首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Yu H  Zhao Y  He W  Li XN  Zhou YC  Liu LP 《生理学报》2011,63(4):300-304
The aim of this study was to investigate the influence of neonatal isolation stress on hyperlocomotion in complexin II knockout mouse (Cplx2(-/-)). The mice were randomly divided into 4 groups: Cplx2(-/-) with stress, Cplx2(+/+) with stress, Cplx2(-/-) without stress and Cplx2(+/+) without stress. Isolation stress was employed on the pups of stress groups from the 2nd day after the postnatal to the 21st day. The PCR was used to determine the gene type and the hyperlocomotion test was employed to detect the change of animal behavior after methamphetamine or saline injection (i.p.). The results showed that the animals of all groups increased their movement after injection of 0.2 mg/kg methamphetamine in different levels (P < 0.01), compared with those injected with saline. The Cplx2(-/-) mouse with stress revealed a significant increase in the distance of free movement after injection of 0.2 mg/kg methamphetamine compared with the knockout mouse without stress (P < 0.001). When Cplx2(-/-) mouse with stress was compared with wild type with stress, Cplx2(-/-) mouse with stress had more movement (P < 0.001), indicating that Cplx2 has effect on the hyperlocomotion as well. These results suggest an involvement of stress and Cplx2 in the movement behavior of mice.  相似文献   

2.
Mutations in P/Q-type calcium channels generate common phenotypes in mice and humans, which are characterized by ataxia, paroxysmal dyskinesia, and absence seizures. Subsequent functional changes of T-type calcium channels in thalamus are observed in P/Q-type calcium channel mutant mice and these changes play important roles in generation of absence seizures. However, the changes in T-type calcium channel function and/or expression in the cerebellum, which may be related to movement disorders, are still unknown. The leaner mouse exhibits severe ataxia, paroxysmal dyskinesia, and absence epilepsy due to a P/Q-type calcium channel mutation. We investigated changes in T-type calcium channel expression in the leaner mouse thalamus and cerebellum using quantitative real-time polymerase chain reaction (qRT-PCR) and quantitative in situ hybridization histochemistry (ISHH). qRT-PCR analysis showed no change in T-type calcium channel alpha 1G subunit (Cav3.1) expression in the leaner thalamus, but a significant decrease in alpha 1G expression in the whole leaner mouse cerebellum. Interestingly, quantitative ISHH revealed differential changes in alpha 1G expression in the leaner cerebellum, where the granule cell layer showed decreased alpha 1G expression while Purkinje cells showed increased alpha 1G expression. To confirm these observations, the granule cell layer and the Purkinje cell layer were laser capture microdissected separately, then analyzed with qRT-PCR. Similar to the observation obtained by ISHH, the leaner granule cell layer showed decreased alpha 1G expression and the leaner Purkinje cell layer showed increased alpha 1G expression. These results suggest that differential expression of T-type calcium channels in the leaner cerebellum may be involved in the observed movement disorders.  相似文献   

3.
Mutations in P/Q‐type calcium channels generate common phenotypes in mice and humans, which are characterized by ataxia, paroxysmal dyskinesia, and absence seizures. Subsequent functional changes of T‐type calcium channels in thalamus are observed in P/Q‐type calcium channel mutant mice and these changes play important roles in generation of absence seizures. However, the changes in T‐type calcium channel function and/or expression in the cerebellum, which may be related to movement disorders, are still unknown. The leaner mouse exhibits severe ataxia, paroxysmal dyskinesia, and absence epilepsy due to a P/Q‐type calcium channel mutation. We investigated changes in T‐type calcium channel expression in the leaner mouse thalamus and cerebellum using quantitative real‐time polymerase chain reaction (qRT‐PCR) and quantitative in situ hybridization histochemistry (ISHH). qRT‐PCR analysis showed no change in T‐type calcium channel α1G subunit (Cav3.1) expression in the leaner thalamus, but a significant decrease in α1G expression in the whole leaner mouse cerebellum. Interestingly, quantitative ISHH revealed differential changes in α1G expression in the leaner cerebellum, where the granule cell layer showed decreased α1G expression while Purkinje cells showed increased α1G expression. To confirm these observations, the granule cell layer and the Purkinje cell layer were laser capture microdissected separately, then analyzed with qRT‐PCR. Similar to the observation obtained by ISHH, the leaner granule cell layer showed decreased α1G expression and the leaner Purkinje cell layer showed increased α1G expression. These results suggest that differential expression of T‐type calcium channels in the leaner cerebellum may be involved in the observed movement disorders. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

4.
Genetic or nutritional disorders in homocysteine (Hcy) metabolism elevate Hcy-thiolactone and cause heart and brain diseases. Hcy-thiolactone has been implicated in these diseases because it has the ability to modify protein lysine residues and generate toxic N-Hcy-proteins with auto-immunogenic, pro-thrombotic, and amyloidogenic properties. Bleomycin hydrolase (Blmh) has the ability to hydrolyze L-Hcy-thiolactone (but not D-Hcy-thiolactone) to Hcy in vitro, but whether this reflects a physiological function has been unknown. Here, we show that Blmh (-/-) mice excreted in urine 1.8-fold more Hcy-thiolactone than wild-type Blmh (+/+) animals (P = 0.02). Hcy-thiolactone was elevated 2.3-fold in brains (P = 0.004) and 2.0-fold in kidneys (P = 0.047) of Blmh (-/-) mice relative to Blmh (+/+) animals. Plasma N-Hcy-protein was elevated in Blmh (-/-) mice fed a normal (2.3-fold, P < 0.001) or hyperhomocysteinemic diet (1.5-fold, P < 0.001), compared with Blmh (+/+) animals. More intraperitoneally injected L-Hcy-thiolactone was recovered in plasma in Blmh (-/-) mice than in wild-type Blmh (+/+) animals (83.1 vs. 39.3 μM, P < 0.0001). In Blmh (+/+) mice injected intraperitoneally with D-Hcy-thiolactone, D,L-Hcy-thiolactone, or L-Hcy-thiolactone, 88, 47, or 6.3%, respectively, of the injected dose was recovered in plasma. The incidence of seizures induced by L-Hcy-thiolactone injections (3,700 nmol/g body weight) was higher in Blmh (-/-) than in Blmh (+/+) mice (93.8 vs. 29.5%, P < 0.001). Using the Blmh null mice, we provide the first direct evidence that a specific Hcy metabolite, Hcy-thiolactone, rather than Hcy itself, is neurotoxic in vivo. Taken together, our findings indicate that Blmh protects mice against L-Hcy-thiolactone toxicity by metabolizing it to Hcy and suggest a mechanism by which Blmh might protect against neurodegeneration associated with hyperhomocysteinemia and Alzheimer's disease.  相似文献   

5.
We investigated the expression and function of Abca1 in wild-type C57BL/6, abca1(+/+), and abca1(-/-) mice brain capillaries forming the blood-brain barrier (BBB). We first demonstrated by quantitative RT-PCR and Western immunoblot that Abca1 was expressed and enriched in the wild-type mouse brain capillaries. In abca1(-/-) mice, we reported that the lack of Abca1 resulted in an 1.6-fold increase of the Abcg4 expression level compared to abca1(+/+) mice. Next, using the in situ brain perfusion technique, we showed that the [(3)H]cholesterol brain uptake clearance (Cl(up), μl/s/g brain), was significantly increased (107%) in abca1(-/-) mice compared to abca1(+/+) mice, meaning that the deficiency of Abca1 conducted to a significant decrease of the cholesterol efflux at the BBB level. In addition, the co-perfusion of probucol (Abca1 inhibitor) with [(3)H]cholesterol resulted in an increase of [(3)H]cholesterol Cl(up) (115%) in abca1(+/+) but not in abca1(-/-) mice, meaning that probucol inhibited selectively the efflux function of Abca1. In conclusion, our results demonstrated that Abca1 was expressed in the mouse brain capillaries and that Abca1 functions as an efflux transporter through the mouse BBB.  相似文献   

6.
Prostaglandin H synthase (PHS)-2 (COX-2) is implicated in the neurodegeneration of Alzheimer and Parkinson diseases. Multiple mechanisms may be involved, including PHS-catalyzed bioactivation of neurotransmitters, precursors, and metabolites to neurotoxic free radical intermediates. Herein, in vitro studies with the purified PHS-1 (COX-1) isoform and in vivo studies of aging PHS-1 knockout mice were used to evaluate the potential neurodegenerative role of PHS-1-catalyzed bioactivation of endogenous neurotransmitters to free radical intermediates that enhance reactive oxygen species formation and oxidative DNA damage. The brains of 2-year-old wild-type (+/+) PHS-1 normal and heterozygous (+/-) and homozygous (-/-) PHS-1 knockout mice were analyzed for 8-oxo-2'-deoxyguanosine formation, characterized by high-performance liquid chromatography with electrochemical detection and by immunohistochemistry. Compared to aging PHS-1(+/+) normal mice, aging PHS-1(-/-) knockout mice had less oxidative DNA damage in the cortex, hippocampus, cerebellum, and brain stem. This PHS-1-dependent oxidative damage was not observed in young mice. In vitro incubation of purified PHS-1 and 2'-deoxyguanosine with dopamine, L-DOPA, and epinephrine, but not glutamate or norepinephrine, enhanced oxidative DNA damage. These results suggest that PHS-1-dependent accumulation of oxidatively damaged macromolecules including DNA may contribute to the mechanisms and risk factors of aging-related neurodegeneration.  相似文献   

7.
Medulloblastoma is the most common malignant brain tumor in children. A subset of medulloblastoma originates from granule cell precursors (GCPs) of the developing cerebellum and demonstrates aberrant hedgehog signaling, typically due to inactivating mutations in the receptor PTCH1, a pathomechanism recapitulated in Ptch1(+/-) mice. As nitric oxide may regulate GCP proliferation and differentiation, we crossed Ptch1(+/-) mice with mice lacking inducible nitric oxide synthase (Nos2) to investigate a possible influence on tumorigenesis. We observed a two-fold higher medulloblastoma rate in Ptch1(+/-) Nos2(-/-) mice compared to Ptch1(+/-) Nos2(+/+) mice. To identify the molecular mechanisms underlying this finding, we performed gene expression profiling of medulloblastomas from both genotypes, as well as normal cerebellar tissue samples of different developmental stages and genotypes. Downregulation of hedgehog target genes was observed in postnatal cerebellum from Ptch1(+/+) Nos2(-/-) mice but not from Ptch1(+/-) Nos2(-/-) mice. The most consistent effect of Nos2 deficiency was downregulation of growth-associated protein 43 (Gap43). Functional studies in neuronal progenitor cells demonstrated nitric oxide dependence of Gap43 expression and impaired migration upon Gap43 knock-down. Both effects were confirmed in situ by immunofluorescence analyses on tissue sections of the developing cerebellum. Finally, the number of proliferating GCPs at the cerebellar periphery was decreased in Ptch1(+/+) Nos2(-/-) mice but increased in Ptch1(+/-) Nos2(-/) (-) mice relative to Ptch1(+/-) Nos2(+/+) mice. Taken together, these results indicate that Nos2 deficiency promotes medulloblastoma development in Ptch1(+/-) mice through retention of proliferating GCPs in the external granular layer due to reduced Gap43 expression. This study illustrates a new role of nitric oxide signaling in cerebellar development and demonstrates that the localization of pre-neoplastic cells during morphogenesis is crucial for their malignant progression.  相似文献   

8.
The mu opioid receptor (MOR) in the rat and mouse caudate putamen (CPu) and thalamus was demonstrated as diffuse and broad bands by Western blot with a polyclonal antibody against a C-terminal peptide of MOR, which were absent in the cerebellum and brains of MOR-knockout mice. The electrophoretic mobility of MOR differed in the two brain regions with median relative molecular masses (Mr’s) of 75 kDa (CPu) vs. 66 kDa (thalamus) for the rat, and 74 kDa (CPu) vs. 63 kDa (thalamus) for the mouse, which was due to its differential N-glycosylation. Rat MOR in CPu was found mainly associated with low-density cholesterol- and ganglioside M1 (GM1)-enriched membrane subdomains (lipid rafts), while the MOR in the thalamus was present in rafts and non-rafts without preference. Cholesterol reduction by methyl-β-cyclodextrin decreased DAGMO-induced [35S]GTPγS binding in rat CPu membranes to a greater extent than in the thalamus membranes.  相似文献   

9.
The neuronal protein tyrosine phosphatases encoded by mouse gene Ptprr (PTPBR7, PTP-SL, PTPPBSgamma-42 and PTPPBSgamma-37) have been implicated in mitogen-activated protein (MAP) kinase deactivation on the basis of transfection experiments. To determine their physiological role in vivo, we generated mice that lack all PTPRR isoforms. Ptprr-/- mice were viable and fertile, and not different from wildtype littermates regarding general physiology or explorative behaviour. Highest PTPRR protein levels are in cerebellum Purkinje cells, but no overt effects of PTPRR deficiency on brain morphology, Purkinje cell number or dendritic branching were detected. However, MAP kinase phosphorylation levels were significantly altered in the PTPRR-deficient cerebellum and cerebrum homogenates. Most notably, increased phospho-ERK1/2 immunostaining density was observed in the basal portion and axon hillock of Ptprr-/- Purkinje cells. Concomitantly, Ptprr-/- mice displayed ataxia characterized by defects in fine motor coordination and balance skills. Collectively, these results establish the PTPRR proteins as physiological regulators of MAP kinase signalling cascades in neuronal tissue and demonstrate their involvement in cerebellum motor function.  相似文献   

10.
Vitamin E is the major lipid-soluble chain-breaking antioxidant in mammals and plays an important role in normal development and physiology. Deficiency (whether dietary or genetic) results in primarily nervous system pathology, including cerebellar neurodegeneration and progressive ataxia (abnormal gait). However, despite the widely acknowledged antioxidant properties of vitamin E, only a few studies have directly correlated levels of reactive oxygen species with vitamin E availability in animal models. We explored the relationship between vitamin E and reactive oxygen species in two mouse models of vitamin E deficiency: dietary deficiency and a genetic model (tocopherol transfer protein, Ttp-/- mice). Both groups of mice developed nearly complete depletion of alpha-tocopherol (the major tocopherol in vitamin E) in most organs, but not in the brain, which was relatively resistant to loss of alpha-tocopherol. F4-neuroprostanes, an index of lipid peroxidation, were unexpectedly lower in brains of deficient mice compared with controls. In vivo oxidation of dihydroethidium by superoxide radical was also significantly lower in brains of deficient animals. Superoxide production by brain mitochondria isolated from vitamin E-deficient and Ttp-/- mice, measured by electron paramagnetic resonance spectroscopy, demonstrated a biphasic dependence on exogenously added alpha-tocopherol. At low concentrations, alpha-tocopherol enhanced superoxide flux from mitochondria, a response that was reversed at higher concentrations. Here we propose a mechanism, supported by molecular modeling, to explain decreased superoxide production during alpha-tocopherol deficiency and speculate that this could be a beneficial response under conditions of alpha-tocopherol deficiency.  相似文献   

11.
In a search for neurochemical involvement in cerebellar ataxia, Rolling Mouse Nagoya (C3Hf/Nem-rol), which shows only hypoplasia of the cerebellum but no pathological configuration of the cerebellar structure, was used to study glutamate receptors in the CNS. Kainic acid binding sites were significantly decreased in the thalamus, hypothalamus, pons, and cerebellum, and in the frontal cortex of both the ataxic mutant mouse and the non-ataxic heterozygote. Only spinal cord and midbrain of the ataxic mutant mouse showed decreased distribution of kainate binding sites in the membrane fraction.Among enzymes responsible for supplying glutamate to the receptor, GDH showed higher activity in the spinal cord of the ataxic mutanat mouse.  相似文献   

12.
The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on ATP levels in different areas of mouse brain were studied after rapid fixation of cerebral tissue in situ by microwave irradiation. ATP levels in the striatum, ventral mesencephalon, and cerebellum of untreated C57BL/6 mice killed by microwave irradiation were 2-3 times greater than values measured in the brains of animals killed by cervical dislocation. In microwaved mice, administration of MPTP (40 mg/kg s.c.) caused a 10-20% decrease in ATP concentrations as compared to control animals injected with saline. This decrease was relatively rapid and selective because it occurred in both the striatum and ventral mesencephalon, but not in the cerebellar and frontal cortex, at 30, 60, 120, and 240 min after MPTP exposure. Furthermore, ATP loss in the striatum was prevented by mazindol, a catecholamine uptake blocker, indicating a rather selective effect of MPTP on the ATP content of dopaminergic terminals. Results of this study are consistent with mitochondrial damage in the MPTP model of parkinsonism and provide the first direct experimental evidence in vivo that a decrease in ATP may play a role in MPTP-induced neurotoxicity.  相似文献   

13.
To investigate whether plasminogen may feature in scrapie infection, we inoculated plasminogen-deficient (Plg(-/-)), heterozygous plasminogen-deficient (Plg(+/-)), and wild-type (Plg(+/+)) mice by the intracerebral or intraperitoneal (i.p.) route with the RML scrapie strain and monitored the onset of neurological signs of disease, survival time, brain, and accumulation of scrapie disease-associated forms of the prion protein (PrP(Sc)). Only after i.p. inoculation, a slight, although significant, difference in survival (P < 0.05) between Plg(-/-) and Plg(+/+) mice was observed. Neuropathological examination and Western blot analysis were carried out when the first signs of disease appeared in Plg(+/+) animals (175 days after i.p. inoculation) and when mice reached the terminal stage of illness. At the onset of symptoms, PrP(Sc) accumulation was higher in the brain and spleen of Plg(+/+) and Plg(+/-) mice than in those of Plg(-/-) mice, and these differences were paralleled by differences in the severity of spongiform changes and astrogliosis in the cerebral cortex and subcortical gray structures. Immunohistochemical analysis of the spleens before inoculation did not show any impairment of the immune system affecting follicular dendritic or lymphoid cells in Plg(-/-) mice. Once the disease progressed and mice began to die of infection, differences were no longer apparent in either brains or spleens. In conclusion, our data indicate that plasminogen has no major effect on the survival of scrapie agent-infected mice.  相似文献   

14.
The present study was undertaken to identify and characterize in vivo binding sites of selective serotonin reuptake inhibitors (SSRIs) in the mouse brain by using [3H]paroxetine as radioligand. Relatively higher concentration of [3H]paroxetine was detected in the whole brain (minus cerebellum) than in the plasma of mice after the i.v. injection of the radioligand, and the half-life (t1/2) of elimination was much slower. The in vivo specific [3H]paroxetine binding in the mouse brain after the i.v. injection was defined as the difference of particulate-bound radioactivity between the whole brain and cerebellum, and it was dose-dependently attenuated by oral or intraperitoneal administration of fluoxetine (8.68-116 micromol/kg). Furthermore, oral administration of fluvoxamine, fluoxetine, paroxetine and sertraline at the pharmacologically relevant doses reduced significantly (25-94%) in vivo specific [3H]paroxetine binding in the cerebral cortex, striatum, hippocampus, thalamus and midbrain of mice, and their significant decreases were observed up to at least 8 h (fluvoxamine), 24 h (fluoxetine), and 12 h (paroxetine and sertraline) later. The value of area under the curve (AUC) for decrease in [3H]paroxetine binding vs. time in each brain region was largest for fluoxetine among these SSRIs, due to the relatively longer-lasting occupation of brain serotonin transporter. The AUC value in mouse brain after oral administration of each SSRI was 1.2-3.2 times greater in the thalamus and midbrain than in the cerebral cortex, striatum and hippocampus. Thus, the present study has revealed that [3H]paroxetine may be a suitable radioligand for in vivo characterization of brain binding sites and pharmacological effects of SSRIs.  相似文献   

15.
Human brain glycoproteins depleted of Thy-1 antigen were used to immunise Balb/c mice for monoclonal antibody production. The F3-87-8 antibody described in this paper interacts with a determinant present in large amounts on all human brain subregions studied (cerebral cortical grey matter, white matter, caudate, thalamus, dentate nucleus, putamen, cerebellar cortex) but absent from all other tissues examined (liver, heart, kidney, spleen, thymus, lymph node, erythrocyte, adrenal gland, and peripheral nerve). The determinant is conserved in mammalian evolution, as the brains of the rat and dog have amounts equal to that found in human brain. Balb/c mouse brain has approximately one-third as much antigen activity as these other mammalian brains, whereas brains of the frog and chicken have no detectable antigenic activity. Developmental studies showed that 16-week human foetal brain and neonatal dog brain had little or no antigen activity, indicating a dramatic increase in the amount of the determinant with brain maturation. Biochemical studies showed that the F3-87-8-bearing molecule was a major sialoglycoprotein of human brain with an apparent molecular weight of 130,000. It was shown by immunofluorescence to be particularly localised in what appeared to be fibre tracts in the thalamus and basal ganglia, and in the dentate nucleus, although all regions including grey matter were stained.  相似文献   

16.
Creatine (Cr) levels in skeletal muscle and brain of a mouse model of Cr deficiency caused by guanidinoacetate methyltransferase absence (GAMT-/-) were studied after Cr supplementation with 2 g.kg body wt-1.day-1 Cr for 35 days. Localized 1H magnetic resonance spectroscopy (MRS) was performed in brain (cerebellum and thalamus/hippocampus) and in hind leg muscle of GAMT-/- mice before and after Cr supplementation and in control (Con) mice. As expected, a signal for Cr was hardly detectable in MR spectra of GAMT-/- mice before Cr supplementation. In the thalamus/hippocampus region of these mice, an increase in N-acetylasparate (NAA) was observed. During Cr administration, Cr levels increased faster in skeletal muscle compared with brain, but this occurred only during the first day of supplementation. Thereafter, Cr levels increased by 0.8 mM/day in all studied locations. After 35 days of Cr supplementation, Cr levels in all locations were higher compared with Con mice on a Cr-free diet and NAA levels normalized. Only because of the repeated MRS measurements performed in this longitudinal Cr supplementation study on GAMT-/- mice were we able to discover the initial faster uptake of Cr in skeletal muscle compared with brain, which may represent muscular Cr uptake independent of Cr transporter expression. Our results can provide the basis for additional experiments to optimize Cr supplementation in GAMT deficiency, as increases in brain Cr are slow in patients after Cr supplementation.  相似文献   

17.
To establish a mouse model of accelerated atherosclerosis in lupus, we generated apolipoprotein E-deficient (apoE(-/-)) and Fas(lpr/lpr) (Fas(-/-)) C57BL/6 mice. On a normal chow diet, 5 month old apoE(-/-)Fas(-/-) mice had enlarged glomerular tuft areas, severe proteinuria, increased circulating autoantibody levels, and increased apoptotic cells in renal and vascular lesions compared with either single knockout mice. Also, double knockout mice developed increased atherosclerotic lesions but decreased serum levels of total and non-HDL cholesterol compared with apoE(-/-)Fas(+/+) littermates. Moreover, female apoE(-/-)Fas(-/-) mice had lower vertebral bone mineral density (BMD) and bone volume density (BV/TV) than age-matched female apoE(-/-)Fas(+/+) mice. Compared with apoE(-/-)Fas(+/+) and apoE(+/+)Fas(-/-) mice, apoE(-/-)Fas(-/-) mice had decreased circulating oxidized phospholipid (OxPL) content on apoB-100 containing lipoprotein particles and increased serum IgG antibodies to OxPL, which were significantly correlated with aortic lesion areas (r = 0.58), glomerular tuft areas (r = 0.87), BMD (r = -0.57), and BV/TV (r = -0.72). These results suggest that the apoE(-/-)Fas(-/-) mouse model might be used to study atherosclerosis and osteopenia in lupus. Correlations of IgG anti-OxPL with lupus-like disease, atherosclerosis, and bone loss suggested a shared pathway of these disease processes.  相似文献   

18.
To test the hypothesis that neuroinflammation contributes to dopaminergic neuron death in the MPTP-lesioned mouse, we compared nigrostriatal degeneration in interleukin (IL)-6 (+/+) with IL-6 (-/-) mice. In the absence of IL-6, a single injection of MPTP (30 mg/kg) resulted in significantly greater striatal dopamine depletion than that measured in IL-6 (+/+) mice. The observed dopamine depletion was MPTP dose dependent. This loss of striatal dopamine and a significantly greater loss of TH+ cells in the substantia nigra pars compacta in IL-6 (-/-) mice as compared with control IL-6 (+/+) mice, suggest that IL-6 is neuroprotective in the MPTP-lesioned nigrostriatal system. Co-localization experiments identified striatal astrocytes as the source of IL-6 in IL-6 (+/+) mice at 1 and 7 days postinjection of MPTP. The increased sensitivity of dopaminergic neurons to neurotoxicant in the absence of IL-6, is compatible with a neuroprotective activity of IL-6 in the injured nigrostriatal system.  相似文献   

19.
Tumor necrosis factor-alpha (TNF) is implicated as an important proinflammatory cytokine in asthma. We evaluated mice deficient in TNF receptor 1 (TNFR1) and TNFR2 [TNFR(-/-) mice] in a murine model of allergic inflammation and found that TNFR(-/-) mice had comparable or accentuated responses compared with wild-type [TNFR(+/+)] mice. The responses were consistent among multiple end points. Airway responsiveness after methacholine challenge and bronchoalveolar lavage (BAL) fluid leukocyte and eosinophil numbers in TNFR(-/-) mice were equivalent or greater than those observed in TNFR(+/+) mice. Likewise, serum and BAL fluid IgE; lung interleukin (IL)-2, IL-4, and IL-5 levels; and lung histological lesion scores were comparable or greater in TNFR(-/-) mice compared with those in TNFR(+/+) mice. TNFR(+/+) mice chronically treated with anti-murine TNF antibody had BAL fluid leukocyte numbers and lung lesion scores comparable to control antibody-treated mice. These results suggest that, by itself, TNF does not have a critical proinflammatory role in the development of allergic inflammation in this mouse model and that the production of other cytokines associated with allergic disease may compensate for the loss of TNF bioactivity in the TNFR(-/-) mouse.  相似文献   

20.
The myelin-deficient Shiverer (Shi/Shi) mutant mouse may be a useful model in assessing the dependence of brain (Na++K+)-ATPase concentration and composition on myelin membrane formation. Brain microsomal membranes from age-matched control (+/+) and Shiverer (Shi/Shi) mice were fractionated by differential centrifugation and sucrose gradient sedimentation. No reduction in (Na++K+)-ATPase specific activity was measured in whole homogenates, high-and low-speed fractions or gradient fractions from brains of Shi/Shi mice as compared to those of +/+ mice. In addition, sodium dodecylsulfatepolyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting with antisera specific for mouse brain (Na++K+)-ATPase revealed no significant difference in catalytic subunit composition between fractions of +/+ and Shi/Shi brains. The similar results obtained for both +/+ and myelin-deficient Shi/Shi mice suggest that myelin contributes little to total brain (Na++K+)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号