首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As a part of innate immunity, the complement system relies on activation of the alternative pathway (AP). While feed-forward amplification generates an immune response towards foreign surfaces, the process requires regulation to prevent an immune response on the surface of host cells. Factor H (FH) is a complement protein secreted by native cells to negatively regulate the AP. In terms of structure, FH is composed of 20 complement-control protein (CCP) modules that are structurally homologous but vary in composition and function. Mutations in these CCPs have been linked to states of autoimmunity. In particular, several mutations in CCP 19-20 are correlated to atypical hemolytic uremic syndrome (aHUS). From crystallographic structures there are three putative binding sites of CCP 19-20 on C3d. Since there has been some controversy over the primary mode of binding from experimental studies, we approach characterization of binding using computational methods. Specifically, we compare each binding mode in terms of electrostatic character, structural stability, dissociative and associative properties, and predicted free energy of binding. After a detailed investigation, we found two of the three binding sites to be similarly stable while varying in the number of contacts to C3d and in the energetic barrier to complex dissociation. These sites are likely physiologically relevant and may facilitate multivalent binding of FH CCP 19-20 to C3b and either C3d or host glycosaminoglycans. We propose thermodynamically stable binding with modules 19 and 20, the latter driven by electrostatics, acting synergistically to increase the apparent affinity of FH for host surfaces.  相似文献   

2.
Characterization of segmental flexibility is needed to understand the biological mechanisms of the very large category of functionally diverse proteins, exemplified by the regulators of complement activation, that consist of numerous compact modules or domains linked by short, potentially flexible, sequences of amino acid residues. The use of NMR-derived residual dipolar couplings (RDCs), in magnetically aligned media, to evaluate interdomain motion is established but only for two-domain proteins. We focused on the three N-terminal domains (called CCPs or SCRs) of the important complement regulator, human factor H (i.e., FH1-3). These domains cooperate to facilitate cleavage of the key complement activation-specific protein fragment, C3b, forming iC3b that no longer participates in the complement cascade. We refined a three-dimensional solution structure of recombinant FH1-3 based on nuclear Overhauser effects and RDCs. We then employed a rudimentary series of RDC data sets, collected in media containing magnetically aligned bicelles (disklike particles formed from phospholipids) under three different conditions, to estimate interdomain motions. This circumvents a requirement of previous approaches for technically difficult collection of five independent RDC data sets. More than 80% of conformers of this predominantly extended three-domain molecule exhibit flexions of <40°. Such segmental flexibility (together with the local dynamics of the hypervariable loop within domain 3) could facilitate recognition of C3b via initial anchoring and eventual reorganization of modules to the conformation captured in the previously solved crystal structure of a C3b:FH1-4 complex.  相似文献   

3.
Numerous complement factor H (FH) mutations predispose patients to atypical hemolytic uremic syndrome (aHUS) and other disorders arising from inadequately regulated complement activation. No unifying structural or mechanistic consequences have been ascribed to these mutants beyond impaired self-cell protection. The S1191L and V1197A mutations toward the C-terminus of FH, which occur in patients singly or together, arose from gene conversion between CFH encoding FH and CFHR1 encoding FH-related 1. We show that neither single nor double mutations structurally perturbed recombinant proteins consisting of the FH C-terminal modules, 19 and 20 (FH19-20), although all three FH19-20 mutants were poor, compared to wild-type FH19-20, at promoting hemolysis of C3b-coated erythrocytes through competition with full-length FH. Indeed, our new crystal structure of the S1191L mutant of FH19-20 complexed with an activation-specific complement fragment, C3d, was nearly identical to that of the wild-type FH19-20:C3d complex, consistent with mutants binding to C3b with wild-type-like affinity. The S1191L mutation enhanced thermal stability of module 20, whereas the V1197A mutation dramatically decreased it. Thus, although mutant proteins were folded at 37 °C, they differ in conformational rigidity. Neither single substitutions nor double substitutions increased measurably the extent of FH19-20 self-association, nor did these mutations significantly affect the affinity of FH19-20 for three glycosaminoglycans, despite critical roles of module 20 in recognizing polyanionic self-surface markers. Unexpectedly, FH19-20 mutants containing Leu1191 self-associated on a heparin-coated surface to a higher degree than on surfaces coated with dermatan or chondroitin sulfates. Thus, potentially disease-related functional distinctions between mutants, and between FH and FH-related 1, may manifest in the presence of specific glycosaminoglycans.  相似文献   

4.
Human complement factor H, consisting of 20 complement control protein (CCP) modules, is an abundant plasma glycoprotein. It prevents C3b amplification on self surfaces bearing certain polyanionic carbohydrates, while complement activation progresses on most other, mainly foreign, surfaces. Herein, locations of binding sites for polyanions and C3b are reexamined rigorously by overexpressing factor H segments, structural validation, and binding assays. As anticipated, constructs corresponding to CCPs 7-8 and 19-20 bind well in heparin-affinity chromatography. However, CCPs 8-9, previously reported to bind glycosaminoglycans, bind neither to heparin resin nor to heparin fragments in gel-mobility shift assays. Introduction of nonnative residues N-terminal to a construct containing CCPs 8-9, identical to those in proteins used in the previous report, converted this module pair to an artificially heparin-binding one. The module pair CCPs 12-13 does not bind heparin appreciably, notwithstanding previous suggestions to the contrary. We further checked CCPs 10-12, 11-14, 13-15, 10-15, and 8-15 for ability to bind heparin but found very low affinity or none. As expected, constructs corresponding to CCPs 1-4 and 19-20 bind C3b amine coupled to a CM5 chip (K(d)s of 14 and 3.5 microM, respectively) or a C1 chip (K(d)s of 10 and 4.5 microM, respectively). Constructs CCPs 7-8 and 6-8 exhibit measurable affinities for C3b according to surface plasmon resonance, although they are weak compared with CCPs 19-20. Contrary to expectations, none of several constructs encompassing modules from CCP 9 to 15 exhibited significant C3b binding in this assay. Thus, we propose a new functional map of factor H.  相似文献   

5.
Factor H (FH) of the complement system acts as a regulatory cofactor for the factor I-mediated cleavage of C3b and binds to polyanionic substrates. FH is composed of 20 short consensus/complement repeat (SCR) domains. A set of 12 missense mutations in the C-terminal domains between SCR-16 to SCR-20 is associated with haemolytic uraemic syndrome. Recent structural models for intact FH permit the molecular interpretation of these amino acid substitutions. As all nine SCR-20 substitutions correspond to normal amounts of FH in plasma, and were localised in mostly surface-exposed positions, these are inferred to lead to a functional defect in FH. The nine substitutions occur in the same spatial region of SCR-20. As this surface coincides with conserved basic residues in the C-terminal SCR-20 domain, the substitutions provide direct evidence for a polyanionic binding surface. The positions of these conserved basic residues coincide with those of heparin-binding residues in the crystal structure of the acidic fibroblast growth factor-heparin complex. A tenth substitution and another conserved basic residue in SCR-19 are proximate to this binding site. As the remaining FH substitutions could also be correlated with their proximity to conserved basic residues, haemolytic uraemic syndrome may result from a failure of FH to interact with polyanions at cell surfaces in the kidney.  相似文献   

6.
Structural knowledge of interactions amongst the ~ 40 proteins of the human complement system, which is central to immune surveillance and homeostasis, is expanding due primarily to X‐ray diffraction of co‐crystallized proteins. Orthogonal evidence, in solution, for the physiological relevance of such co‐crystal structures is valuable since intermolecular affinities are generally weak‐to‐medium and inter‐domain mobility may be important. In this current work, Förster resonance energy transfer (FRET) was used to investigate the 10 μM KD (210 kD) complex between the N‐terminal region of the soluble complement regulator, factor H (FH1‐4), and the key activation‐specific complement fragment, C3b. Using site‐directed mutagenesis, seven cysteines were introduced individually at potentially informative positions within the four CCP modules comprising FH1‐4, then used for fluorophore attachment. C3b possesses a thioester domain featuring an internal cycloglutamyl cysteine thioester; upon hydrolysis this yields a free thiol (Cys988) that was also fluorescently tagged. Labeled proteins were functionally active as cofactors for cleavage of C3b to iC3b except for FH1‐4(Q40C) where conjugation with the fluorophore likely abrogated interaction with the protease, factor I. Time‐resolved FRET measurements were undertaken to explore interactions between FH1‐4 and C3b in fluid phase and under near‐physiological conditions. These experiments confirmed that, as in the cocrystal structure, FH1‐4 binds to C3b with CCP module 1 furthest from, and CCP module 4 closest to, the thioester domain, placing subsequent modules of FH near to any surface to which C3b is attached. The data do not rule out flexibility of the thioester domain relative to the remainder of the complex.  相似文献   

7.
Many mutations associated with atypical hemolytic uremic syndrome (aHUS) lie within complement control protein modules 19-20 at the C terminus of the complement regulator factor H (FH). This region mediates preferential action of FH on self, as opposed to foreign, membranes and surfaces. Hence, speculation on disease mechanisms has focused on deficiencies in regulation of complement activation on glomerular capillary beds. Here, we investigate the consequences of aHUS-linked mutations (R53H and R78G) within the FH N-terminal complement control protein module that also carries the I62V variation linked to dense-deposit disease and age-related macular degeneration. This module contributes to a four-module C3b-binding site (FH1-4) needed for complement regulation and sufficient for fluid-phase regulatory activity. Recombinant FH1-4(V62) and FH1-4(I62) bind immobilized C3b with similar affinities (K(D) = 10-14 μM), whereas FH1-4(I62) is slightly more effective than FH1-4(V62) as cofactor for factor I-mediated cleavage of C3b. The mutant (R53H)FH1-4(V62) binds to C3b with comparable affinity (K(D) ~12 μM) yet has decreased cofactor activities both in fluid phase and on surface-bound C3b, and exhibits only weak decay-accelerating activity for C3 convertase (C3bBb). The other mutant, (R78G)FH1-4(V62), binds poorly to immobilized C3b (K(D) >35 μM) and is severely functionally compromised, having decreased cofactor and decay-accelerating activities. Our data support causal links between these mutations and disease; they demonstrate that mutations affecting the N-terminal activities of FH, not just those in the C terminus, can predispose to aHUS. These observations reinforce the notion that deficiency in any one of several FH functional properties can contribute to the pathogenesis of this disease.  相似文献   

8.
Factor H (FH) is the key regulator of the alternative pathway of complement. The carboxyl-terminal domains 19-20 of FH interact with the major opsonin C3b, glycosaminoglycans, and endothelial cells. Mutations within this area are associated with atypical haemolytic uremic syndrome (aHUS), a disease characterized by damage to endothelial cells, erythrocytes, and kidney glomeruli. The structure of recombinant FH19-20, solved at 1.8 A by X-ray crystallography, reveals that the short consensus repeat domain 20 contains, unusually, a short alpha-helix, and a patch of basic residues at its base. Most aHUS-associated mutations either destabilize the structure or cluster in a unique region on the surface of FH20. This region is close to, but distinct from, the primary heparin-binding patch of basic residues. By mutating five residues in this region, we show that it is involved, not in heparin, but in C3b binding. Therefore, the majority of the aHUS-associated mutations on the surface of FH19-20 interfere with the interaction between FH and C3b. This obviously leads to impaired control of complement attack on plasma-exposed cell surfaces in aHUS.  相似文献   

9.
Membrane cofactor protein (MCP; CD46), a widely distributed regulator of complement activation, is a cofactor for the factor I-mediated degradation of C3b and C4b deposited on host cells. MCP possesses four extracellular, contiguous complement control protein modules (CCPs) important for this inhibitory activity. The goal of the present study was to delineate functional sites within these modules. We employed multiple approaches including mutagenesis, epitope mapping, and comparisons to primate MCP to make the following observations. First, functional sites were located to each of the four CCPs. Second, some residues were important for both C3b and C4b interactions while others were specific for one or the other. Third, while a reduction in ligand binding was invariably accompanied by a parallel reduction in cofactor activity (CA), other mutants lost or had reduced CA but retained ligand binding. Fourth, two C4b-regulatory domains overlapped measles virus interactive regions, indicating that the hemagglutinin docks to a site important for complement inhibition. Fifth, several MCP regulatory areas corresponded to functionally critical, homologous positions in other CCP-bearing C3b/C4b-binding proteins. Based on these data and the recently derived crystal structure of repeats one and two, computer modeling was employed to predict MCP structure and examine active sites.  相似文献   

10.
Mutations and polymorphisms in the regulator of complement activation, factor H, have been linked to atypical hemolytic uremic syndrome (aHUS), membranoproliferative glomerulonephritis, and age-related macular degeneration. Many aHUS patients carry mutations in the two C-terminal modules of factor H, which normally confer upon this abundant 155-kDa plasma glycoprotein its ability to selectively bind self-surfaces and prevent them from inappropriately triggering the complement cascade via the alternative pathway. In the current study, the three-dimensional solution structure of the C-terminal module pair of factor H has been determined. A binding site for a fully sulfated heparin-derived tetrasaccharide has been delineated using chemical shift mapping and the C3d/C3b-binding site inferred from sequence comparisons and computational docking. The resultant information allows assessment of the likely consequences of aHUS-associated amino acid substitutions in this critical region of factor H. It is striking that, excepting those likely to perturb the three-dimensional structure, aHUS-associated missense mutations congregate in the polyanion-binding site delineated in this study, thus potentially disrupting a vital mechanism for control of complement on self-surfaces in the microvasculature of the kidney. It is intriguing that a single nucleotide polymorphism predisposing to age-related macular degeneration occupies another region of factor H that harbors a polyanion-binding site.  相似文献   

11.
The first eight and the last two of 20 complement control protein (CCP) modules within complement factor H (fH) encompass binding sites for C3b and polyanionic carbohydrates. These binding sites cooperate self-surface selectively to prevent C3b amplification, thus minimising complement-mediated damage to host. Intervening fH CCPs, apparently devoid of such recognition sites, are proposed to play a structural role. One suggestion is that the generally small CCPs 10-15, connected by longer-than-average linkers, act as a flexible tether between the two functional ends of fH; another is that the long linkers induce a 180° bend in the middle of fH. To test these hypotheses, we determined the NMR-derived structure of fH12-13 consisting of module 12, shown here to have an archetypal CCP structure, and module 13, which is uniquely short and features a laterally protruding helix-like insertion that contributes to a prominent electropositive patch. The unusually long fH12-13 linker is not flexible. It packs between the two CCPs that are not folded back on each other but form a shallow vee shape; analytical ultracentrifugation and X-ray scattering supported this finding. These two techniques additionally indicate that flanking modules (within fH11-14 and fH10-15) are at least as rigid and tilted relative to neighbours as are CCPs 12 and 13 with respect to one another. Tilts between successive modules are not unidirectional; their principal axes trace a zigzag path. In one of two arrangements for CCPs 10-15 that fit well with scattering data, CCP 14 is folded back onto CCP 13. In conclusion, fH10-15 forms neither a flexible tether nor a smooth bend. Rather, it is compact and has embedded within it a CCP module (CCP 13) that appears to be highly specialised given both its deviant structure and its striking surface charge distribution. A passive, purely structural role for this central portion of fH is unlikely.  相似文献   

12.
Factor H is a regulatory glycoprotein of the complement system. We expressed the three N-terminal complement control protein modules of human factor H (FH1-3) and confirmed FH1-3 to be the minimal unit with cofactor activity for C3b proteolysis by factor I. We reconstructed FH1-3 from NMR-derived structures of FH1-2 and FH2-3 revealing an approximately 105-A-long rod-like arrangement of the modules. In structural comparisons with other C3b-engaging proteins, factor H module 3 most closely resembles factor B module 3, consistent with factor H competing with factor B for binding C3b. Factor H modules 1, 2, and 3 each has a similar backbone structure to first, second, and third modules, respectively, of functional sites in decay accelerating factor and complement receptor type 1; the equivalent intermodular tilt and twist angles are also broadly similar. Resemblance between molecular surfaces is closest for first modules but absent in the case of second modules. Substitution of buried Val-62 with Ile (a factor H single nucleotide polymorphism potentially protective for age-related macular degeneration and dense deposit disease) causes rearrangements within the module 1 core and increases thermal stability but does not disturb the interface with module 2. Replacement of partially exposed (in module 1) Arg-53 by His (an atypical hemolytic uremic syndrome-linked mutation) did not impair structural integrity at 37 degrees C, but this FH1-2 mutant was less stable at higher temperatures; furthermore, chemical shift differences indicated potential for small structural changes at the module 1-2 interface.  相似文献   

13.
Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy associated with mutations in complement proteins, most frequently in the main plasma alternative pathway regulator factor H (FH). The hotspot for the FH mutations is in domains 19–20 (FH19–20) that are indispensable for FH activity on C3b bound covalently to host cells. In aHUS, down-regulation of cell-bound C3b by FH is impaired, but it is not clear whether this is due to an altered FH binding to surface-bound C3b or to cell surface structures. To explore the molecular pathogenesis of aHUS we tested binding of 14 FH19–20 point mutants to C3b and its C3d fragment, mouse glomerular endothelial cells (mGEnC-1), and heparin. The cell binding correlated well, but not fully, with heparin binding and the cell binding site was overlapping but distinct from the C3b/C3d binding site that was shown to extend to domain 19. Our results show that aHUS-associated FH19–20 mutants have different combinations of three primary defects: impaired binding to C3b/C3d, impaired binding to the mGEnC-1 cells/heparin, and, as a novel observation, an enhanced mGEnC-1 cell or heparin binding. We propose a model of the molecular pathogenesis of aHUS where all three mechanisms lead eventually to impaired control of C3b on the endothelial cell surfaces. Based on the results with the aHUS patient mutants and the overlap in FH19–20 binding sites for mGEnC-1/heparin and C3b/C3d we conclude that binding of FH19–20 to C3b/C3d is essential for target discrimination by the alternative pathway.Atypical hemolytic uremic syndrome (aHUS)2 is a familial disease characterized by erythrocyte fragmentation and hematuria, damaged renal endothelium, vascular microthrombi, and thrombocytopenia (1). The syndrome leads ultimately to end-stage renal disease with a high mortality rate (2). In aHUS cases point mutations have been found in complement components C3, factor B, CD46, factor I, and factor H (FH), all of which play a role in the activation or control of the alternative pathway (38). More than half of the mutations have been found to originate in the HF1 gene that encodes FH and FH-like protein 1.The alternative pathway is initiated spontaneously by hydrolysis of C3 to C3H2O that forms the C3-convertase C3H2OBb (9, 10). This enzyme complex converts numerous C3 molecules to C3b that are covalently bound onto practically any nearby surface (11). On a so-called activator surface, such as a microbe, the surface-bound C3b molecules are not efficiently eliminated and therefore new C3bBb complexes are formed leading to more C3b depositions and eventually effective opsonization or damage of the target cell. On non-activator surfaces, such as viable self (host) cells, factor I cleaves C3b to inactive C3b (iC3b) in the presence of one of the cofactors (CD46, CD35, FH, and FHL-1) (1216). FH is the only one of these cofactors that mediates recognition of self-surfaces making the alternative pathway capable of discriminating between activating and non-activating surfaces (1719).The two main functions of FH are to prevent the alternative pathway activation in plasma and on self-surfaces. This 150-kDa glycoprotein consists of 20 tandemly arranged short consensus repeat domains that are composed of ∼60 amino acids. Domains 1–4 are essential for the cofactor and decay accelerating activity (20). In the middle region of FH (domains 5–15) there are two binding sites for C-reactive protein (21), one or two sites for glycosaminoglycans (GAGs) (2225), and one site for C3c part of C3b (C3b/C3c) (25, 26). The C-terminal domains 19–20 (FH19–20) possess binding sites for the thiol ester domain of C3b (C3d or C3dg, TED domain) and GAGs (26, 27).The most common types of mutations found in aHUS are FH missense mutations located within FH19–20 that was recently solved as crystal and NMR structures (2, 28, 29). The C terminus of FH is crucial in self-cell protection as demonstrated by the severity of the aHUS cases and also in a recent mouse model of aHUS where domains 16–20 had been deleted (30, 31). Histopathology of aHUS in these mice had all the characteristics of human aHUS being concordant with the similarity of binding sites for C3b, heparin, and human umbilical vein endothelial cells between human and mouse FH domains 18–20 (32). Binding of mouse or human FH to glomerular endothelial cells has not been characterized despite the fact that in aHUS damage occurs mainly in the small vessels, especially in the glomeruli.The molecular pathogenesis leading to the clinical aHUS in patients with FH mutations remains elusive. The suggested molecular mechanisms for some aHUS-associated mutations include defective binding of the mutated FH to GAGs, endothelial cells, or C3b/C3d (28, 29, 33, 34). The aim of this study was to define the effects of nine aHUS-associated FH mutations and five other structurally closely located mutations on binding of FH19–20 to C3b, C3d, mouse glomerular endothelial cells, and heparin. We identified three primary defects of the mutants: impaired C3b/C3d binding, enhanced mGEnC-1/heparin binding, and impaired mGEnC-1/heparin binding that could lead via three mechanisms to incapability of FH to eliminate C3b on plasma-exposed self-cells. The results clarify the mechanism of target discrimination of the alternative pathway by the C terminus of FH.  相似文献   

14.
To cause infections microbes need to evade host defense systems, one of these being the evolutionarily old and important arm of innate immunity, the alternative pathway of complement. It can attack all kinds of targets and is tightly controlled in plasma and on host cells by plasma complement regulator factor H (FH). FH binds simultaneously to host cell surface structures such as heparin or glycosaminoglycans via domain 20 and to the main complement opsonin C3b via domain 19. Many pathogenic microbes protect themselves from complement by recruiting host FH. We analyzed how and why different microbes bind FH via domains 19–20 (FH19-20). We used a selection of FH19-20 point mutants to reveal the binding sites of several microbial proteins and whole microbes (Haemophilus influenzae, Bordetella pertussis, Pseudomonas aeruginosa, Streptococcus pneumonia, Candida albicans, Borrelia burgdorferi, and Borrelia hermsii). We show that all studied microbes use the same binding region located on one side of domain 20. Binding of FH to the microbial proteins was inhibited with heparin showing that the common microbial binding site overlaps with the heparin site needed for efficient binding of FH to host cells. Surprisingly, the microbial proteins enhanced binding of FH19-20 to C3b and down-regulation of complement activation. We show that this is caused by formation of a tripartite complex between the microbial protein, FH, and C3b. In this study we reveal that seven microbes representing different phyla utilize a common binding site on the domain 20 of FH for complement evasion. Binding via this site not only mimics the glycosaminoglycans of the host cells, but also enhances function of FH on the microbial surfaces via the novel mechanism of tripartite complex formation. This is a unique example of convergent evolution resulting in enhanced immune evasion of important pathogens via utilization of a “superevasion site.”  相似文献   

15.
The formation of the complex between the d-fragment of the complement component C3 (C3d) and the modular complement receptor-2 (CR2) is important for cross-linking foreign antigens with surface-bound antibodies and C3d on the surface of B cells. The first two modules of CR2, complement control protein modules (CCPs), participate in non-bonded interactions with C3d. We have used computational methods to analyze the dynamic and electrostatic properties of the C3d-CR2(CCP1-2) complex. The interaction between C3d and CR2 is known to depend on pH and ionic strength. Also, the intermodular mobility of the CR2 modules has been questioned before. We performed a 10 ns molecular dynamics simulation to generate a relaxed structure from crystal packing effects for the C3d-CR2(CCP1-2) complex and to study the energetics of the C3d-CR2(CCP1-2) association. The MD simulation suggests a tendency for intermodular twisting in CR2(CCP1-2). We propose a two-step model for recognition and binding of C3d with CR2(CCP1-2), driven by long and short/medium-range electrostatic interactions. We have calculated the matrix of specific short/medium-range pairwise electrostatic free energies of interaction involved in binding and in intermodular communications. Electrostatic interactions may mediate allosteric effects important for C3d-CR2(CCP1-2) association. We present calculations for the pH and ionic strength-dependence of C3d-CR2(CCP1-2) ionization free energies, which are in overall agreement with experimental binding data. We show how comparison of the calculated and experimental data allows for the decomposition of the contributions of electrostatic from other effects in association. We critically compare predicted stabilities for several mutants of the C3d-CR2(CCP1-2) complex with the available experimental data for binding ability. Finally, we propose that CR2(CCP1-2) is capable of assuming a large array of intermodular topologies, ranging from closed V-shaped to open linear states, with similar recognition properties for C3d, but we cannot exclude an additional contact site with C3d.  相似文献   

16.
Factor H (FH) is the predominant soluble inhibitor of the complement system. With a concentration of 200-800 microg/ml in human and rat plasma it acts as a cofactor for the soluble factor I (FI)-mediated cleavage of the component C3b to iC3b. Furthermore it competes with factor B for binding to C3b and C3(H2O) and promotes the dissociation of the C3bBb complex. FH is a monomer of about 155 kDa which comprises 20 short consensus repeats (SCR), each of which is composed of approximately 60 amino acid (aa) residues. Two functional fragments of FH comprising the SCR1-4 or SCR1-7 were generated using either the Baculovirus system or stably transfected human embryonal kidney cells, respectively. These fragments, as well as FH purified from rat serum, were first analyzed for their relative molecular weights (Mr) using non-reducing or reducing SDS-PAGE. The Mr of the FH variants differed by about 20% depending on the experimental conditions employed. Only the Mr of proteins separated under reducing conditions were in accordance with the MW calculated from the aa sequence. Analyses of the glycosylation patterns using PAS-staining showed a lack of staining of the recombinant variants (SCR1-4 and SCR1-7) in contrast to FH(SCR1-20) from serum. Using a complement hemolysis assay (CH50-assay) all three variants exhibited a molar complement inhibitory activity of FH(1-20)/FH(1-7)/FH(1-4) of about 3/1/1. These data support the postulated model of FH bearing three binding sites for its ligand C3b, from which one is located in the SCR1-4, whereas the other two are located in the SCR8-20.  相似文献   

17.
The extracellular domain of the complement receptor type 1 (CR1; CD35) consists entirely of 30 complement control protein repeats (CCPs). CR1 has two distinct functional sites, site 1 (CCPs 1-3) and two copies of site 2 (CCPs 8-10 and CCPs 15-17). In this report we further define the structural requirements for decay-accelerating activity (DAA) for the classical pathway (CP) C3 and C5 convertases and, using these results, generate more potent decay accelerators. Previously, we demonstrated that both sites 1 and 2, tandemly arranged, are required for efficient DAA for C5 convertases. We show that site 1 dissociates the CP C5 convertase, whereas the role of site 2 is to bind the C3b subunit. The intervening CCPs between two functional sites are required for optimal DAA, suggesting that a spatial orientation of the two sites is important. DAA for the CP C3 convertase is increased synergistically if two copies of site 1, particularly those carrying DAA-increasing mutations, are contained within one protein. DAA in such constructs may exceed that of long homologous repeat A (CCPs 1-7) by up to 58-fold. To explain this synergy, we propose a dimeric structure for the CP C3 convertase on cell surfaces. We also extended our previous studies of the amino acid requirements for DAA of site 1 and found that the CCP 1/CCP 2 junction is critical and that Phe82 may contact the C3 convertases. These observations increase our understanding of the mechanism of DAA. In addition, a more potent decay-accelerating form of CR1 was generated.  相似文献   

18.
Complement factor H (FH) inhibits complement activation and interacts with glomerular endothelium via its complement control protein domains 19 and 20, which also recognize heparan sulfate (HS). Abnormalities in FH are associated with the renal diseases atypical hemolytic uremic syndrome and dense deposit disease and the ocular disease age-related macular degeneration. Although FH systemically controls complement activation, clinical phenotypes selectively manifest in kidneys and eyes, suggesting the presence of tissue-specific determinants of disease development. Recent results imply the importance of tissue-specifically expressed, sulfated glycosaminoglycans (GAGs), like HS, in determining FH binding to and activity on host tissues. Therefore, we investigated which GAGs mediate human FH and recombinant human FH complement control proteins domains 19 and 20 (FH19–20) binding to mouse glomerular endothelial cells (mGEnCs) in ELISA. Furthermore, we evaluated the functional defects of FH19–20 mutants during complement activation by measuring C3b deposition on mGEnCs using flow cytometry. FH and FH19–20 bound dose-dependently to mGEnCs and TNF-α treatment increased binding of both proteins, whereas heparinase digestion and competition with heparin/HS inhibited binding. Furthermore, 2-O-, and 6-O-, but not N-desulfation of heparin, significantly increased the inhibitory effect on FH19–20 binding to mGEnCs. Compared with wild type FH19–20, atypical hemolytic uremic syndrome-associated mutants were less able to compete with FH in normal human serum during complement activation on mGEnCs, confirming their potential glomerular pathogenicity. In conclusion, our study shows that FH and FH19–20 binding to glomerular endothelial cells is differentially mediated by HS but not other GAGs. Furthermore, we describe a novel, patient serum-independent competition assay for pathogenicity screening of FH19–20 mutants.  相似文献   

19.
C4b-binding protein (C4BP) is a regulator of the classical complement pathway C3 convertase (C4bC2a complex). It is a disulfide-linked polymer of seven alpha-chains and a unique beta-chain; the alpha- and beta-chains are composed of eight and three complement control protein (CCP) domains, respectively. To elucidate the importance of the polymeric nature of C4BP and the structural requirements for the interaction between C4b and the alpha-chain, 19 recombinant C4BP variants were created. Six truncated monomeric variants, nine polymeric variants in which individual CCPs were deleted, and finally, four variants in which double alanine residues were introduced between CCPs were functionally characterized. The smallest truncated C4BP variant still active in regulating fluid phase C4b comprised CCP1-3. The monomeric variants were less efficient than polymeric C4BP in degrading C4b on cell surfaces. All three N-terminal CCP domains contributed to the binding of C4b and were important for full functional activity; CCP2 and CCP3 were the most important. The spatial arrangements of the first CCPs were found to be important, as introduction of alanine residues between CCPs 1 and 2, CCPs 2 and 3, and CCPs 3 and 4 resulted in functional impairment. The results presented here elucidate the structural requirements of individual CCPs of C4BP, as well as their spatial arrangements within and between subunits for expression of full functional activity.  相似文献   

20.
The acquisition of regulatory proteins is a means of blood‐borne pathogens to avoid destruction by the human complement. We recently showed that the gametes of the human malaria parasite Plasmodium falciparum bind factor H (FH) from the blood meal of the mosquito vector to assure successful sexual reproduction, which takes places in the mosquito midgut. While these findings provided a first glimpse of a complex mechanism used by Plasmodium to control the host immune attack, it is hitherto not known, how the pathogenic blood stages of the malaria parasite evade destruction by the human complement. We now show that the human complement system represents a severe threat for the replicating blood stages, particularly for the reinvading merozoites, with complement factor C3b accumulating on the surfaces of the intraerythrocytic schizonts as well as of free merozoites. C3b accumulation initiates terminal complement complex formation, in consequence resulting in blood stage lysis. To inactivate C3b, the parasites bind FH as well as related proteins FHL‐1 and CFHR‐1 to their surface, and FH binding is trypsin‐resistant. Schizonts acquire FH via two contact sites, which involve CCP modules 5 and 20. Blockage of FH‐mediated protection via anti‐FH antibodies results in significantly impaired blood stage replication, pointing to the plasmodial complement evasion machinery as a promising malaria vaccine target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号