首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
G F Xu  B Lin  K Tanaka  D Dunn  D Wood  R Gesteland  R White  R Weiss  F Tamanoi 《Cell》1990,63(4):835-841
Sequencing of the neurofibromatosis gene (NF1) revealed a striking similarity among NF1, yeast IRA proteins, and mammalian GAP (GTPase-activating protein). Using both genetic and biochemical assays, we demonstrate that this homology domain of the NF1 protein interacts with ras proteins. First, expression of this NF1 domain suppressed the heat shock-sensitive phenotype of yeast ira1 and ira2 mutants. Second, this NF1 domain, after purification as a glutathione S-transferase (GST) fusion protein, strongly stimulated the GTPase activity of yeast RAS2 and human H-ras proteins. The GST-NF1 protein, however, did not stimulate the GTPase activity of oncogenic mutant ras proteins, H-rasVal-12 and yeast RAS2Val-19 mutants, or a yeast RAS2 effector mutant. These results establish that this NF1 domain has ras GAP activity similar to that found with IRA2 protein and mammalian GAP, and therefore may also regulate ras function in vivo.  相似文献   

4.
DOCK4, a GTPase activator,is disrupted during tumorigenesis   总被引:17,自引:0,他引:17  
We used representational difference analysis to identify homozygous genomic deletions selected during tumor progression in the mouse NF2 and TP53 tumor model. We describe a deletion targeting DOCK4, a member of the CDM gene family encoding regulators of small GTPases. DOCK4 specifically activates Rap GTPase, enhancing the formation of adherens junctions. DOCK4 mutations are present in a subset of human cancer cell lines; a recurrent missense mutant identified in human prostate and ovarian cancers encodes a protein that is defective in Rap1 activation. The engulfment defect of C. elegans mutants lacking the CDM gene ced-5 is rescued by wild-type DOCK4, but not by the mutant allele. Expression of wild-type, but not mutant, DOCK4 in mouse osteosarcoma cells with a deletion of the endogenous gene suppresses growth in soft agar and tumor invasion in vivo. DOCK4 therefore encodes a CDM family member that regulates intercellular junctions and is disrupted during tumorigenesis.  相似文献   

5.
6.
Mutations in the TSC1 or TSC2 genes cause tuberous sclerosis, a benign tumour syndrome in humans. Tsc2 possesses a domain that shares homology with the GTPase-activating protein (GAP) domain of Rap1-GAP, suggesting that a GTPase might be the physiological target of Tsc2. Here we show that the small GTPase Rheb (Ras homologue enriched in brain) is a direct target of Tsc2 GAP activity both in vivo and in vitro. Point mutations in the GAP domain of Tsc2 disrupted its ability to regulate Rheb without affecting the ability of Tsc2 to form a complex with Tsc1. Our studies identify Rheb as a molecular target of the TSC tumour suppressors.  相似文献   

7.
Somatic mutations in the neurofibromatosis 1 gene in human tumors.   总被引:26,自引:0,他引:26  
The neurofibromatosis 1 (NF1) gene product, neurofibromin, contains a GTPase-activating protein (GAP)-related domain, or NF1 GRD, that is able to down-regulate p21ras by stimulating its intrinsic GTPase. Since p21ras.GTP is a major regulator of growth and differentiation, mutant neurofibromins resulting from somatic mutations in the NF1 gene might interfere with ras signaling pathways and contribute to the development of tumors. We describe an amino acid substitution in the NF1 GRD, altering Lys-1423, that has occurred in three tumor types: colon adenocarcinoma, myelodysplastic syndrome, and anaplastic astrocytoma, and in one family with neurofibromatosis 1. The GAP activity of the mutant NF1 GRD is 200- to 400-fold lower than that of wild type, whereas binding affinity is unaffected. Thus, germline mutations in NF1 that cause neurofibromatosis 1 can also occur in somatic cells and contribute to the development of sporadic tumors, including tumors not associated with neurofibromatosis 1.  相似文献   

8.
The double mutation, D33H/P34S, reduced the transforming activity of oncogenic RasH proteins, G12V and Q61L, 400- and 20-fold, respectively. Remarkably, this same mutation did not reduce the transforming activity of normal RasH, nor did it impair the ability of the protein to restore a functional Ras pathway in cells whose endogenous Ras proteins were inhibited. Another mutation in this region, D38N, had similar effects. The mutations reduced downstream coupling efficiency of normal Ras as assessed by yeast adenylyl cyclase stimulation. However, this was offset by decreased GTPase activating protein (GAP) binding, since the latter resulted in elevated GTP-bound mutant Ras in cells. The mutations produced a similar decrease in downstream coupling efficiency of oncogenic Ras, but decreased GAP binding did not compensate because the GTPase activity of oncogenic Ras is not stimulated by GAP. These results imply that preferential inactivation of oncogenic Ras in human tumors may be achieved by reagents designed to inhibit the GAP-binding/"effector" domain of Ras proteins.  相似文献   

9.
Almost all prostate cancers respond to androgen deprivation treatment but many recur. We postulated that risk of hormone escape -frequency and delay- are influenced by hormone therapy modalities. More, hormone therapies induce crucial biological changes involving androgen receptors; some might be targets for escape prevention. We investigated the relationship between the androgen deprivation treatment and the risk of recurrence using nude mice bearing the high grade, hormone-dependent human prostate cancer xenograft PAC120. Tumor-bearing mice were treated by Luteinizing-Hormone Releasing Hormone (LHRH) antagonist alone, continuous or intermittent regimen, or combined with androgen receptor (AR) antagonists (bicalutamide or flutamide). Tumor growth was monitored. Biological changes were studied as for genomic alterations, AR mutations and protein expression in a large series of recurrent tumors according to hormone therapy modalities. Therapies targeting Her-2 or AKT were tested in combination with castration. All statistical tests were two-sided. Tumor growth was inhibited by continuous administration of the LH-RH antagonist degarelix (castration), but 40% of tumors recurred. Intermittent castration or complete blockade induced by degarelix and antiandrogens combination, inhibited tumor growth but increased the risk of recurrence (RR) as compared to continuous castration (RR(intermittent): 14.5, RR(complete blockade): 6.5 and 1.35). All recurrent tumors displayed new quantitative genetic alterations and AR mutations, whatever the treatment modalities. AR amplification was found after complete blockade. Increased expression of Her-2/neu with frequent ERK/AKT activation was detected in all variants. Combination of castration with a Her-2/neu inhibitor decreased recurrence risk (0.17) and combination with an mTOR inhibitor prevented it. Anti-hormone treatments influence risk of recurrence although tumor growth inhibition was initially similar. Recurrent tumors displayed genetic instability, AR mutations, and alterations of phosphorylation pathways. We postulated that Her-2/AKT pathways allowed salvage of tumor cells under castration and we demonstrated that their inhibition prevented tumor recurrence in our model.  相似文献   

10.
The plexin family of transmembrane receptors are important for axon guidance, angiogenesis, but also in cancer. Recently, plexin-B1 somatic missense mutations were found in both primary tumors and metastases of breast and prostate cancers, with several mutations mapping to the Rho GTPase binding domain (RBD) in the cytoplasmic region of the receptor. Here we present the NMR solution structure of this domain, confirming that the protein has both a ubiquitin-like fold and surface features. Oncogenic mutations T1795A and T1802A are located in a loop region, perturb the average structure locally, and have no effect on Rho GTPase binding affinity. Mutations L1815F and L1815P are located at the Rho GTPase binding site and are associated with a complete loss of binding for Rac1 and Rnd1. Both are found to disturb the conformation of the beta3-beta4 sheet and the orientation of surrounding side chains. Our study suggests that the oncogenic behavior of the mutants can be rationalized with reference to the structure of the RBD of plexin-B1.  相似文献   

11.
beta2-Chimerin is a member of the "non-protein kinase C" intracellular receptors for the second messenger diacylglycerol and the phorbol esters that is yet poorly characterized, particularly in the context of signaling pathways involved in proliferation and cancer progression. beta2-Chimerin possesses a C-terminal Rac-GAP (GTPase-activating protein) domain that accelerates the hydrolysis of GTP from the Rac GTPase, leading to its inactivation. We found that beta2-chimerin messenger levels are significantly down-regulated in human breast cancer cell lines as well as in breast tumors. Adenoviral delivery of beta2-chimerin into MCF-7 breast cancer cells leads to inhibition of proliferation and G(1) cell cycle arrest. Mechanistic studies show that the effect involves the reduction in Rac-GTP levels, cyclin D1 expression, and retinoblastoma dephosphorylation. Studies using the mutated forms of beta2-chimerin revealed that these effects were entirely dependent on its C-terminal GAP domain and Rac-GAP activity. Moreover, MCF-7 cells stably expressing active Rac (V12Rac1) but not RhoA (V14RhoA) were insensitive to beta2-chimerin-induced inhibition of proliferation and cell cycle progression. The modulation of G(1)/S progression by beta2-chimerin not only implies an essential role for Rac in breast cancer cell proliferation but also raises the intriguing possibility that diacylglycerol-regulated non-protein kinase C pathways can negatively impact proliferation mechanisms controlled by Rho GTPases.  相似文献   

12.
To determine the amino acid residues required for the signal-transducing activity of the human c-Ha-Ras protein, we introduced point mutations at residues 45-54 near the 'effector region' (residues 32-40). We transfected PC12 cells with these mutant genes and also micro-injected the mutant proteins, bound with an unhydrolyzable GTP analog, into PC12 cells. Both procedures showed that Val45----Glu and Gly48----Cys mutations impaired the ability of the Ras protein to induce morphological change of PC12 cells. These mutations did not affect the guanine nucleotide-binding activity or GTPase activity in the absence or presence of bovine GTPase-activating protein (GAP). Therefore, the Val45 and Gly48 residues should be included by definition in the effector region responsible for the signal transduction, while only a subset of the effector-region residues is required for enhancement of the GTPase activity by GAP.  相似文献   

13.
Deleted in liver cancer 1 (DLC1) is a tumor suppressor protein that is frequently downregulated in various tumor types. DLC1 contains a Rho GTPase activating protein (GAP) domain that appears to be required for its tumor suppressive functions. Little is known about the molecular mechanisms that regulate DLC1. By mass spectrometry we have mapped a novel phosphorylation site within the DLC1 GAP domain on serine 807. Using a phospho-S807-specific antibody, our results identify protein kinase D (PKD) to phosphorylate this site in DLC1 in intact cells. Although phosphorylation on serine 807 did not directly impact on in vitro GAP activity, a DLC1 serine-to-alanine exchange mutant inhibited colony formation more potently than the wild type protein. Our results thus show that PKD-mediated phosphorylation of DLC1 on serine 807 negatively regulates DLC1 cellular function.  相似文献   

14.
Tuberous sclerosis complex (TSC) is a genetic disease characterized by multiorgan benign tumors as well as neurological manifestations. Epilepsy and autism are two of the more prevalent neurological complications and are usually severe. TSC is caused by mutations in either the TSC1 (encodes hamartin) or the TSC2 (encodes tuberin) genes with TSC2 mutations being associated with worse outcomes. Tuberin contains a highly conserved GTPase‐activating protein (GAP) domain that indirectly inhibits mammalian target of rapamycin complex 1 (mTORC1). mTORC1 dysregulation is currently thought to cause much of the pathogenesis in TSC but mTORC1‐independent mechanisms may also contribute. We generated a novel conditional allele of Tsc2 by flanking exons 36 and 37 with loxP sites. Mice homozygous for this knock‐in Tsc2 allele are viable and fertile with normal appearing growth and development. Exposure to Cre recombinase then creates an in‐frame deletion involving critical residues of the GAP domain. Homozygous conditional mutant mice generated using Emx1Cre have increased cortical mTORC1 signaling, severe developmental brain anomalies, seizures, and die within 3 weeks. We found that the normal levels of the mutant Tsc2 mRNA, though GAP‐deficient tuberin protein, appear unstable and rapidly degraded. This novel animal model will allow further study of tuberin function including the requirement of the GAP domain for protein stability. genesis 51:284–292. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Loss of the tumor suppression activity of p53 is required for the progression of most human cancers. In this context, p53 gene is somatically mutated in about half of all human cancers; in the rest human cancers, p53 is mostly inactivated due to the disruption of pathways important for its activation. Most p53 cancer mutations are missense mutations within the core domain, leading to the expression of full-length mutant p53 protein. The expression of p53 mutants is usually correlated with the poor prognosis of the cancer patients. Accumulating evidence has indicated that p53 cancer mutants not only lose the tumor suppression activity of WT p53, but also gain novel oncogenic activities to promote tumorigenesis and drug resistance. Therefore, to improve current cancer therapy, it is critical to elucidate the gain-of-functions of p53 cancer mutants. By analyzing the humanized p53 mutant knock-in mouse models, we have identified a new gain of function of the common p53 cancer mutants in inducing genetic instability by disrupting ATM-mediated cellular responses to DNA double-stranded break (DSB) damage. Considering that some current cancer therapies such as radiotherapy kills the cancer cells by inducing DSBs in their genome DNA, our findings will have important implications on the treatment of human cancers that express common p53 mutants.  相似文献   

16.
Cytokinesis in animal cells is mediated by a cortical actomyosin-based contractile ring. The GTPase RhoA is a critical regulator of this process as it activates both nonmuscle myosin and a nucleator of actin filaments [1]. The site at which active RhoA and its effectors accumulate is controlled by the microtubule-based spindle during anaphase [2]. ECT-2, the guanine nucleotide exchange factor (GEF) that activates RhoA during cytokinesis, is regulated by phosphorylation and subcellular localization [3-5]. ECT2 localization depends on interactions with CYK-4/MgcRacGAP, a Rho GTPase-activating protein (GAP) domain containing protein [5, 6]. Here we show that, contrary to expectations, the Rho GTPase-activating protein (GAP) domain of CYK-4 promotes activation of RhoA during cytokinesis. Furthermore, we show that the primary phenotype caused by mutations in the GAP domain of CYK-4 is not caused by ectopic activation of CED-10/Rac1 and ARX-2/Arp2. However, inhibition of CED-10/Rac1 and ARX-2/Arp2 facilitates ingression of weak cleavage furrows. These results demonstrate that?a GAP domain can contribute to activation of a small GTPase. Furthermore, cleavage furrow ingression is sensitive to the balance of contractile forces and cortical tension.  相似文献   

17.
Tumor suppressor genes evolved as negative effectors of mitogen and nutrient signaling pathways, such that mutations in these genes can lead to pathological states of growth. Tuberous sclerosis (TSC) is a potentially devastating disease associated with mutations in two tumor suppressor genes, TSC1 and 2, that function as a complex to suppress signaling in the mTOR/S6K/4E-BP pathway. However, the inhibitory target of TSC1/2 and the mechanism by which it acts are unknown. Here we provide evidence that TSC1/2 is a GAP for the small GTPase Rheb and that insulin-mediated Rheb activation is PI3K dependent. Moreover, Rheb overexpression induces S6K1 phosphorylation and inhibits PKB phosphorylation, as do loss-of-function mutations in TSC1/2, but contrary to earlier reports Rheb has no effect on MAPK phosphorylation. Finally, coexpression of a human TSC2 cDNA harboring a disease-associated point mutation in the GAP domain, failed to stimulate Rheb GTPase activity or block Rheb activation of S6K1.  相似文献   

18.
MicroRNAs (miRs) are a novel class of small RNA molecules, the dysregulation of which can contribute to cancer. A combinatorial approach was used to identify miRs that promote prostate cancer progression in a unique set of prostate cancer cell lines, which originate from the parental p69 cell line and extend to a highly tumorigenic/metastatic M12 subline. Together, these cell lines are thought to mimic prostate cancer progression in vivo. Previous network analysis and miR arrays suggested that the loss of hsa-miR-125b together with the overexpression of hsa-miR-22 could contribute to prostate tumorigenesis. The dysregulation of these two miRs was confirmed in human prostate tumor samples as compared to adjacent benign glandular epithelium collected through laser capture microdissection from radical prostatectomies. In fact, alterations in hsa-miR-125b expression appeared to be an early event in tumorigenesis. Reverse phase microarray proteomic analysis revealed ErbB2/3 and downstream members of the PI3K/AKT and MAPK/ERK pathways as well as PTEN to be protein targets differentially expressed in the M12 tumor cell compared to its parental p69 cell. Relevant luciferase+3’-UTR expression studies confirmed a direct interaction between hsa-miR-125b and ErbB2 and between hsa-miR-22 and PTEN. Restoration of hsa-miR-125b or inhibition of hsa-miR-22 expression via an antagomiR resulted in an alteration of M12 tumor cell behavior in vitro. Thus, the dual action of hsa-miR-125b as a tumor suppressor and hsa-miR-22 as an oncomiR contributed to prostate tumorigenesis by modulations in PI3K/AKT and MAPK/ERK signaling pathways, key pathways known to influence prostate cancer progression.  相似文献   

19.
Background: Several Rho GTPase-activating proteins (RhoGAPs) are implicated in tumor progression through their effects on Rho GTPase activity. ARHGAP21 is a RhoGAP with increased expression in head and neck squamous cell carcinoma and with a possible role in glioblastoma tumor progression, yet little is known about the function of ARHGAP21 in cancer cells. Here we studied the role of ARHGAP21 in two prostate adenocarcinoma cell lines, LNCaP and PC3, which respectively represent initial and advanced stages of prostate carcinogenesis. Results: ARHGAP21 is located in the nucleus and cytoplasm of both cell lines and its depletion resulted in decreased proliferation and increased migration of PC3 cells but not LNCaP cells. In PC3 cells, ARHGAP21 presented GAP activity for RhoA and RhoC and induced changes in cell morphology. Moreover, its silencing altered the expression of genes involved in cell proliferation and cytoskeleton organization, as well as the endothelin-1 canonical pathway. Conclusions: Our results reveal new functions and signaling pathways regulated by ARHGAP21, and indicate that it could contribute to prostate cancer progression.  相似文献   

20.
The GTPase-activating protein (GAP) stimulates the GTPase reaction of p21 by 5 orders of magnitude such that the kcat of the reaction is increased to 19 s-1. Mutations of residues in loop L1 (Gly-12 and Gly-13), in loop L2 (Thr-35 and Asp-38), and in loop L4 (Gln-61 and Glu-63) influence the reaction in different ways, but all of these mutant p21 proteins still form complexes with GAP. The C-terminal domain of the human GAP gene product, GAP334, which comprises residues 714 to 1047, is 20 times less active than full-length GAP on a molar basis and has a fourfold lower affinity. This finding indicates that the N terminus of GAP containing the SH2 domains modifies the interaction between the catalytic domain and p21.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号