首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
It is well known that Anopheles dirus is naturally refractory to rodent malaria parasite, Plasmodium yoelii, but the mechanism is still largely unknown. Here, we found that some P. yoelii taken into An. dirus could develop into oocysts, but oocysts were partially melanized at 7 days and completely melanized at 15 days post-infectious blood meal. Transmission electronic microscopy could find the melanized P. yoelii oocysts in An. dirus as early as 5 days post-infection, with a few haemocytes attaching to the melanized oocysts, indicating a typical humoral melanization reaction. Although the change of protein pattern at 24h post-infection suggested that other unknown mechanisms and/or factors might be involved in killing ookinetes, our data implied that oocysts melanization was one of the mechanisms of An. dirus to block P. yoelii development. In addition, activity of phenoloxidase, such as monophenol oxidase and o-diphenoloxidase, in haemolymph of An. dirus fed on infectious blood meal was much higher than that of mosquitoes fed on 5% glucose or normal mouse blood (p<0.05), implying the possible role of PO in oocysts melanization by An. dirus.  相似文献   

3.
The role of B lymphocytes in resistance to malaria was studied in defective and normal F1 mice derived from CBA/N mice, a strain with an X-linked B cell defect. When infected with normally nonlethal Plasmodium yoelii, immune defective F1 male mice had higher parasitemias and more prolonged infections than normal F1 mice, as well as a 50% mortality rate. Before infection the plasma levels of IgM and IgG were lower in defective F1 males than normal F1 mice. The polyclonal IgM and IgG responses of infected abnormal F1 mice were delayed and lower in absolute magnitude than those of normal F1 mice. Furthermore, specific IgM and IgG anti-plasmodial antibody titers, as determined by radioimmunoassay, were depressed on day 12 in the defective F1 males. Although IgG titers approached those of the normal F1 mice on day 19, defective F1 male IgM titers remained depressed. These data demonstrate that an X-linked gene that affects B cell function influences malarial resistance in mice, presumably via a decreased specific IgM response, and the slow development of a specific IgG response to P. yoelii infection.  相似文献   

4.
5.
Female B6C3F1 mice treated with 25 mg/kg pyran intravenously (i.v.) on days -4 and -3 were more susceptible to nonlethal Plasmodium yoelii 17XNL or lethal Plasmodium berghei ATCC-30090 than untreated mice or mice treated intraperitoneally (i.p.). Female B6C3F1 mice treated with pyran i.p. displayed enhanced resistance to Listeria monocytogenes as compared to untreated mice or mice given pyran i.v. Peritoneal exudate cells (PEC) primed by pyran i.p. possessed enhanced ability to kill Listeria but impaired ability to destroy Plasmodium. Phagocytosis of Covaspheres by PEC was greater for mice given pyran i.p. than those given pyran i.v. Chemiluminescence evoked by zymosan was less for PEC from mice given pyran i.v. than for those from untreated mice or those given pyran i.p. Chemiluminescence was greater for adherent splenocytes from mice treated with pyran i.p. than for those from untreated mice or those from mice treated i.v. Pyran administered i.v. is less effective in modulating the host immune response than pyran administered i.p. Immunomodulatory agents such as pyran have adverse as well as beneficial effects depending upon the route of administration.  相似文献   

6.
Cell mediated immunity to nonlethal Plasmodium yoelli 17X (PY17X-NL) was examined in the CBA/CaJ mouse by adoptive transfer of sensitized T lymphocyte subsets. In intact mice, PY17X-NL causes a self-limiting infection with parasitemia levels ranging from 10 to 25% of total red blood cells. Upon recovery, mice are refractory to subsequent challenge with the homologous parasite. In T cell-depleted mice, PY17X-NL infections are extremely virulent and result in death of the host after parasitemia levels reach 50% or higher. The transfer of either Lyt-1 T cells or Lyt-2 T cells from immune animals into normal, naive animals produced accelerated recovery to subsequent infection. However, this adoptive transfer of immunity by either subset was dependent upon the presence of an I-J+, Lyt-null cell in the immune population. T cell deprivation precluded the ability of animals to control blood-stage infections. When T cell-depleted mice were reconstituted with naive, Ig-negative (T cell-enriched) spleen cells, parasitemia levels were controlled and the parasites were eliminated. When T cell-deprived animals were reconstituted with naive Lyt-1+2-, Ig-negative spleen cells, they experienced twofold higher parasitemias of longer duration than mice receiving unfractionated cells. Two of six of these Lyt-1 mice died of fulminant infections, suggesting that the presence of naive Lyt-2 cells enhances the degree of protection. Immune Lyt-2 T cells were highly protective in T cell-depleted animals. Protection by sensitized Lyt-1 T cells correlated with the induction of a monocytosis. On the other hand, protection by Lyt-2T cells occurred in the absence of monocytosis. The possibility that the immunity induced by each T cell subset is mediated by a different effector mechanism is discussed.  相似文献   

7.
Chemotherapy and chemoprophylaxis are the principal means of combating malaria parasite infections in the human host. In the last 75 years, since the introduction of synthetic antimalarials, only a small number of compounds have been found suitable for clinical usage, and this limited armoury is now greatly compromised by the spread of drug-resistant parasite strains. Our current knowledge of the molecular mechanisms underlying resistance in the lethal species Plasmodium falciparum is reviewed here.  相似文献   

8.
Genetic control of immunity to Plasmodium yoelii sporozoites   总被引:9,自引:0,他引:9  
Using a rodent malaria system, we have shown that protective immunity to the preerythrocytic stages of malaria is genetically controlled by MHC and non-MHC genes. Ten congenic strains of mice were immunized with irradiated sporozoites of Plasmodium yoelii. When challenged with viable sporozoites, only two strains had a high proportion of animals that did not develop blood stage infections. Immunity did not correlate with antisporozoite antibody levels. Two protective mechanisms exist determined by non-H-2 genes, and each mechanism is further controlled by H-2-linked Ir genes. On the BALB background only H-2d mice are protected, and protection is abolished by depleting CD8+ T cells. In contrast, on the B10 background only H-2q mice are strongly protected, and protection is not affected by CD8+ T cell depletion. If similar complex genetic regulation of immunity occurs in the human malarias, it will be a major hurdle for vaccine development.  相似文献   

9.
Ketoconazole at 200 mg/kg dose has been found to exert marginal antimalarial action against multidrug resistant (MDR) Plasmodium yoelii nigeriensis (P. yoelii nigeriensis) in Swiss mice with 25% protection (2/8 mice) while at lower Ketoconazole dose i.e., 75-100 mg/kg, 14.28% mice were protected. Mefloquine (MFQ) (at 8 and 16 mg/kg) exerted suppressive action against MDR P. yoelii nigeriensis resulting in 25 and 14.28% protection of mice respectively. Combined treatment with Ketoconazole and mefloquine resulted in protection of 5/6 mice (83.33%) at MFQ 4 mg/kg + Ketoconazole 100 mg/kg dose, 7/8 (87.5%) mice at MFQ 8 mg/kg + Ketoconazole 20 mg/kg dose and 5/7 (71.42%) mice at MFQ 16 mg/kg + Ketoconazole 25 mg/kg dose and 5/6 (83.33%) mice at MFQ 16 mg/kg + Ketoconazole 100 mg/kg dose. Ketoconazole has been found to enhance the protective effect of mefloquine against MFQ resistant P. yoelii nigeriensis resulting in 66-88% protection of the mice treated with the appropriate combinations. The combination also increased suppression of parasitaemia at different times. The Ketoconazole combination with MFQ significantly increased the mean survival time of the treated mice compared to individual drugs alone. The study shows that Ketoconazole when administered with MFQ exerts bio-enhancing action against mefloquine resistance of MDR P. yoelii nigeriensis.  相似文献   

10.
The disease outcome in malaria caused by the protozoan parasite Plasmodium is influenced by host genetic factors. To identify host genes conferring resistance to infection with the malaria parasite, we undertook chromosomal mapping using a whole-genome scanning approach in cross-bred mice. NC/Jic mice all died with high parasitemia within 8 days of infection with 1 x 10(5) parasitized erythrocytes. In contrast, 129/SvJ mice all completely excluded malaria parasites from the circulation and remained alive 21 days after infection. We performed linkage analysis in backcross [(NC/Jic x 129/SvJ)xNC/Jic] mice. The Pymr ( Plasmodium yoelii malaria resistance) locus was mapped to the telomeric portion of mouse Chromosome (Chr) 9. This locus controls host survival and parasitemia after infection. The Char1 locus ( P. chabaudi resistance locus 1), controlling host survival and peak parasitemia in P. chabaudi infection, was previously mapped to the same region. This host resistance locus mapping to Chr 9 may represent a ubiquitous locus controlling susceptibility to rodent malaria. Elucidation of the function of this gene will provide valuable insights into the mechanism of host defense against malaria parasite infection.  相似文献   

11.
A possible protective role of IL-18 in host defense against blood-stage murine malarial infection was studied in BALB/c mice using a nonlethal strain, Plasmodium yoelii 265, and a lethal strain, Plasmodium berghei ANKA. Infection induced an increase in mRNA expression of IL-18, IL-12p40, IFN-gamma, and TNF-alpha in the case of P. yoelii 265 and an increase of IL-18, IL-12p40, and IFN-gamma in the case of P. berghei ANKA. The timing of mRNA expression of IL-18 in both cases was consistent with a role in the induction of IFN-gamma protein expression. Histological examination of spleen and liver tissues from infected controls treated with PBS showed poor cellular inflammatory reaction, massive necrosis, a large number of infected parasitized RBCs, and severe deposition of hemozoin pigment. In contrast, IL-18-treated infected mice showed massive infiltration of inflammatory cells consisting of mononuclear cells and Kupffer cells, decreased necrosis, and decreased deposition of the pigment hemozoin. Treatment with rIL-18 increased serum IFN-gamma levels in mice infected with both parasites, delayed onset of parasitemia, conferred a protective effect, and thus increased survival rate of infected mice. Administration of neutralizing anti-IL-18 Ab exacerbated infection, impaired host resistance and shortened the mean survival of mice infected with P. berghei ANKA. Furthermore, IL-18 knockout mice were more susceptible to P. berghei ANKA than were wild-type C57BL/6 mice. These data suggest that IL-18 plays a protective role in host defense by enhancing IFN-gamma production during blood-stage infection by murine malaria.  相似文献   

12.
13.
14.
Two lines of the Oriental malaria vector mosquito Anopheles dirus species A (Diptera: Culicidae), one fully refractory and one fully susceptible to Plasmodium yoelii nigeriensis (an African rodent malaria parasite), were established after 17 generations of mass selection, followed by single female selection for one or two generations. Prior to selection, the stock colony of An. dirus was 17% refractory. Both lines of An. dirus produced abundant ookinetes that started to invade the midgut within 24h post-infection, as seen in histological sections. In most of the refractory mosquitoes, oocysts stopped development <12 h post-invasion, indicating a rapid defence mechanism. Dead P. y. nigeriensis parasites were apparently localized as small melanized spots (2-5 microm) seen in wet preparations of mosquito midguts dissected 5-7 days post infective bloodmeal. In some refractory An. dirus females, apart from the spots, a small number of totally encapsulated oocysts (c. 10 microm) were also present. These larger melanized parasites predominated in a few females: they appeared 2-3 days post-infection as a secondary delayed defence mechanism. The progeny of reciprocal matings between susceptible and refractory lines had approximately 50% susceptibility. Backcrosses of F1 hybrids with susceptible or refractory lines increased or decreased the susceptibility of backcross progeny accordingly. Overall, these results suggest polygenic control of susceptibility to P. y. nigeriensis infection. The refractory line of An. dirus showed normal susceptibility to natural infections of the human malarias P. falciparum and P. vivax from local patients.  相似文献   

15.
Reticulocytes infected with the non-lethal variant of Plasmodium yoelii 17X (PY17X-NL) express elevated levels of class I, but not class II, MHC Ag when compared with non-parasitized reticulocytes. In contrast, class I Ag are not detectable on erythrocytes parasitized by the lethal variant PY17X-L. In addition, the responder status of various inbred strains of mice to PY17X-NL has been shown to positively correlate with the levels of class I MHC antigens expressed on PY17X-NL parasitized red blood cells (PRBC). MHC Ag are known to restrict, or guide, immune responses. However, earlier studies have failed to demonstrate H-2 restricted activity in the effector arm of immunity to blood-stage murine malaria. Therefore, we have examined the induction of immunity by irradiated PY17X-NL PRBC. No MHC restriction was observed in the ability of PRBC to immunize recipients. However, using irradiated PRBC bearing low, intermediate or high levels of class I Ag we found that the levels, rather than haplotype, of class I Ag expressed on irradiated PRBC greatly influenced their ability to induce immunity. Furthermore, class I-associated parasite-directed Ag were isolated as an immunogenic complex with anti-class I MHC antibody. Such complexes induced immunity in vivo in the absence of adjuvant suggesting a biologically important mechanism by which non-lethal, reticulocytic forms of malarial parasites may immunize their hosts.  相似文献   

16.
The comparative susceptibilities of colonized species A, B, and C of Anopheles culicifacies complex and Anopheles stephensi were determined for 2 rodent malaria parasites Plasmodium vinckei petteri and Plasmodium yoelii yoelii. All the 3 members of the complex were found to support complete sporogony with varying success. Controls, A. stephensi, become readily infected, with >70% developing oocysts. Of the test groups, species A had the highest percentage of mosquitoes with oocysts (>25%) and sporozoites (>15%). Anopheles culicifacies species B were least susceptible; less than 10% had oocysts and sporozoites in the salivary glands. The results demonstrate that A. culicifacies species A is most susceptible and species B is least susceptible to infections with both the parasites.  相似文献   

17.
Micro-Raman spectra of hemozoin encapsulated within the food vacuole of a Plasmodium falciparum-infected erythrocyte are presented. The spectrum of hemozoin is identical to the spectrum of beta-hematin at all applied excitation wavelengths. The unexpected observation of dramatic band enhancement of A(1g) modes including nu(4) (1374 cm(-1)) observed when applying 780 nm excitation enabled Raman imaging of hemozoin in the food vacuole. This unusual enhancement, resulting from excitonic coupling between linked porphyrin moieties in the extended porphyrin array, enables the investigation of hemozoin within its natural environment for the first time.  相似文献   

18.
Scanning electron microscopy was used to study the surface characteristics of the oocyst, sporoblast and sporozoite of Plasmodium yoelii yoelii. Observations were made of the sporogonic stages of 6-12 day infections of the malaria parasite in Anopheles stephensi. Oocyst and sporoblast development were not synchronous. The surface of the undifferentiated (early stage) oocyst appeared smooth, whereas that of differentiated (late stage) oocysts were rough or wrinkled. The wall of the differentiated oocysts showed numerous micropores at higher magnification (x15,000-20,000) the biological significance of which is not known. Small, bud-like satellite bodies were seen attached to some oocysts. Various forms of different stages of the sporoblast were described. Sporozoite budding took place on the surface of the sporoblast body. The sporozoite was elongate, curved and with a blunt anterior end.  相似文献   

19.
Multidrug-resistant Plasmodium falciparum parasites have emerged in Cambodia and neighboring countries in Southeast Asia, compromising the efficacy of first-line antimalarial combinations. Dihydroartemisinin + piperaquine (PPQ) treatment failure rates have risen to as high as 50% in some areas in this region. For PPQ, resistance is driven primarily by a series of mutant alleles of the P. falciparum chloroquine resistance transporter (PfCRT). PPQ resistance was reported in China three decades earlier, but the molecular driver remained unknown. Herein, we identify a PPQ-resistant pfcrt allele (China C) from Yunnan Province, China, whose genotypic lineage is distinct from the PPQ-resistant pfcrt alleles currently observed in Cambodia. Combining gene editing and competitive growth assays, we report that PfCRT China C confers moderate PPQ resistance while re-sensitizing parasites to chloroquine (CQ) and incurring a fitness cost that manifests as a reduced rate of parasite growth. PPQ transport assays using purified PfCRT isoforms, combined with molecular dynamics simulations, highlight differences in drug transport kinetics and in this transporter’s central cavity conformation between China C and the current Southeast Asian PPQ-resistant isoforms. We also report a novel computational model that incorporates empirically determined fitness landscapes at varying drug concentrations, combined with antimalarial susceptibility profiles, mutation rates, and drug pharmacokinetics. Our simulations with PPQ-resistant or -sensitive parasite lines predict that a three-day regimen of PPQ combined with CQ can effectively clear infections and prevent the evolution of PfCRT variants. This work suggests that including CQ in combination therapies could be effective in suppressing the evolution of PfCRT-mediated multidrug resistance in regions where PPQ has lost efficacy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号