysed bivariately. Of all piglets born alive 84.3% survive the lactation period. Survival decreased with increasing litter size (rg = -0.54 up to -0.78) and the probability of being crushed under the sow increased.  相似文献   

2.
L. Zhou  W. Zhao  Y. Fu  X. Fang  S. Ren  J. Ren 《Animal genetics》2019,50(6):753-756
Body conformation at birth and teat number are economically important traits in the pig industry, as these traits are usually explored to evaluate the growth and reproductive potential of piglets. To detect genetic loci and candidate genes for these traits, we performed a GWAS on 269 pigs from a recently developed Chinese breed (Sushan) using 38  128 informative SNPs on the Affymetrix Porcine SNP 55K Array. In total, we detected one genome‐wide significant (P = 1.31e‐6) SNP for teat number on chromosome X and 15 chromosome‐wide significant SNPs for teat number, body weight, body length, chest circumference and cannon circumference at birth on chromosomes 1, 3, 4, 6, 7, 9, 10, 13, 14, 15, 17 and 18. The most significant SNP had an additive effect of 0.74 × total teat number, explaining 20% of phenotypic variance. Five significant SNPs resided in the previously reported quantitative trait loci for these traits and seven significant SNPs had a pleiotropic effect on multiple traits. Intriguingly, 12 of the genes nearest to the significant SNPs are functionally related to body conformation and teat number traits, including SPRED2, MKX, TMSB4X and ESR1. GO analysis revealed that candidate genes proximal to the significant SNPs were enriched in the G‐protein coupled receptor and steroid hormone‐mediated signaling pathway. Our findings shed light on the genetic basis of the measured traits and provide molecular markers especially for the genetic improvement of teat number in Sushan and related pigs.  相似文献   

3.
Z. Tan  K. Xing  T. Yang  Y. Pan  Y. Wang  S. Mi  D. Sun  C. Wang 《Animal genetics》2018,49(2):127-131
Using the PorcineSNP80 BeadChip, we performed a genome‐wide association study for seven reproductive traits, including total number born, number born alive, litter birth weight, average birth weight, gestation length, age at first service and age at first farrowing, in a population of 1207 Large White pigs. In total, we detected 12 genome‐wide significant and 41 suggestive significant SNPs associated with six reproductive traits. The proportion of phenotypic variance explained by all significant SNPs for each trait ranged from 4.46% (number born alive) to 11.49% (gestation length). Among them, 29 significant SNPs were located within known QTL regions for swine reproductive traits, such as corpus luteum number, stillborn number and litter size, of which one QTL region associated with litter size contained the ALGA0098819 SNP for total number born. Subsequently, we found that 376 functional genes contained or were near these significant SNPs. Of these, 14 genes—BHLHA15, OCM2, IL1B2, GCK, SMAD2, HABP2, PAQR5, GRB10, PRELID2, DMKN, GPI, GPIHBP1, ADCY2 and ACVR2B—were considered important candidates for swine reproductive traits based on their critical roles in embryonic development, energy metabolism and growth development. Our findings contribute to the understanding of the genetic mechanisms for reproductive traits and could have a positive effect on pig breeding programs.  相似文献   

4.
The ring finger protein 4 gene (RNF4), which might play a role in fetal germ cell development as well as in oocyte and granulosa cell maturation, was one of the potential candidate genes for reproductive traits. In the present work, we isolated the complete coding sequence of porcine RNF4 gene, identified a single nucleotide polymorphism (SNP: T/C) in intron5, and developed a PCR-SacII-RFLP genotyping assay. Association of this SNP with reproductive traits was assessed in three populations with diverse genetic backgrounds. One was Chinese Qingping sows. Another was consisted of crossbred sows derived from Landrace, Large White, Chinese Tongcheng and/or Chinese Meishan (Line DIV). The third is Large White × Meishan (LW × M) F2 slaughtered population. Statistical analysis demonstrated that, in the first parity, the difference between RNF4 genotypes and reproductive traits of both Qingping and Line DIV sows was not significant. In the second and subsequent litters, CC animals in Qingping population had more piglets born (+1.74 piglets) and piglets born alive (+2.02 piglets) than sows with the TT genotype (P < 0.05). Line DIV sows inheriting the CC genotype had additional 0.69 piglets born compared to the TC animals (P < 0.05) in second and subsequent litters. No significant difference was observed between genotypes and reproductive tracts components in F2 animals. In addition, we found RNF4 gene has a significant additive effect on both piglet born and piglet born alive in Qingping animals (P < 0.05). Results here suggested that the RNF4 SNP was significantly associated with litter size in two populations and could be useful in selection for increasing litter size in pigs. Further studies were needed to confirm these preliminary researches.  相似文献   

5.
前列腺素内过氧化物酶2是花生四烯酸合成前列腺素的限速酶,在包括排卵、受精、着床、分娩等一系列生殖过程中起着重要作用,因而编码该酶的基因是影响繁殖性状的重要候选基因。通过PCR—RFLP分析前列腺索内过氧化物酶2基因在15个中外不同繁殖性能猪种中的遗传变异,结果表明,不同类型中国地方猪种和外来商业猪种往此摹因位点上存在丰富的多态性,繁殖性能相埘较好的江海型、华北型和华中型猪种中A等位基因表现为优势等位基因,卡方检验显示其基因频率分布与西方商业猪种及繁殖性能较低的高原型藏猪和华南型猪种差异均极为显著(P〈0.001)。利用二花脸x杜洛克资源家系F2群体分析该基因与繁殖性状的相关性,在180头F2代母猪群体中,未能进一步证实该基凶位点对总产仔数、产活仔数和死胎数3个繁殖性状存在显著影响(P〉0.05),但携带优势等位基因4的个体趋向于拥有较高的总产仔数、产活仔数和偏低的死胎数,鉴于该基因的重要作用,基于全基因序列的SNP扫描和大样本群体的相关性分析仍很有必要。  相似文献   

6.
17beta-Hydroxysteroid dehydrogenase type 1 (HSD17B1) is a key enzyme of 17beta-estradiol biosynthesis, which might play an important role in follicular development of the ovary. In this study, we isolated the complete coding sequence of porcine HSD17B1 gene and its unique intron sequences of porcine HSD17B1 gene, identified a single nucleotide polymorphism (SNP: A/C) in intron 4, and developed a PCR-MvaI-RFLP genotyping assay. Association of the SNP and litter size was assessed in two populations (purebred Large White and a experimental synthetic Line (DIV) sows). Statistical analysis demonstrated that, in the first parity, AC animals in experimental synthetic Line (DIV) sows had 0.52 more piglets born compared to the CC animals (P<0.05). In the all parities, pigs with the AA genotype had an additional 1.11 and 0.96 piglets born alive compared to the CC animals (P<0.05) in both experimental synthetic Line (DIV) and purebred Large White, respectively. Experimental synthetic Line (DIV) sows inheriting the AC genotype had additional 0.84 piglets born alive compared to the CC animals (P<0.01) in all parities. In addition, significant additive effect of -0.55+/-0.24 piglets/litter and -0.48+/-0.22 piglets/litter on piglet born alive was detected in both experimental synthetic Line (DIV) sows and purebred Large White lines (P<0.05), respectively. Therefore, HSD17B1 gene was significantly associated with litter size in two populations and could be a useful molecular marker in selection for increasing litter size in pigs.  相似文献   

7.
To evaluate the effect of the PvuII polymorphism of the oestrogen receptor gene on litter size and production traits in Czech Large White swine, data from 1250 sows and 3600 litters were analysed with two four-trait animal models. The traits in the first model were number of piglets born alive in a sow's first litter, number of piglets born alive in second and subsequent litters, lifetime daily gain and lean meat percentage. The second model included number of piglets born, number of piglets born alive, number of piglets weaned and litter weight at weaning from first and subsequent litters. The oestrogen receptor (ESR) locus significantly affected prolicacy in the first parity and averaged over all parities (P < 0.05), with allele A superior to allele B. In the first parity, AA sows produced approximately 0.5 more live piglets per litter than BB sows. Averaged over all parities, this difference was c. 0.25 piglets. Results for total number of piglets born and number of piglets weaned were similar to results for numbers born alive. No significant dominance effect was found for prolificacy traits. For litter weight at weaning, no significant additive effect was observed at the ESR locus, but a significant negative dominance effect (-1.5 kg) was estimated averaged across parities (litters of AB sows were similar to litters of BB sows for this trait). No pleiotropic effect of the ESR polymorphism on average daily gain or lean meat percentage was found.  相似文献   

8.
Genetic (or ‘genomic’) imprinting, a feature of approximately 100 mammalian genes, results in monoallelic expression from one of the two parentally inherited chromosomes. To date, most studies have been directed on imprinted genes in murine or human models; however, there is burgeoning interest in the effects of imprinted genes in domestic livestock species. In particular, attention has focused on imprinted genes that influence foetal growth and development and that are associated with several economically important production traits in cattle, sheep and pigs. We have re-sequenced regions in 20 candidate bovine imprinted genes in order to validate single nucleotide polymorphisms (SNPs) that may influence important production traits in cattle. Putative SNPs detected via re-sequencing were subsequently re-formatted for high-throughput SNP genotyping in 185 cattle samples comprising 138 performance-tested European Bos taurus (all Limousin bulls), 29 African B. taurus and 18 Indian B. indicus samples. Analysis of the resulting genotypic data identified 117 validated SNPs. Preliminary genotype–phenotype association analyses using 83 SNPs that were polymorphic in the Limousin samples with minor allele frequencies ⩾0.05 revealed significant associations between two candidate bovine imprinted genes and a range of important beef production traits: average daily gain, average feed intake, live weight, feed conversion ratio, residual feed intake and residual gain. These genes were the Ras protein-specific guanine nucleotide releasing factor gene (RASGRF1) and the zinc finger, imprinted 2 gene (ZIM2). Despite the relatively small sample size used in these analyses, the observed associations with production traits are supported by the purported biological function of the RASGRF1 and ZIM2 gene products. These results support the hypothesis that imprinted genes contribute significantly to important complex production traits in cattle. Furthermore, these SNPs may be usefully incorporated into future marker-assisted and genomic selection breeding schemes.  相似文献   

9.

Background

Previous genome-wide association analyses identified QTL regions in the X chromosome for percentage of normal sperm and scrotal circumference in Brahman and Tropical Composite cattle. These traits are important to be studied because they are indicators of male fertility and are correlated with female sexual precocity and reproductive longevity. The aim was to investigate candidate genes in these regions and to identify putative causative mutations that influence these traits. In addition, we tested the identified mutations for female fertility and growth traits.

Results

Using a combination of bioinformatics and molecular assay technology, twelve non-synonymous SNPs in eleven genes were genotyped in a cattle population. Three and nine SNPs explained more than 1% of the additive genetic variance for percentage of normal sperm and scrotal circumference, respectively. The SNPs that had a major influence in percentage of normal sperm were mapped to LOC100138021 and TAF7L genes; and in TEX11 and AR genes for scrotal circumference. One SNP in TEX11 was explained ~13% of the additive genetic variance for scrotal circumference at 12 months. The tested SNP were also associated with weight measurements, but not with female fertility traits.

Conclusions

The strong association of SNPs located in X chromosome genes with male fertility traits validates the QTL. The implicated genes became good candidates to be used for genetic evaluation, without detrimentally influencing female fertility traits.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1595-0) contains supplementary material, which is available to authorized users.  相似文献   

10.
In this study, data genotyping by sequence (GBS) was used to perform single step GWAS (ssGWAS) to identify SNPs associated with the litter traits in domestic pigs and search for candidate genes in the region of significant SNPs. After quality control, 167,355 high-quality SNPs from 532 pigs were obtained. Phenotypic traits on 2112 gilt litters from 532 pigs were recorded including total number born (TNB), number born alive (NBA), and litter weight born alive (LWB). A single-step genomic BLUP approach (ssGBLUP) was used to implement the genome-wide association analysis at a 5% genome-wide significance level. A total of 8, 23 and 20 significant SNPs were associated with TNB, NBA, and LWB, respectively, and these significant SNPs accounted for 62.78%, 79.75%, and 58.79% of genetic variance. Furthermore, 1 (SSC14: 16314857), 4 (SSC1: 81986236, SSC1: 66599775, SSC1: 161999013, and SSC1: 267883107), and 5 (SSC9: 29030061, SSC2: 32368561, SSC5: 110375350, SSC13: 45619882 and SSC13: 45647829) significant SNPs for TNB, NBA, and LWB were inferred to be novel loci. At SSC1, the AIM1 and FOXO3 genes were found to be associated with NBA; these genes increase ovarian reproductive capacity and follicle number and decrease gonadotropin levels. The genes SLC36A4 and INTU are involved in cell growth, cytogenesis and development were found to be associated with LWB. These significant SNPs can be used as an indication for regions in the Sus scrofa genome for variability in litter traits, but further studies are expected to confirm causative mutations.  相似文献   

11.
The objective of this work was to integrate findings from functional genomics studies with genome-wide association studies for fertility and production traits in dairy cattle. Association analyses of production and fertility traits with SNPs located within or close to 170 candidate genes derived from two gene expression studies and from the literature were performed. Data from 2294 Holstein bulls genotyped for 39557 SNPs were used. A total of 111 SNPs were located on chromosomal segments covered by a candidate gene. Allele substitution effects for each SNP were estimated using a mixed model with a fixed effect of marker and a random polygenic effect. Assumed covariance was derived either from marker or from pedigree information. Results from the analysis with the kinship matrix built from marker genotypes were more conservative than from the analysis with the pedigree-derived relationship matrix. From sixteen SNPs with significant effects on both classes of traits, ten provided evidence of an antagonistic relationship between productivity and fertility. However, we found four SNPs with favourable effects on fertility and on yield traits, one SNP with favourable effects on fertility and percentage traits, and one SNP with antagonistic effects on two fertility traits. While most quantitative genetic studies have proven genetic antagonisms between yield and functional traits, improvements in both production and functionality may be possible when focusing on a few relevant SNPs. Investigations combining input from quantitative genetics and functional genomics with association analysis may be applied for the identification of such SNPs.  相似文献   

12.
The aim of the present study was to determine any potential association of the BF, RBP4, and ESR2 genes with reproduction traits in an autochthonous Greek pig population. The PCR-RFLP methodology was implemented for genotyping purposes of the examined genes. No deviation from the Hardy-Weinberg equilibrium was observed for the examined loci, while the B allele noted to be the more frequent in all analyzed genes. In addition, sows with the AA genotype of BF gene found to produce significantly lower numbers of the total born piglets (TNB) and number of piglets born alive (TNA), while the respective BB genotype significantly exceeded in TNB and NBA traits compared to the other two genotypes (P?Abbreviations: TNB: Total number of born piglets; NBA: Number of piglets born alive  相似文献   

13.
Litter size is among the most important traits in swine breeding. However, information on the genetics of litter size in pigs is lacking. In this study, we identified single nucleotide polymorphisms (SNPs) in the insulin-like growth factor binding protein 2 and 3 (IGFBP2 and IGFBP3) genes in Berkshire pigs and analyzed their association with litter size traits. The IGFBP2 SNP was located on chromosome 15 intron 2 (455, A?>?T) and the IGFBP3 SNP was on chromosome 18 intron 2 (53, A?>?G). The AT type of IGFBP2 and the GG type of IGFBP3 had the highest values for all litter size traits including total number born (TNB), number of pigs born alive, and breeding value according to TNB. Homozygous GG pigs expressed higher levels of IGFBP3 mRNA in the endometrium than pigs of other genotypes, and a positive correlation was observed between litter size traits and IGFBP3 but not IGFBP2 expression level. These results suggest that SNPs in the IGFBP2 and the IGFBP3 gene are useful biomarkers for increasing the reproductive productivity of Berkshire pigs.  相似文献   

14.
15.
This study aimed to evaluate the effects of single nucleotide polymorphisms (SNPs) in candidate genes for meat quality using a custom 96‐SNP panel (Illumina Vera Code GoldenGate Assay) on 15 traits collected from 400 commercial pigs. Meat quality measurements included muscle pH, color (L*, a* and b*), drip loss, cooking loss, peak shear force and six sensory traits including appearance (outside and inside), tenderness, juiciness, flavor and overall liking as well as carcass weight and probe yield. Thirty‐five SNPs with minor allele frequencies > 0.10 remained for the multimarker association using the GLM procedure of sas 9.2. Results showed that 20 SNPs were significantly associated with at least one of the traits with either additive or dominance or both effects (< 0.05). Among these significant SNPs, five of them in ADIPOQ, FTO, TNF, LEPR and AMPD1 had an effect on more than three traits simultaneously; those in MC4R, CAST, DGAT1 and MYF6 had an effect on two traits, while the others were associated with one trait. The results suggest that these markers could be incorporated into commercial pigs for marker‐assisted selection and breeding programs for carcass and meat quality trait improvement.  相似文献   

16.
The previous results from a genome scan for total number of piglets born and number of piglets born alive in a F2 Iberian by Meishan intercross showed several single and epistatic QTL. One of the most interesting results was obtained for SSC12, where two QTL affecting both traits showed epistatic interaction. In this study, we proposed two genes ( SLC9A3R1 and NOS2 ) as biological and potentially positional candidates underlying these QTL. Both cDNAs were characterized and 23 polymorphisms were detected. A chromosome scan was conducted with 12 markers, plus one SNP in SLC9A3R1 and one in NOS2, covering 110 cM of SSC12. The epistatic QTL (QTL1 at 15 cM and QTL2 at 97 cM) were confirmed, and SLC9A3R1 and NOS2 were mapped around the QTL1 and QTL2 regions respectively. Several SNPs in both genes were tested with standard animal model and marker assisted association tests. The most significant results were obtained with the NOS2 haplotype defined by one missense SNP c.2192C > T (Val to Ala) and a 15 bp duplication at the 3'UTR. This duplication seems to include AU-rich elements, and could be a target site for miRNA, therefore there are statistical and biological indications to consider this haplotype as the potential causal mutation underlying QTL2. SLC9A3R1 results were not conclusive. Although the interaction between the SNPs was not significant, we cannot reject the possibility of interaction of the NOS2 haplotype with other polymorphisms closely linked to the SL9A3R1 SNPs analysed.  相似文献   

17.
Molecular characteristics of the porcine DLK1 and MEG3 genes   总被引:2,自引:0,他引:2  
Imprinted genes play important roles in embryo survival and postnatal growth regulation. The DLK1 and MEG3 (previously GTL2) genes are linked and reciprocally imprinted in several mammals, but their imprinting status is still unknown in pigs. In this study, we report polymorphisms, imprinting status and QTL analyses of the porcine DLK1 and MEG3 genes. Muscle and adipose DNA and RNA samples from 30-day-old animals generated with reciprocal crosses between the Korean native pig (KNP) and Yorkshire breeds were used to analyse DLK1 and MEG3 variation and expression. The samples exhibited paternal expression of DLK1 and maternal expression of MEG3 in pigs. These results indicated that the imprinting status of the DLK1 and MEG3 genes is conserved across mammalian species. By linkage analyses, we assigned the DLK1 and MEG3 genes to the telomeric region of SSC7. By QTL analyses, we confirmed a significant polar overdominance (POD) effect in DLK1 , which was previously detected for several growth traits in pigs. However, no significant POD effect was found with the MEG3 locus.  相似文献   

18.
Imprinted genes are expressed monoallelically depending on their parental origin, and play important roles in the regulation of fetal growth, development, and postnatal behavior. Most genes known to be imprinted have been identified and studied in the human and the mouse. However, there are only a small number of reported imprinted genes in pigs. Therefore, identification and characterization of more imprinted genes in pigs is useful for comparative analysis of genomic imprinting across species. In this study, we cloned the porcine PEG3, NAP1L5 and PPP1R9A genes. The imprinting status of these genes was determined using sequencing directly and single nucleotide polymorphisms (SNPs) identified in individuals from reciprocal cross of Meishan and Large White pigs. Imprinting analysis was carried out in 13 different tissues (skeletal muscle, fat, pituitary gland, heart, lung, liver, kidney, spleen, stomach, small intestine, uterus, ovary and testis) from twelve 2-month-old piglets. Imprinting analysis showed that PEG3 and NAP1L5 were exclusively expressed from the paternal allele whereas PPP1R9A was biallelically expressed in all tissues tested where the genes were expressed. The study is of interest to understand the conservation of genomic imprinting among mammals at the 3 loci.  相似文献   

19.
20.
A genome‐wide association study was conducted using a mixed model analysis for QTL for fertility traits in Danish and Swedish Holstein cattle. The analysis incorporated 2,531 progeny tested bulls, and a total of 36 387 SNP markers on 29 bovine autosomes were used. Eleven fertility traits were analyzed for SNP association. Furthermore, mixed model analysis was used for association analyses where a polygenic effect was fitted as a random effect, and genotypes at single SNPs were successively included as a fixed effect in the model. The Bonferroni correction for multiple testing was applied to adjust the significance threshold. Seventy‐four SNP‐trait combinations showed chromosome‐wide significance, and five of these were significant genome‐wide. Twenty‐four QTL regions on 14 chromosomes were detected. Strong evidence for the presence of QTL that affect fertility traits were observed on chromosomes 3, 5, 10, 13, 19, 20, and 24. The QTL intervals were generally smaller than those described in earlier linkage studies. The identification of fertility trait‐associated SNPs and mapping of the corresponding QTL in small chromosomal regions reported here will facilitate searches for candidate genes and candidate polymorphisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号