首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Direct interactions between talin and actin   总被引:12,自引:0,他引:12  
Talin was purified from chicken gizzard by a modification of the method of L. Molony et al. [J. Biol. Chem.(1987) 262, 7790-7795]. Unlike the talin purified by the previous method, the talin purified by the new method was found to bind to both F- and G-actin: Talin cosedimented with F-actin. On gel filtration of a mixture of talin and G-actin, a complex of talin and action was obtained. Talin stimulated the polymerization rate of G-actin. A major proteolytic fragment of talin that retained the binding ability to F-actin was also identified. These results indicate that talin can bind directly to actin and suggest that talin plays a key role in the organization of actin filaments at the actin-membrane attachment sites in vivo also.  相似文献   

2.
Monoclonal antibodies with affinity for Thy-1.2 on thymocytes also can bind to actin within marsupial, murine, and human cells. A similar cross-reactivity between Thy-1.1 and vimentin was revealed by Dulbecco and co-workers employing monoclonals. A computer-assisted analysis of the amino acid composition provided suggestive evidence for the occurrence of sequence homology between Thy-1.1 or Thy-1.2, actin, and vimentin that likely accounts for the serologic relatedness detected by hybridoma antibodies.  相似文献   

3.
Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast   总被引:16,自引:0,他引:16  
Haploinsufficiency is defined as a dominant phenotype in diploid organisms that are heterozygous for a loss-of-function allele. Despite its relevance to human disease, neither the extent of haploinsufficiency nor its precise molecular mechanisms are well understood. We used the complete set of Saccharomyces cerevisiae heterozygous deletion strains to survey the genome for haploinsufficiency via fitness profiling in rich (YPD) and minimal media to identify all genes that confer a haploinsufficient growth defect. This assay revealed that approximately 3% of all approximately 5900 genes tested are haploinsufficient for growth in YPD. This class of genes is functionally enriched for metabolic processes carried out by molecular complexes such as the ribosome. Much of the haploinsufficiency in YPD is alleviated by slowing the growth rate of each strain in minimal media, suggesting that certain gene products are rate limiting for growth only in YPD. Overall, our results suggest that the primary mechanism of haploinsufficiency in yeast is due to insufficient protein production. We discuss the relevance of our findings in yeast to human haploinsufficiency disorders.  相似文献   

4.
5.
Endothelial adherens junctions are critical for physiological and pathological processes such as differentiation, maintenance of entire monolayer integrity, and the remodeling. The endothelial-specific VE-cadherin/catenin complex provides the backbone of adherens junctions and acts in close interaction with actin filaments and actin/myosin-mediated contractility to fulfill the junction demands. The functional connection between the cadherin/catenin complex and actin filaments might be either directly through α-catenins, or indirectly e.g., via linker proteins such as vinculin, p120ctn, α-actinin, or EPLIN. However, both junction integrity and dynamic remodeling have to be contemporarily coordinated. The actin-related protein complex ARP2/3 and its activating molecules, such as N-WASP and WAVE, have been shown to regulate the lammellipodia-mediated formation of cell junctions in both epithelium and endothelium. Recent reports now demonstrate a novel aspect of the ARP2/3 complex and the nucleating-promoting factors in the maintenance of endothelial barrier function and junction remodeling of established endothelial cell junctions. Those mechanisms open novel possibilities; not only in fulfilling physiological demands but obtained information may be of critical importance in pathologies such as wound healing, angiogenesis, inflammation, and cell diapedesis.  相似文献   

6.
Regulatory subunit interactions of the 26S proteasome, a complex problem   总被引:16,自引:0,他引:16  
The 26S proteasome is the major non-lysosomal protease in eukaryotic cells. This multimeric enzyme is the integral component of the ubiquitin-mediated substrate degradation pathway. It consists of two subcomplexes, the 20S proteasome, which forms the proteolytic core, and the 19S regulator (or PA700), which confers ATP dependency and ubiquitinated substrate specificity on the enzyme. Recent biochemical and genetic studies have revealed many of the interactions between the 17 regulatory subunits, yielding an approximation of the 19S complex topology. Inspection of interactions of regulatory subunits with non-subunit proteins reveals patterns that suggest these interactions play a role in 26S proteasome regulation and localization.  相似文献   

7.
In vivo visualization of actin dynamics and actin interactions by BiFC   总被引:1,自引:0,他引:1  
The method of bimolecular fluorescence complementation (BiFC) enables selective visualization of protein interactions. While BiFC complex formation under in vitro conditions is considered to be essentially irreversible, there are hints that under in vivo conditions BiFC complex formation can be reversible. In the present study we used the BiFC method to visualize in vivo actin cytoskeleton dynamics. We demonstrate that in living cells formation of actin/actin BiFC complexes is reversible. Furthermore, we show heterologous binding between actin and protein kinase C delta (PKCdelta). Treatment with phorbol esters caused translocation of actin/PKCdelta complexes from the cytosol to the plasma membrane independent of an intact actin cytoskeleton. Our experiments demonstrate that the BiFC method might be a useful tool to investigate participation of the actin cytoskeleton in regulation of cell function.  相似文献   

8.
In addition to the obvious role reproductive traits play in mating-system evolution, reproductive characters can also have critical ecological or life history consequences. In this study we examine the ecological consequences of mating for female cactophilic Drosophila to test different hypotheses about the processes driving divergence in reproductive characters. Comparisons between intra- and interpopulation matings suggest that population differences in mating benefits, namely increased desiccation resistance in mated females, is not solely attributable to either a male or female-specific reproductive trait. Instead, the results indicate that increased desiccation resistance is a product of a male-female postmating-prezygotic interactions. The results underscore that postmating-prezygotic interactions can serve as an arena for the evolution of male characters that confer substantial benefits to females, not just costs arising from sexual conflict. Variation in the relative benefits conferred by mating between intra- and interpopulation matings also suggests that the relationship between speciation and divergence in reproductive characters via male-female interaction will be difficult to predict.  相似文献   

9.
We measured EPR spectra from a spin label on the Cys133 residue of troponin I (TnI) to identify Ca(2+)-induced structural states, based on sensitivity of spin-label mobility to flexibility and tertiary contact of a polypeptide. Spectrum from Tn complexes in the -Ca(2+) state showed that Cys133 was located at a flexible polypeptide segment (rotational correlation time tau=1.9ns) that was free from TnC. Spectra of both Tn complexes alone and those reconstituted into the thin filaments in the +Ca(2+) state showed that Cys133 existed on a stable segment (tau=4.8ns) held by TnC. Spectra of reconstituted thin filaments (-Ca(2+) state) revealed that slow mobility (tau=45ns) was due to tertiary contact of Cys133 with actin, because the same slow mobility was found for TnI-actin and TnI-tropomyosin-actin filaments lacking TnC, T or tropomyosin. We propose that the Cys133 region dissociates from TnC and attaches to the actin surface on the thin filaments, causing muscle relaxation at low Ca(2+) concentrations.  相似文献   

10.
Two biochemical deficits have been described in the substantia nigra in Parkinson's disease, decreased activity of mitochondrial complex I and reduced proteasomal activity. We analysed interactions between these deficits in primary mesencephalic cultures. Proteasome inhibitors (epoxomicin, MG132) exacerbated the toxicity of complex I inhibitors [rotenone, 1-methyl-4-phenylpyridinium (MPP+)] and of the toxic dopamine analogue 6-hydroxydopamine, but not of inhibitors of mitochondrial complex II-V or excitotoxins [N-methyl-d-aspartate (NMDA), kainate]. Rotenone and MPP+ increased free radicals and reduced proteasomal activity via adenosine triphosphate (ATP) depletion. 6-hydroxydopamine also increased free radicals, but did not affect ATP levels and increased proteasomal activity, presumably in response to oxidative damage. Proteasome inhibition potentiated the toxicity of rotenone, MPP+ and 6-hydroxydopamine at concentrations at which they increased free radical levels >/= 40% above baseline, exceeding the cellular capacity to detoxify oxidized proteins reduced by proteasome inhibition, and also exacerbated ATP depletion caused by complex I inhibition. Consistently, both free radical scavenging and stimulation of ATP production by glucose supplementation protected against the synergistic toxicity. In summary, proteasome inhibition increases neuronal vulnerability to normally subtoxic levels of free radicals and amplifies energy depletion following complex I inhibition.  相似文献   

11.
We investigated the structure, properties and dynamics of the actin filament branch junction formed by actin-related protein (Arp) 2/3 complex using all-atom molecular dynamics (MD) simulations based on a model fit to a reconstruction from electron tomograms. Simulations of the entire structure consisting of 31 protein subunits together with solvent molecules containing ~3 million atoms were performed for an aggregate time of 175 ns. One 75-ns simulation of the original reconstruction was compared to two 50-ns simulations of alternate structures, showing that the hypothesized branch junction structure is very stable. Our simulations revealed that the interface between Arp2/3 complex and the mother actin filament features a large number of salt bridges and hydrophobic contacts, many of which are dynamic and formed/broken on the timescale of the simulation. The simulations suggest that the DNase binding loops in Arp3, and possibly Arp2, form stabilizing contacts with the mother filament. Unbiased comparison of models sampled from the MD simulation trajectory with the primary experimental electron tomography data identified regions were snapshots from the simulation provide atomic details of the model structures and also pinpoints regions where the initial modeling based on the electron tomogram reconstruction may be suboptimal.  相似文献   

12.
Cell migration is initiated by lamellipodia-membrane-enclosed sheets of cytoplasm containing densely packed actin filament networks. Although the molecular details of network turnover remain obscure, recent work points towards key roles in filament nucleation for Arp2/3 complex and its activator WAVE complex. Here, we combine fluorescence recovery after photobleaching (FRAP) of different lamellipodial components with a new method of data analysis to shed light on the dynamics of actin assembly/disassembly. We show that Arp2/3 complex is incorporated into the network exclusively at the lamellipodium tip, like actin, at sites coincident with WAVE complex accumulation. Capping protein likewise showed a turnover similar to actin and Arp2/3 complex, but was confined to the tip. In contrast, cortactin-another prominent Arp2/3 complex regulator-and ADF/cofilin-previously implicated in driving both filament nucleation and disassembly-were rapidly exchanged throughout the lamellipodium. These results suggest that Arp2/3- and WAVE complex-driven actin filament nucleation at the lamellipodium tip is uncoupled from the activities of both cortactin and cofilin. Network turnover is additionally regulated by the spatially segregated activities of capping protein at the tip and cofilin throughout the mesh.  相似文献   

13.
Endothelial adherens junctions are critical for physiological and pathological processes such as differentiation, maintenance of entire monolayer integrity, and the remodeling. The endothelial-specific VE-cadherin/catenin complex provides the backbone of adherens junctions and acts in close interaction with actin filaments and actin/myosin-mediated contractility to fulfill the junction demands. The functional connection between the cadherin/catenin complex and actin filaments might be either directly through α-catenins, or indirectly e.g., via linker proteins such as vinculin, p120ctn, α-actinin, or EPLIN. However, both junction integrity and dynamic remodeling have to be contemporarily coordinated. The actin-related protein complex ARP2/3 and its activating molecules, such as N-WASP and WAVE, have been shown to regulate the lammellipodia-mediated formation of cell junctions in both epithelium and endothelium. Recent reports now demonstrate a novel aspect of the ARP2/3 complex and the nucleating-promoting factors in the maintenance of endothelial barrier function and junction remodeling of established endothelial cell junctions. Those mechanisms open novel possibilities; not only in fulfilling physiological demands but obtained information may be of critical importance in pathologies such as wound healing, angiogenesis, inflammation, and cell diapedesis.  相似文献   

14.
Spire and Cappuccino are actin nucleation factors that are required to establish the polarity of Drosophila melanogaster oocytes. Their mutant phenotypes are nearly identical, and the proteins interact biochemically. We find that the interaction between Spire and Cappuccino family proteins is conserved across metazoan phyla and is mediated by binding of the formin homology 2 (FH2) domain from Cappuccino (or its mammalian homologue formin-2) to the kinase noncatalytic C-lobe domain (KIND) from Spire. In vitro, the KIND domain is a monomeric folded domain. Two KIND monomers bind each FH2 dimer with nanomolar affinity and strongly inhibit actin nucleation by the FH2 domain. In contrast, formation of the Spire-Cappuccino complex enhances actin nucleation by Spire. In Drosophila oocytes, Spire localizes to the cortex early in oogenesis and disappears around stage 10b, coincident with the onset of cytoplasmic streaming.  相似文献   

15.
Binding of the utmost N-terminus of essential myosin light chains (ELC) to actin slows down myosin motor function. In this study, we investigated the binding constants of two different human cardiac ELC isoforms with actin. We employed circular dichroism (CD) and surface plasmon resonance (SPR) spectroscopy to determine structural properties and protein–protein interaction of recombinant human atrial and ventricular ELC (hALC-1 and hVLC-1, respectively) with α-actin as well as α-actin with alanin-mutated ELC binding site (α-actinala3) as control. CD spectroscopy showed similar secondary structure of both hALC-1 and hVLC-1 with high degree of α-helicity. SPR spectroscopy revealed that the affinity of hALC-1 to α-actin (KD = 575 nM) was significantly (p < 0.01) lower compared with the affinity of hVLC-1 to α-actin (KD = 186 nM). The reduced affinity of hALC-1 to α-actin was mainly due to a significantly (p < 0.01) lower association rate (kon: 1018 M−1 s−1) compared with kon of the hVLC-1/α-actin complex interaction (2908 M−1 s−1). Hence, differential expression of ELC isoforms could modulate muscle contractile activity via distinct α-actin interactions.  相似文献   

16.
17.
The flexibility of the acto-myosin complex in rigor conditions was characterized by measuring the temperature profile of normalized fluorescence resonance energy transfer efficiency, f' [Somogyi, B., Matkó, J., Papp, S., Hevessy, J., Welch, G.R. & Damjanovich, S. (1984) Biochemistry 23, 3403-3411]. Fluorescence acceptors were introduced to the Cys374 residues of actin and the donors were covalently attached either to Cys707 in the catalytic domain or to Cys177 in the essential light-chain of myosin S1. Fluorescence resonance energy transfer measurements revealed that the protein matrix between Cys374 of actin and Cys707 of S1 is rigid. In contrast, the link between the catalytic and light-chain-binding domains in myosin S1 is flexible. We have recently shown that the positional distribution of Cys707 was narrow relative to the actin filament, while that of the Cys177 was broad. Accordingly, the broad positional distribution of Cys177 is likely to be due to the large flexibility of the link between the catalytic and light-chain-binding domains. This flexibility is probably essential for the interdomain reorganization of the myosin head during the force generation process and for accommodating the symmetry difference between actin and myosin filaments to allow the formation of cross-bridges.  相似文献   

18.
The CDK-interacting protein phosphatase KAP dephosphorylates phosphoThr-160 (pThr-160) of the CDK2 activation segment, the site of regulatory phosphorylation that is essential for kinase activity. Here we describe the crystal structure of KAP in association with pThr-160-CDK2, representing an example of a protein phosphatase in complex with its intact protein substrate. The major protein interface between the two molecules is formed by the C-terminal lobe of CDK2 and the C-terminal helix of KAP, regions remote from the kinase-activation segment and the KAP catalytic site. The kinase-activation segment interacts with the catalytic site of KAP almost entirely via the phosphate group of pThr-160. This interaction requires that the activation segment is unfolded and drawn away from the kinase molecule, inducing a conformation of CDK2 similar to the activated state observed in the CDK2/cyclin A complex.  相似文献   

19.
Dynamic turnover and transport of actin filament network is essential for protrusive force generation and traction force development during cell migration. To elucidate the dynamic coupling between actin network flow and turnover, we focused on flow dynamics in the lamella of one of the simplest but elegant motility systems; crawling fragments derived from fish keratocytes. Interestingly, we show that actin network in the lamella of fragments is not stationary as earlier reported, but exhibits a flow dynamics that is strikingly similar to that reported for higher order cells, suggesting that network flow is an intrinsic property of the actin cytoskeleton that is fundamental to cell migration. We also demonstrate that whereas polymerization mediates network assembly at the front, surprisingly, network flow convergence modulates network disassembly toward the rear of the lamella, suggesting that flow and turnover are coupled during migration. These results obtained using simple motility systems are significant to the understanding of actin network dynamics in migrating cells, and they will be found useful for developing biophysical models for elucidating the fundamental mechanisms of cell migration.  相似文献   

20.
Urokinase-type plasminogen activator (uPA) binds to its receptor (uPAR) with a K(d) of about 1 nm. The catalytic activity of the complex is apparent at uPA concentrations close to K(d). Other functions of the complex, such as signal transduction, are apparent at much higher concentrations (35-60 nm). In the present study, we show that uPA and recombinant soluble uPAR (suPAR), at concentrations that exceed the K(d) and the theoretical saturation levels (10-80 nm), establish novel interactions that lead to a further increase in the activity of the single-chain uPA (scuPA)/suPAR and two-chain uPA (tcuPA)/suPAR complexes. Experiments performed using dynamic light scattering, gel filtration, and electron microscopy techniques indicate that suPAR forms dimers and oligomers. The three techniques provide evidence that the addition of an equimolar concentration of scuPA leads to the dissociation of these dimers and oligomers. Biacore data show that suPAR dimers and oligomers bind scuPA with decreased affinity when compared with monomers. We postulate that uPAR is present in equilibrium between oligomer/dimer/monomer forms. The binding of uPA to suPAR dimers and oligomers occurs with lower affinity than the binding to monomer. These novel interactions regulate the activity of the resultant complexes and may be involved in uPA/uPAR mediated signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号