首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In diseased piglets from two Dutch pig-breeding farms with neonatal diarrhoea for more than a year, culture and PCR analyses identified the involved microorganism as Clostridium difficile PCR ribotype 078 harbouring toxin A ( tcdA ) and B ( tcdB ), and binary toxin genes. Isolated strains showed a 39 bp deletion in the tcdC gene and they were ermB gene-negative. A number of 11 porcine and 21 human isolated C. difficile PCR ribotype 078 toxinotype V strains were found genetically related by multiple-locus variable-number tandem-repeat analysis (MLVA). Moreover, a clonal complex was identified, containing both porcine and human isolates. The porcine isolates showed an antimicrobial susceptibility profile overlapping that of isolates from Dutch human patients. On the basis of these pheno- and genotypical analyses results, it was concluded that the strains from affected piglets were indistinguishable from increasingly encountered C. difficile PCR ribotype 078 strains of human C. difficile infections in the Dutch population and that a common origin of animal and humans strains should be considered.  相似文献   

2.
ABSTRACT: BACKGROUND: Clostridium difficile is the main cause of antibiotic associated diarrhea. In the past decade, the number of C. difficile patients has increased dramatically, coinciding with the emergence of two PCR ribotypes, 027 and 078. PCR ribotype 078 is also frequently found during C. difficile outbreaks in pigfarms. Previously, the genome of the PCR ribotype 078 strain M120, a human isolate, was described to contain a unique insert of 100 kilobases. RESULTS: Analysis of this insert revealed over 90 open reading frames, encoding proteins originating from transposons, phages and plasmids. The insert was shown to be a transposon (Tn6164), as evidenced by the presence of an excised and circularised molecule, containing the ligated 5'and 3'ends of the insert. Transfer of the element could not be shown through filter-mating experiments. Whole genome sequencing of PCR ribotype 078 strain 31618, isolated from a diarrheic piglet, showed that Tn6164 was not present in this strain. To test the prevalence of Tn6164, a collection of 231 Clostridium difficile PCR ribotype 078 isolates from human (n = 173) and porcine (n = 58) origin was tested for the presence of this element by PCR. The transposon was present in 9 human, tetracycline resistant isolates, originating from various countries in Europe, and none of the pig strains. Nine other strains, also tetracycline resistant human isolates, contained half of the transposon, suggesting multiple insertion steps yielding the full Tn6164. Other PCR ribotypes (n = 66) were all negative for the presence of the transposon. Multi locus variable tandem repeat analysis revealed genetic relatedness among transposon containing isolates. Although the element contained several potential antibiotic resistance genes, it did not yield a readily distinguishable phenotype. CONCLUSIONS: Tn6164 is a newly described transposon, occurring sporadically in C. difficile PCR ribotype 078 strains. Although no transfer of the element could be shown, we hypothesize that the element could serve as a reservoir of antibiotic resistance genes for other bacteria. Further research is needed to investigate the transfer capabilities of the element and to substantiate the possible role of Tn6164 as a source of antibiotic resistance genes for other gut pathogens.  相似文献   

3.
PCR-ribotyping is a broadly used method for the classification of isolates of Clostridium difficile, an emerging intestinal pathogen, causing infections with increased disease severity and incidence in several European and North American countries. We have now carried out clustering analysis with selected genes of numerous C. difficile strains as well as gene content comparisons of their genomes in order to broaden our view of the relatedness of strains assigned to different ribotypes. We analyzed the genomic content of 48 C. difficile strains representing 21 different ribotypes. The calculation of distance matrix-based dendrograms using the neighbor joining method for 14 conserved genes (standard phylogenetic marker genes) from the genomes of the C. difficile strains demonstrated that the genes from strains with the same ribotype generally clustered together. Further, certain ribotypes always clustered together and formed ribotype groups, i.e. ribotypes 078, 033 and 126, as well as ribotypes 002 and 017, indicating their relatedness. Comparisons of the gene contents of the genomes of ribotypes that clustered according to the conserved gene analysis revealed that the number of common genes of the ribotypes belonging to each of these three ribotype groups were very similar for the 078/033/126 group (at most 69 specific genes between the different strains with the same ribotype) but less similar for the 002/017 group (86 genes difference). It appears that the ribotype is indicative not only of a specific pattern of the amplified 16S–23S rRNA intergenic spacer but also reflects specific differences in the nucleotide sequences of the conserved genes studied here. It can be anticipated that the sequence deviations of more genes of C. difficile strains are correlated with their PCR-ribotype. In conclusion, the results of this study corroborate and extend the concept of clonal C. difficile lineages, which correlate with ribotypes affiliation.  相似文献   

4.
Clostridium difficile is an emerging enteropathogen responsible for pseudomembranous colitis in humans and diarrhoea in several domestic and wild animal species. Despite its known importance, there are few studies aboutC. difficile polymerase chain reaction (PCR) ribotypes in Brazil and the actual knowledge is restricted to studies on human isolates. The aim of the study was therefore to compare C. difficileribotypes isolated from humans and animals in Brazil. Seventy-six C. difficile strains isolated from humans (n = 25), dogs (n = 23), piglets (n = 12), foals (n = 7), calves (n = 7), one cat, and one manned wolf were distributed into 24 different PCR ribotypes. Among toxigenic strains, PCR ribotypes 014/020 and 106 were the most common, accounting for 14 (18.4%) and eight (10.5%) samples, respectively. Fourteen different PCR ribotypes were detected among human isolates, nine of them have also been identified in at least one animal species. PCR ribotype 027 was not detected, whereas 078 were found only in foals. This data suggests a high diversity of PCR ribotypes in humans and animals in Brazil and support the discussion of C. difficile as a zoonotic pathogen.  相似文献   

5.
Meningococcal disease remains a public health burden in the UK and elsewhere. Invasive Neisseria meningitidis, isolated in Scotland between 1972 and 1998, were characterised retrospectively to examine the serogroup and clonal structure of the circulating population. 2607 isolates causing invasive disease were available for serogroup and MLST analysis whilst 2517 were available for multilocus sequence typing (MLST) analysis only. Serogroup distribution changed from year to year but serogroups B and C were dominant throughout. Serogroup B was dominant throughout the 1970s and early 1980s until serogroup C became dominant during the mid-1980s. The increase in serogroup C was not associated with one particular sequence type (ST) but was associated with a number of STs, including ST-8, ST-11, ST-206 and ST-334. This is in contrast to the increase in serogroup C disease seen in the 1990s that was due to expansion of the ST-11 clonal complex. While there was considerable diversity among the isolates (309 different STs among the 2607 isolates), a large proportion of isolates (59.9%) were associated with only 10 STs. These data highlight meningococcal diversity over time and the need for ongoing surveillance during the introduction of new meningococcal vaccines.  相似文献   

6.
The occurrence of Clostridium difficile in nine wastewater treatment plants in the Ticino Canton (southern Switzerland) was investigated. The samples were collected from raw sewage influents and from treated effluents. Forty-seven out of 55 characterized C. difficile strains belonged to 13 different reference PCR ribotypes (009, 010, 014, 015, 039, 052, 053, 066, 070, 078, 101, 106, and 117), whereas 8 strains did not match any of those available in our libraries. The most frequently isolated ribotype (40%) was 078, isolated from six wastewater treatment plants, whereas ribotype 066, a toxigenic emerging ribotype isolated from patients admitted to hospitals in Europe and Switzerland, was isolated from the outgoing effluent of one plant. The majority of the isolates (85%) were toxigenic. Forty-nine percent of them produced toxin A, toxin B, and the binary toxin (toxigenic profile A(+) B(+) CDT(+)), whereas 51% showed the profile A(+) B(+) CDT(-). Interestingly, eight ribotypes (010, 014, 015, 039, 066, 078, 101, and 106) were among the riboprofiles isolated from symptomatic patients admitted to the hospitals of the Ticino Canton in 2010. Despite the limitation of sampling, this study highlights that toxigenic ribotypes of C. difficile involved in human infections may occur in both incoming and outgoing biological wastewater treatment plants. Such a finding raises concern about the possible contamination of water bodies that receive wastewater treatment plant effluents and about the safe reuse of treated wastewater.  相似文献   

7.
The genetic diversity of Campylobacter jejuni isolates from farm animals and their environment was investigated by multilocus sequence typing (MLST). A total of 30 genotypes, defined by allelic profiles (assigned to sequence types [STs]), were found in 112 C. jejuni isolates originating in poultry, cattle, sheep, starlings, and slurry. All but two of these genotypes belonged to one of nine C. jejuni clonal complexes previously identified in isolates from human disease and retail food samples and one clonal complex previously associated with an environmental source. There was some evidence for the association of certain clonal complexes with particular farm animals: isolates belonging to the ST-45 complex predominated among poultry isolates but were absent among sheep isolates, while isolates belonging to the ST-61 and ST-42 complexes were predominant among sheep isolates but were absent from the poultry isolates. In contrast, ST-21 complex isolates were distributed among the different isolation sources. Comparison with MLST data from 91 human disease isolates showed small but significant genetic differentiation between the farm and human isolates; however, representatives of six clonal complexes were found in both samples. These data demonstrate that MLST and the clonal complex model can be used to identify and compare the genotypes of C. jejuni isolates from farm animals and the environment with those from retail food and human disease.  相似文献   

8.
Clostridium difficile strains were sampled periodically from 50 animals at a single veal calf farm over a period of 6 months. At arrival, 10% of animals were C. difficile positive, and the peak incidence was determined to occur at the age of 18 days (16%). The prevalence then decreased, and at slaughter, C. difficile could not be isolated. Six different PCR ribotypes were detected, and strains within a single PCR ribotype could be differentiated further by pulsed-field gel electrophoresis (PFGE). The PCR ribotype diversity was high up to the animal age of 18 days, but at later sampling points, PCR ribotype 078 and the highly related PCR ribotype 126 predominated. Resistance to tetracycline, doxycycline, and erythromycin was detected, while all strains were susceptible to amoxicillin and metronidazole. Multiple variations of the resistance gene tet(M) were present at the same sampling point, and these changed over time. We have shown that PCR ribotypes often associated with cattle (ribotypes 078, 126, and 033) were not clonal but differed in PFGE type, sporulation properties, antibiotic sensitivities, and tetracycline resistance determinants, suggesting that multiple strains of the same PCR ribotype infected the calves and that calves were likely to be infected prior to arrival at the farm. Importantly, strains isolated at later time points were more likely to be resistant to tetracycline and erythromycin and showed higher early sporulation efficiencies in vitro, suggesting that these two properties converge to promote the persistence of C. difficile in the environment or in hosts.  相似文献   

9.
The genetic diversity of Campylobacter jejuni isolates from farm animals and their environment was investigated by multilocus sequence typing (MLST). A total of 30 genotypes, defined by allelic profiles (assigned to sequence types [STs]), were found in 112 C. jejuni isolates originating in poultry, cattle, sheep, starlings, and slurry. All but two of these genotypes belonged to one of nine C. jejuni clonal complexes previously identified in isolates from human disease and retail food samples and one clonal complex previously associated with an environmental source. There was some evidence for the association of certain clonal complexes with particular farm animals: isolates belonging to the ST-45 complex predominated among poultry isolates but were absent among sheep isolates, while isolates belonging to the ST-61 and ST-42 complexes were predominant among sheep isolates but were absent from the poultry isolates. In contrast, ST-21 complex isolates were distributed among the different isolation sources. Comparison with MLST data from 91 human disease isolates showed small but significant genetic differentiation between the farm and human isolates; however, representatives of six clonal complexes were found in both samples. These data demonstrate that MLST and the clonal complex model can be used to identify and compare the genotypes of C. jejuni isolates from farm animals and the environment with those from retail food and human disease.  相似文献   

10.
Thirty-nine human isolates of Campylobacter jejuni obtained from a national university hospital during 2007–2010 and 38 chicken isolates of C. jejuni were collected from poultry farms during 2009–2010 in South Korea were used in this study. Campylobacter genomic species and virulence-associated genes were identified by PCR. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were performed to compare their genetic relationships. All isolates were highly resistant to ciprofloxacin, nalidixic acid, and tetracycline. Of all isolates tested, over 94% contained seven virulence associated genes (flaA, cadF, racR, dnaJ, cdtA, cdtB, and cdtC). All isolates were classified into 39 types by PFGE clustering with 90% similarity. Some chicken isolates were incorporated into some PFGE types of human isolates. MLST analysis for the 39 human isolates and 38 chicken isolates resulted in 14 and 23 sequence types (STs), respectively, of which 10 STs were new. STs overlapped in both chicken and human isolates included ST-21, ST-48, ST-50, ST-51, and ST-354, of which ST-21 was the predominant ST in both human and chicken isolates. Through combined analysis of PFGE types and STs, three chicken isolates were clonally related to the three human isolates associated with food poisoning (VII-ST-48, XXII-ST-354, and XXVIII-ST-51). They were derived from geographically same or distinct districts. Remarkably, clonal spread of food poisoning pathogens between animals and humans was confirmed by population genetic analysis. Consequently, contamination of campylobacters with quinolone resistance and potential virulence genes in poultry production and consumption may increase the risk of infections in humans.  相似文献   

11.
To longitudinally assess fecal shedding and animal-to-animal transmission of Clostridium difficile among finishing feedlot cattle as a risk for beef carcass contamination, we tested 186 ± 12 steers (mean ± standard deviation; 1,369 samples) in an experimental feedlot facility during the finishing period and at harvest. Clostridium difficile was isolated from 12.9% of steers on arrival (24/186; 0 to 33% among five suppliers). Shedding decreased to undetectable levels a week later (0%; P < 0.001), and remained low (< 3.6%) until immediately prior to shipment for harvest (1.2%). Antimicrobial use did not increase fecal shedding, despite treatment of 53% of animals for signs of respiratory disease. Animals shedding C. difficile on arrival, however, had 4.6 times higher odds of receiving antimicrobials for respiratory signs than nonshedders (95% confidence interval for the odds ratio, 1.4 to 14.8; P = 0.01). Neither the toxin genes nor toxin A or B was detected in most (39/42) isolates based on two complementary multiplex PCRs and enzyme-linked immunosorbent assay testing, respectively. Two linezolid- and clindamycin-resistant PCR ribotype 078 (tcdA+/tcdB+/cdtB+/39-bp-type deletion in tcdC) isolates were identified from two steers (at arrival and week 20), but these ribotypes did not become endemic. The other toxigenic isolate (tcdA+/tcdB+/cdtB+/classic tcdC; PCR ribotype 078-like) was identified in the cecum of one steer at harvest. Spatio-temporal analysis indicated transient shedding with no evidence of animal-to-animal transmission. The association between C. difficile shedding upon arrival and the subsequent need for antimicrobials for respiratory disease might indicate common predisposing factors. The isolation of toxigenic C. difficile from bovine intestines at harvest highlights the potential for food contamination in meat processing plants.  相似文献   

12.
Clostridium difficile is a major cause of nosocomial diarrhoea. The toxins produced by C. difficile are responsible for the characteristic pathology observed in C. difficile disease, but several surface-associated proteins of C. difficile are also recognized by the immune system and could modulate the immune response in infection. The aim of this study was to assess the induction of cytokines in a macrophage cell line in response to different antigens prepared from five C. difficile strains: the hypervirulent ribotype 027, ribotypes 001 and 106 and reference strains VPI 10463 and 630 (ribotype 012). PMA-activated THP-1 cells were challenged with surface-layer proteins, flagella, heat-shock proteins induced at 42 and 60 °C and culture supernatants of the five C. difficile strains. The production of the pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, IL-8 and IL-12p70 was observed in response to the surface-associated proteins, and high levels of TNF-α, IL-1β and IL-8 were detected in response to challenge with culture supernatants. The immune response triggered by the surface-associated proteins was independent of the strain from which the antigens were derived, suggesting that these proteins might not be related to the varying virulence of the hypervirulent ribotype 027 or ribotypes 001 and 106. There was no interstrain difference observed in response to the culture supernatants of the tested C. difficile strains, but this was perhaps due to toxicity induced in the macrophages by large amounts of toxin A and toxin B.  相似文献   

13.
Multilocus sequence typing (MLST), an accurate and phylogenetically robust characterization method for population studies of Campylobacter, was applied to Campylobacter jejuni isolates (n = 297) from the fecal samples of cattle from five dairy farms in Cheshire, United Kingdom, collected throughout 2003. The population dynamics of the C. jejuni strains, as identified by the occurrence of sequence types and clonal complexes, demonstrated variations within and between cattle populations over time. Three clonal lineages have emerged to predominate among the cattle isolates, namely, the ST-61 complex (24.2%), ST-21 complex (23.6%), and ST-42 complex (20.5%). This provided further evidence that the ST-61 clonal complex may present a cattle-adapted C. jejuni genotype. In addition, the ST-42 clonal complex may also represent an important cattle-associated genotype. Strong geographical associations for these genotypes were also found among the farms. This is the first longitudinal study and the largest study to date for C. jejuni involving cattle populations using MLST for accurate strain characterization. This study shows the important associations between cattle and C. jejuni clonal complexes ST-61, ST-21, and ST-42, and it suggests that cattle and/or dairy products are likely to be a source of the human Campylobacter gastroenteritis caused by such genotypes. The reported findings have significant implications for the design of effective intervention strategies for disease control and prevention.  相似文献   

14.
We evaluated a three-step algorithm for laboratory diagnosis of Clostridium difficile-associated diarrhoea (CDAD). First, stool specimens were screened using an EIA test for glutamate dehydrogenase detection. Screen-positive specimens were tested by a rapid cytotoxintoxin A/B assay and subjected to stool culture. All cultures positive for C. difficile underwent toxigenic culture. The results showed that toxigenic culture allowed us to recover 37/156 (24.4%) stool samples harbouring toxigenic C. difficile that would have been missed by using faecal cytotoxin assay alone. This determined an increase in infection prevalence of 4.2% (from 11.4% to 15.6 %). Furthermore, to characterize the clinical Clostridium difficile isolates and the distribution of PCR ribotypes circulating in the San Carlo Borromeo hospital, molecular typing using semi-automated repetitive-sequence-based PCR (rep- PCR) and PCR ribotyping, and an evaluation of the antibiotic resistance were also performed. Among them, 71 indistinguishable strains were detected by rep-PCR and 83 by PCR-ribotyping revealing C. difficile outbreaks in our hospital. A total of 6 different ribotypes were obtained by PCR ribotyping. The most frequent ribotype was 018 (88.2%) that also showed resistance to moxifloxacin. In one case, uncommon PCR ribotype 186 was also identified.  相似文献   

15.
Campylobacter is a food-borne zoonotic pathogen that causes human gastroenteritis worldwide. Campylobacter bacteria are commensal in the intestines of many food production animals, including ducks and chickens. The objective of the study was to determine the prevalence of Campylobacter species in domestic ducks, and the agar dilution method was used to determine resistance of the isolates to eight antibiotics. In addition, multilocus sequence typing (MLST) was performed to determine the sequence types (STs) of selected Campylobacter isolates. Between May and September 2012, 58 duck farms were analyzed, and 56 (96.6%) were positive for Campylobacter. Among the isolates, 82.1% were Campylobacter jejuni, 16.1% were C. coli, and one was unidentified by PCR. Of the 46 C. jejuni isolates, 87.0%, 10.9%, and 21.7% were resistant to ciprofloxacin, erythromycin, and azithromycin, respectively. Among the C. coli isolates, all 9 strains were resistant to ampicillin, and 77.8% and 33.3% were resistant to ciprofloxacin and azithromycin, respectively. The majority of the Campylobacter isolates were classified as multidrug resistant. Twenty-eight STs were identified, including 20 STs for C. jejuni and 8 STs for C. coli. The most common clonal complexes in C. jejuni were the ST-21 complex and the ST-45 complex, while the ST-828 complex predominated in C. coli. The majority of isolates were of STs noted in ducks and humans from earlier studies, along with seven STs previously associated only with human disease. These STs overlapped between duck and human isolates, indicating that Campylobacter isolates from ducks should be considered potential sources of human infection.  相似文献   

16.
Clostridium difficile causes a potentially fatal diarrheal disease through the production of its principal virulence factors, toxin A and toxin B. The tcdC gene is thought to encode a negative regulator of toxin production. Therefore, increased toxin production, and hence increased virulence, is often inferred in strains with an aberrant tcdC genotype. This report describes the first allele exchange system for precise genetic manipulation of C. difficile, using the codA gene of Escherichia coli as a heterologous counterselection marker. It was used to systematically restore the Δ117 frameshift mutation and the 18-nucleotide deletion that occur naturally in the tcdC gene of C. difficile R20291 (PCR ribotype 027). In addition, the naturally intact tcdC gene of C. difficile 630 (PCR ribotype 012) was deleted and then subsequently restored with a silent nucleotide substitution, or "watermark," so the resulting strain was distinguishable from the wild type. Intriguingly, there was no association between the tcdC genotype and toxin production in either C. difficile R20291 or C. difficile 630. Therefore, an aberrant tcdC genotype does not provide a broadly applicable rationale for the perceived notion that PCR ribotype 027 strains are "high-level" toxin producers. This may well explain why several studies have reported that an aberrant tcdC gene does not predict increased toxin production or, indeed, increased virulence.  相似文献   

17.
Eight temperate phages were characterized after mitomycin C induction of six Clostridium difficile isolates corresponding to six distinct PCR ribotypes. The hypervirulent C. difficile strain responsible for a multi-institutional outbreak (NAP1/027 or QCD-32g58) was among these prophage-containing strains. Observation of the crude lysates by transmission electron microscopy (TEM) revealed the presence of three phages with isometric capsids and long contractile tails (Myoviridae family), as well as five phages with long noncontractile tails (Siphoviridae family). TEM analyses also revealed the presence of a significant number of phage tail-like particles in all the lysates. Southern hybridization experiments with restricted prophage DNA showed that C. difficile phages belonging to the family Myoviridae are highly similar and most likely related to previously described prophages phiC2, phiC5, and phiCD119. On the other hand, members of the Siphoviridae phage family are more genetically divergent, suggesting that they originated from distantly related ancestors. Our data thus suggest that there are at least three genetically distinct groups of temperate phages in C. difficile; one group is composed of highly related myophages, and the other two groups are composed of more genetically heterogeneous siphophages. Finally, no gene homologous to genes encoding C. difficile toxins or toxin regulators could be identified in the genomes of these phages using DNA hybridization. Interestingly, each unique phage restriction profile correlated with a specific C. difficile PCR ribotype.  相似文献   

18.
We recently developed a multilocus sequence typing (MLST) scheme to differentiate S. uberis isolates and facilitate an understanding of the population biology of this pathogen. The scheme was initially used to study a collection of 160 bovine milk isolates from the United Kingdom and showed that the majority of isolates were from one clonal complex (designated the ST-5 complex). Here we describe the MLST analysis of a collection of New Zealand isolates. These were obtained from diverse sources, including bovine milk, other bovine anatomical sites, and environmental sources. The complete allelic profiles of 253 isolates were determined. The collection was highly diverse and included 131 different sequence types (STs). The New Zealand and United Kingdom populations were distinct, since none of the 131 STs were represented within the previously studied collection of 160 United Kingdom S. uberis isolates. However, seven of the STs were members of the ST-5 clonal complex, the major complex within the United Kingdom collection. Two new clonal complexes were identified: ST-143 and ST-86. All three major complexes were isolated from milk, other bovine sites, and the environment. Carriage of the hasA gene, which is necessary for capsule formation, correlated with clonal complex and isolation from clinical cases of mastitis.  相似文献   

19.

Background

Campylobacter jejuni is a common cause of acute gastroenteritis and is associated with post-infectious neuropathies such as the Guillain-Barré syndrome (GBS) and the Miller Fisher syndrome (MFS). We here present comparative genotyping of 49 C. jejuni strains from Bangladesh that were recovered from patients with enteritis or GBS. All strains were serotyped and analyzed by lipo-oligosaccharide (LOS) genotyping, amplified fragment length polymorphism (AFLP) analysis, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE).

Methodology/Principal Findings

C. jejuni HS:23 was a predominant serotype among GBS patients (50%), and no specific serotype was significantly associated with GBS compared to enteritis. PCR screening showed that 38/49 (78%) of strains could be assigned to LOS classes A, B, C, or E. The class A locus (4/7 vs 3/39; p<0.01) was significantly associated in the GBS-related strains as compared to enteritis strains. All GBS/oculomotor related strains contained the class B locus; which was also detected in 46% of control strains. Overlapping clonal groups were defined by MLST, AFLP and PFGE for strains from patients with gastroenteritis and GBS. MLST defined 22 sequence types (STs) and 7 clonal complexes including 7 STs not previously identified (ST-3742, ST-3741, ST-3743, ST-3748, ST-3968, ST-3969 and ST-3970). C. jejuni HS:23 strains from patients with GBS or enteritis were clonal and all strains belonged to ST-403 complex. Concordance between LOS class B and ST-403 complex was revealed. AFLP defined 25 different types at 90% similarity. The predominant AFLP type AF-20 coincided with the C. jejuni HS:23 and ST-403 complex.

Conclusion/Significance

LOS genotyping, MLST, AFLP and PFGE helped to identify the HS:23 strains from GBS or enteritis patients as clonal. Overall, genotypes exclusive for enteritis or for GBS-related strains were not obtained although LOS class A was significantly associated with GBS strains. Particularly, the presence of a clonal and putative neuropathogenic C. jejuni HS:23 serotype may contribute to the high prevalence of C. jejuni related GBS in Bangladesh.  相似文献   

20.
We recently developed a multilocus sequence typing (MLST) scheme to differentiate S. uberis isolates and facilitate an understanding of the population biology of this pathogen. The scheme was initially used to study a collection of 160 bovine milk isolates from the United Kingdom and showed that the majority of isolates were from one clonal complex (designated the ST-5 complex). Here we describe the MLST analysis of a collection of New Zealand isolates. These were obtained from diverse sources, including bovine milk, other bovine anatomical sites, and environmental sources. The complete allelic profiles of 253 isolates were determined. The collection was highly diverse and included 131 different sequence types (STs). The New Zealand and United Kingdom populations were distinct, since none of the 131 STs were represented within the previously studied collection of 160 United Kingdom S. uberis isolates. However, seven of the STs were members of the ST-5 clonal complex, the major complex within the United Kingdom collection. Two new clonal complexes were identified: ST-143 and ST-86. All three major complexes were isolated from milk, other bovine sites, and the environment. Carriage of the hasA gene, which is necessary for capsule formation, correlated with clonal complex and isolation from clinical cases of mastitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号