首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caveolin-1 (Cav-1) has been recently identified to be over-expressed in hepatocellular carcinoma (HCC) and promote HCC cell motility and invasion ability via inducing epithelial-mesenchymal transition (EMT). However, the mechanism of aberrant overexpression of Cav-1 remains vague. Here, we observed that Cav-1 expression was positively associated with GLI1 expression in HCC tissues. Forced expression of GLI1 up-regulated Cav-1 in Huh7 cells, while knockdown of GLI1 decreased expression of Cav-1 in SNU449 cells. Additionally, silencing Cav-1 abolished GLI1-induced EMT of Huh7 cells. The correlation between GLI1 and Cav-1 was confirmed in tumor specimens from HCC patients and Cav-1 was found to be associated with poor prognosis after hepatic resection. The relationship between protein expression of GLI1 and Cav-1 was also established in HCC xenografts of nude mice. These results suggest that GLI1 may be attributed to Cav-1 up-regulation which plays an important role in GLI1-driven EMT phenotype in HCC.  相似文献   

2.
Glioma-associated oncogene homolog-1 (Gli-1) is considered a marker of Hedgehog pathway activation and is associated with the progression of several cancers. We have previously reported that Gli-1 was correlated with invasion and metastasis in hepatocellular carcinoma (HCC). However, the exact roles and mechanisms of Gli-1 in HCC invasion are unclear. In this study, we found that small interfering RNA mediated down-regulation of Gli-1 expression significantly suppressed adhesion, motility, migration, and invasion of both SMMC-7721 and SK-Hep1 cells. Furthermore, down-regulation of Gli-1 significantly reduced expressions and activities of both matrix metalloproteinase (MMP)-2 and MMP-9. In addition, we found that down-regulation of Gli-1 resulted in up-regulation of E-cadherin and concomitant down-regulation of Snail and Vimentin, consistent with inhibition of epithelial-mesenchymal transition (EMT). Taken together, our results suggest that down-regulation of Gli-1 suppresses HCC cell migration and invasion likely through inhibiting expressions and activations of MMP-2, 9 and blocking EMT.  相似文献   

3.
MXR7 is a cell-surface protein and highly expressed in hepatocellular carcinoma(HCC). The aim of this study is to determine the expression profile of MXR7 in HCC and investigate the influence of MXR7 on invasion and metastasis of HCC cells. For this purpose, immunohistochemical assay was used to identify the differential expression of MXR7 in 94 HCC specimens. Expression of MXR7 in 4 pairs of HCC and portal vein tumor thrombus(PVTT) was also tested. The motility of HCC cells were characterized by transwell migration and matrigel invasion assays. In vivo metastasis potential was determined via tail vein injection assay.Moreover, compared with noninvasive HCC tumors or human HCC cell lines with low metastatic potential, invasive HCC samples and HCC cell lines with high metastatic potential exhibited higher MXR7 expression. Furthermore, forced expression of MXR7 in SMMC-7721 promoted cell proliferation, migration and invasion in vitro and accelerated tumor growth and metastasis in vivo. Conversely, knockdown of MXR7 expression in HuH7 cells inhibited proliferation and motility of cells. Mechanically,overexpression of MXR7 promoted epithelial-mesenchymal transition(EMT) progress, and MXR7 depletion repressed the EMT phenotype. In conclusion, MXR7 is a mediator of EMT and metastasis in HCC and may serve as a novel therapeutic target.  相似文献   

4.
Augmenter of liver regeneration (ALR), which is critically important in liver regeneration and hepatocyte proliferation, is highly expressed in cirrhotic livers and hepatocellular carcinomas (HCC). In the current study, the functional role of ALR in hepatocancerogenesis was analyzed in more detail. HepG2 cells, in which the cytosolic 15 kDa ALR isoform was reexpressed stably, (HepG2-ALR) were used in migration and invasion assays using modified Boyden chambers. Epithelial-mesenchymal transition (EMT) markers were determined in HepG2-ALR cells in vitro and in HepG2-ALR tumors grown in nude mice. ALR protein was quantified in HCC and nontumorous tissues by immunohistochemistry. HepG2-ALR, compared with HepG2 cells, demonstrated reduced cell motility and increased expression of the epithelial cell markers E-cadherin and Zona occludens-1 (ZO-1), whereas SNAIL, a negative regulator of E-cadherin, was diminished. Matrix metalloproteinase MMP1 and MMP3 mRNA expression and activity were reduced. HepG2-ALR cell-derived subcutaneously grown tumors displayed fewer necrotic areas, more epithelial-like cell growth and fewer polymorphisms and atypical mitotic figures than tumors derived from HepG2 cells. Analysis of tumor tissues of 53 patients with HCC demonstrated an inverse correlation of ALR protein with histological angioinvasion and grading. The 15 kDa ALR isoform was found mainly in HCC tissues without histological angioinvasion 0. In summary the present data indicate that cytosolic ALR reduces hepatoma cell migration, augments epithelial growth and, therefore, may act as an antimetastatic and EMT reversing protein.  相似文献   

5.
Genes associated with retinoid-interferon-induced mortality 19 (GRIM-19) was identified as a tumor suppressor protein associated with apoptosis and growth inhibition. Here, we report that the expression levels of GRIM-19 are significantly attenuated in hepatocellular carcinoma (HCC) patients with deteriorating differentiation states, hepatic capsule invasion and microvascular invasion, suggesting the potential role of GRIM-19 not only at the origin but also in the invasive progression of HCCs. To dissect the possible mechanisms by which GRIM-19 regulates tumor cell invasion, we established the hepatic HL-7702 and HCC Huh-7 cell lines stably depleted of GRIM-19. Results show that downregulation of GRIM-19 induces a morphological transformation resembling epithelial-mesenchymal transition (EMT) as well as aberrant expression of epithelial and mesenchymal molecular markers. Additionally, these cells lose contact inhibition, a phenomenon of cessation of cell migration in contact with neighboring cells, as assessed by cell imaging, growth curve and S-phase transition in confluent conditions. CONCLUSION: Our observations demonstrate a novel mechanistic insight into a critical role of GRIM-19 in HCC invasive potential.  相似文献   

6.
The aberrant expression of transforming growth factor (TGF)-beta1 in the tumor microenvironment and fibrotic lesions plays a critical role in tumor progression and tissue fibrosis by inducing epithelial-mesenchymal transition (EMT). EMT promotes tumor cell motility and invasiveness. How EMT affects motility and invasion is not well understood. Here we report that HDAC6 is a novel modulator of TGF-beta1-induced EMT. HDAC6 is a microtubule-associated deacetylase that predominantly deacetylates nonhistone proteins, including alpha-tubulin, and regulates cell motility. We showed that TGF-beta1-induced EMT is accompanied by HDAC6-dependent deacetylation of alpha-tubulin. Importantly, inhibition of HDAC6 by small interfering RNA or the small molecule inhibitor tubacin attenuated the TGF-beta1-induced EMT markers, such as the aberrant expression of epithelial and mesenchymal peptides, as well as the formation of stress fibers. Reduced expression of HDAC6 also impaired the activation of SMAD3 in response to TGF-beta1. Conversely, inhibition of SMAD3 activation substantially impaired HDAC6-dependent deacetylation of alpha-tubulin as well as the expression of EMT markers. These findings reveal a novel function of HDAC6 in EMT by intercepting the TGF-beta-SMAD3 signaling cascade. Our results identify HDAC6 as a critical regulator of EMT and a potential therapeutic target against pathological EMT, a key event for tumor progression and fibrogenesis.  相似文献   

7.
8.
The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer invasion and metastasis. We here report that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers. Furthermore, we show that those cells have an increased ability to form mammospheres, a property associated with mammary epithelial stem cells. Independent of this, stem cell-like cells isolated from HMLE cultures form mammospheres and express markers similar to those of HMLEs that have undergone an EMT. Moreover, stem-like cells isolated either from mouse or human mammary glands or mammary carcinomas express EMT markers. Finally, transformed human mammary epithelial cells that have undergone an EMT form mammospheres, soft agar colonies, and tumors more efficiently. These findings illustrate a direct link between the EMT and the gain of epithelial stem cell properties.  相似文献   

9.
Epithelial-mesenchymal transition (EMT) is a crucial event in tumor invasion and metastasis. However, most of past EMT studies have been conducted in the conventional two-dimensional (2D) monolayer culture. Therefore, it remains unclear what invasive phenotypes are acquired by EMT-induced cancer cells. To address this point, we attempted to characterize EMT cells in more physiological, three-dimensional (3D) collagen gel culture. EMT was induced by treating three human carcinoma cell lines (A549, Panc-1 and MKN-1) with TGF-ß. The TGF-ß treatment stimulated these cells to overexpress the invasion markers laminin γ2 and MT1-MMP in 2D culture, in addition to the induction of well-known morphological change and EMT marker expression. EMT induction enhanced cell motility and adhesiveness to fibronectin and collagen in 2D culture. Although EMT cells showed comparable cell growth to control cells in 2D culture, their growth rates were extremely suppressed in soft agar and collagen gel cultures. Most characteristically, EMT-induced cancer cells commonly and markedly extended invasive protrusions in collagen gel. These protrusions were mainly supported by microtubules rather than actin cytoskeleton. Snail-introduced, stable EMT cells showed similar protrusions in 3D conditions without TGF-ß. Moreover, these protrusions were suppressed by colchicine or inhibitors of heat shock protein 90 (HSP-90) and protein phosphatase 2A. However, MMP inhibitors did not suppress the protrusion formation. These data suggest that EMT enhances tumor cell infiltration into interstitial stroma by extending microtubule-based protrusions and suppressing cell growth. The elevated cell adhesion to fibronectin and collagen and high cell motility also seem important for the tumor invasion.  相似文献   

10.
11.
Vasculogenic mimicry (VM) results in the formation of an alternative circulatory system that can improve the blood supply to multiple malignant tumors, including hepatocellular carcinoma (HCC). However, the potential mechanisms of RhoC/ROCK in VM have not yet been investigated in HCC. Here, RhoC expression was upregulated in HCC tissues, especially the VM-positive (VM+) group, compared to noncancerous tissues (P < 0.01), and patients with high expression of RhoC had shorter survival times (P < 0.001). The knockdown of RhoC via short hairpin RNA (shRNA) in SK-Hep-1 cells significantly decreased VM formation and cell motility. In contrast, cell motility and VM formation were remarkably enhanced when RhoC was overexpressed in HepG2 cells. To further assess the potential role of ROCK1 and ROCK2 on VM, we stably knocked down ROCK1 or ROCK2 in MHCC97H cells. Compared to ROCK1 shRNA, ROCK2 shRNA could largely affect VM formation, cell motility and the key VM factors, as well as the epithelial-mesenchymal transition (EMT) markers in vitro and in vivo. Moreover, p-ERK, p-MEK, p-FAK, p-paxillin, MT1-MMP and MMP2 levels were clearly altered following the overexpression of RhoC, but ROCK2 shRNA had little effect on the expression of p-FAK, which indicated that RhoC regulates FAK/paxillin signaling, but not through ROCK2. In conclusion, our results show that RhoC/ROCK2 may have a major effect on VM in HCC via ERK/MMPs signaling and might be a potential therapeutic target for the treatment of HCC.  相似文献   

12.
In previous studies from other labs it has been well demonstrated that the ectopic expression of c-Myc in mammary epithelial cells can induce epithelial-mesenchymal transition (EMT), whereas in our pilot experiment, epithelial-like morphological changes were unexpectedly observed in c-Myc-expressing pig fibroblasts [i.e., porcine embryonic fibroblasts (PEFs) and porcine dermal fibroblasts (PDFs)] and pig mesenchymal stem cells, suggesting that the same c-Myc gene is entitled to trigger EMT in epithelial cells and mesenchymal-epithelial transition (MET) in fibroblasts. This prompted us to characterize the existence of a MET in c-Myc-expressing PEFs and PDFs at the molecular level. qRT-PCR, immunofluorescence and western blot analysis illustrated that epithelial-like morphological changes were accompanied by the increased expression of epithelial markers [such as cell adhesion proteins (E-cadherin, α-catenin and Bves), tight junction protein occludin and cytokeratins (Krt8 and Krt18)], the reduced expression of mesenchymal markers [vimentin, fibronectin 1 (FN1), snail1, collagen family of proteins (COL1A1, COL5A2) and matrix metalloproteinase (MMP) family (MMP12 and MMP14)] and the decreased cell motility and increased cell adhesion in c-Myc-expressing PEFs and PDFs. Furthermore, the ectopic expression of c-Myc in pig fibroblasts disrupted the stress fiber network, suppressed the formation of filopodia and lamellipodia, and resulted in RhoA/Rock pathway inactivation, which finally participates in epithelial-like morphological conversion. Taken together, these findings demonstrate, for the first time, that the enforced expression of c-Myc in fibroblasts can trigger MET, to which cytoskeleton depolymerization and RhoA/Rock pathway inactivation contribute.  相似文献   

13.
TNF-α is a cytokine with antitumorigenic property. In contrast, low dose, chronic TNF-α production by tumor cells or stromal cells may promote tumor growth and metastasis. Serum levels of TNF-α are significantly elevated in renal cell carcinoma (RCC) patients. Here, we showed that TNF-α induced epithelial-mesenchymal transition (EMT) and promoted tumorigenicity of RCC by repressing E-cadherin, upregulating vimentin, activating MMP9, and invasion activities. In addition, TNF-α treatment inhibited glycogen synthase kinase 3β (GSK-3β) activity through serine-9 phosphorylation mediated by the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway in RCC cells. Inhibition of PI3K/AKT by LY294002 reactivated GSK-3β and suppressed the TNF-α-induced EMT of RCC cells. Inactivation of GSK-3β by LiCl significantly increased MMP9 activity and EMT of RCC cells. Activation of GSK-3β by transduction of constitutively active GSK-3β into RCC cells suppressed TNF-α-mediated anchorage-independent growth in soft agar and tumorigenicity in nude mice. Overexpression of a kinase-deficient GSK-3β, in contrast, potentiated EMT, anchorage-independent growth and drastically enhanced tumorigenicity in vivo. Most importantly, a 15-fold inactivation of GSK-3β activity, 3-fold decrease of E-cadherin, and 2-fold increase of vimentin were observed in human RCC tumor tissues. These results indicated that inactivation of GSK-3β plays a pivotal role in the TNF-α-mediated tumorigenesis of RCC. Mol Cancer Res; 10(8); 1109-19. ?2012 AACR.  相似文献   

14.
The involvement of the tumor stromal cells in acquired resistance of non-small cell lung cancers (NSCLCs) to tyrosine kinase inhibitors (TKIs) has previously been reported, but the precise mechanism remains unclear. In the present study, we investigated the role and mechanism underlying Cancer-associated fibroblasts (CAFs) in TKI resistance of NSCLCs. In vitro and in vivo experiments showed that HCC827 and PC9 cells, non-small cell lung cancer cells with EGFR-activating mutations, became resistant to the EGFR-TKI gefitinib when cultured with CAFs isolated from NSCLC tissues. Moreover, we showed that CAFs could induce epithelial-mesenchymal transition (EMT) phenotype of HCC827 and PC9 cells, with an associated change in the expression of epithelial to mesenchymal transition markers. Using proteomics-based method, we identified that CAFs significantly increased the expression of the Annexin A2 (ANXA2). More importantly, knockdown of ANXA2 completely reversed EMT phenotype and gefitinib resistance induced by CAFs. Furthermore, we found that CAFs increased the expression and phosphorylation of ANXA2 by secretion of growth factors HGF and IGF-1 and by activation of the corresponding receptors c-met and IGF-1R. Dual inhibition of HGF/c-met and IGF-1/IGF-1R pathways could significantly suppress ANXA2, and markedly reduced CAFs-induced EMT and gefitinib resistance. Taken together, these findings indicate that CAFs promote EGFR-TKIs resistance through HGF/IGF-1/ANXA2/EMT signaling and may be an ideal therapeutic target in NSCLCs with EGFR-activating mutations.  相似文献   

15.
Up-regulation of bone morphogenetic proteins (BMPs) and their receptors by tumor is an important hallmark in cancer progression, as it contributes through autocrine and paracrine mechanisms to tumor development, invasion, and metastasis. Generally, increased motility and invasion are positively correlated with the epithelial-mesenchymal transition (EMT). The purpose of the present study was to determine whether BMP-2 signaling to induce gastric cancer cells to undergo EMT-mediated invasion might pass through the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Herein we showed that gastric cancer cell lines express all the components of BMP-2 signaling, albeit to different extents. Moreover, an increased concentration of BMP-2 strongly enhanced motility and invasiveness in gastric cancer cells, whereas no increase was observed in cells treated with either Noggin (a BMP-2 inhibitor) or BMP-2 blocking antibodies. The stimulation of BMP-2 in gastric cancer cells induces a full EMT characterized by Snail induction, E-cadherin delocalization and down-regulation, and up-regulation of mesenchymal and invasiveness markers. Furthermore, blockade of BMP-2 signaling by Noggin or BMP-2 blocking antibodies also restored these changes in EMT markers. In addition, phosphorylation of Akt was also enhanced by treatment with BMP-2, but not Noggin or BMP-2 blocking antibodies. Pretreatment of gastric cancer cells with PI-3 kinase/Akt kinase inhibitor (kinase-dead Akt [DN-Akt], Akt siRNA, or LY294002) significantly inhibited BMP-2-induced EMT and invasiveness. Overall, our studies suggest that BMP-2 promotes motility and invasion of gastric cancer cells by activating PI-3 kinase/Akt and that targeting of this signaling pathway may provide therapeutic opportunities in preventing metastasis mediated by BMP-2.  相似文献   

16.
17.
Recent studies have demonstrated pleiotropic roles of pyruvate kinase isoenzyme type M2 (PKM2) in tumor progression. However, the precise mechanisms underlying the effects of PKM2 on esophageal squamous cell carcinoma (ESCC) metastasis and transforming growth factor β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) remain to be established. In this study, we observed upregulation of PKM2 in ESCC tissues that was markedly associated with lymph node metastasis and poor prognosis. High PKM2 expression in tumor tissues frequently coincided with the high pSTAT3Tyr705 expression and low E-cadherin expression. Furthermore, altered PKM2 expression was significantly associated with proliferation, migration, and invasion of ESCC cells, in addition to expression patterns of EMT markers (Snail, E-cadherin, and vimentin) and pSTAT3Tyr705/STAT3 ratio. Overexpression of STAT3 significantly attenuated the effects of PKM2 knockdown on cell proliferation and motility as well as expression of pSTAT3 Tyr705 and EMT markers. Consistently, stable short hairpin RNA (shRNA)-mediated silencing of PKM2 reversed the effects of TGF-β1 treatment, specifically, upregulation of PKM2, phosphorylation of STAT3 at Tyr705, and increased EMT, migration, and invasion. We propose that PKM2 regulates cell proliferation, migration, and invasion via phosphorylation of STAT3 through TGF-β1-induced EMT. Our findings collectively provide mechanistic insights into the tumor-promoting role of PKM2, supporting its prognostic value and the therapeutic utility of PKM2 inhibitors as potential antitumor agents in ESCC.  相似文献   

18.
Dysregulation of long noncoding RNAs (lncRNAs) plays important roles in carcinogenesis and tumor progression, including hepatocellular carcinoma (HCC). Small nucleolar RNA host gene 3 (SNHG3) has been considered as an lncRNA to be associated with a poor prognosis in patients with HCC. Here, we reported that SNHG3 expression was significantly higher in the highly metastatic HCC (HCCLM3) cells compared with the lowly metastatic HCC cells (Hep3B and PLC/PRF/5). Furthermore, forced expression of SNHG3 promoted cell invasion, epithelial-mesenchymal transition (EMT), and sorafenib resistance in HCC. Moreover, SNHG3 overexpression induced HCC cells EMT via miR-128/CD151 cascade activation. Clinically, our data revealed that increased SNHG3 expression is correlated with poor HCC survival outcomes and sorafenib response. These data suggest that SNHG3 may be a novel therapeutic target and a biomarker for predicting response to sorafenib treatment of HCC.  相似文献   

19.
Growing evidences indicate that aberrant glycosylation can modulate tumor cell invasion and metastasis. The process termed "epithelial-mesenchymal transition" (EMT) provides a basic experimental model to shed light on this complex process. The EMT involves a striking decline in epithelial markers, accompanied by enhanced expression of mesenchymal markers, culminating in cell morphology change and increased cell motility. Few recent studies have established the participation glycosylation during EMT. Studies now come into knowledge brought to light the involvement of a site-specific O-glycosylation in the IIICS domain of human oncofetal fibronectin (onfFN) during the EMT process. Herein we show that high glucose induces EMT in A549 cells as demonstrated by TGF-β secretion, cell morphology changes, increased cellular motility and the emergence of mesenchymal markers. The hyperglycemic conditions increased onfFN protein levels, promoted an up regulation of mRNA levels for ppGalNAc-T6 and FN IIICS domain, which contain the hexapeptide (VTHPGY) required for onfFN biosynthesis. Glucose effect involves hexosamine (HBP) biosynthetic pathway as overexpression of glutamine: fructose-6-phosphate amidotransferase increases mesenchymal markers, onfFN levels and mRNA levels for FN IIICS domain. In summary, our results demonstrate, for the first time that the metabolism of glucose through HBP promotes O-glycosylation of the oncofetal form of FN during EMT modulating tumorogenesis.  相似文献   

20.
The human glycoprotein, stanniocalcin-2 (STC2) is a HIF-1 target gene that is found to be associated with tumor development. The relationship of the prognostic outcome to the level of its expression in cancer tissues is controversial; however experimental evidence suggests that STC2 is a positive regulator of cancer progression. In the present study, we investigated if the expression of STC2 in hypoxic cells is associated with cancer invasion and metastasis. We studied the epithelial-mesenchymal transition (EMT) markers in STC2-silenced and over-expressed SKOV3 cells maintained in hypoxic condition. Western blot and immunocytochemical analysis revealed that the stable expression of exogenous STC2 promoted EMT, as revealed by the increase of N-cadherin/vimentin but a decrease of E-cadherin levels. This observation was further confirmed by colony formation assay where the STC2 stably transfected cells showed high degree of motility with fibroblast morphology under hypoxic condition. In conducting invasion assay in hypoxia, the STC2 stably transfected cells showed high degree of invasiveness. This observation was correlated with the significant increase of MMP2 and MMP9 expression in the STC2 stably transfected cells. In HUVEC/SKOV3 co-culture invasion study, endothelial invasion was found to be enhanced by the seeding of STC2 stably transfected cells in the lower compartment. These observations were possibly mediated by an increase of ROS and activated ERK1/2 levels in the cells. Collectively, the finding provides the first evidence that STC2 is a positive regulator in tumor progression at hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号