首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The parasite Entamoeba histolytica colonizes the human intestine causing amoebic colitis and disseminates through the vascular route to form liver abscesses. The Gal/GalNAc lectin is an adhesion protein complex which sustains tissue invasion by E. histolytica. Disruption of the Gal/GalNAc lectin function in engineered parasites (HGL-2 trophozoites) changed the pathophysiology of hamster liver abscess formation. HGL-2 trophozoites produced numerous small inflammatory foci located in the vicinity of blood vessels. The low penetration of HGL-2 trophozoites into hepatic tissue was shown to be associated with weak attraction of neutrophils and macrophages to the infiltrated areas and absence of pro-inflammatory tumour necrosis factor, in contrast to wild type or control vector infections. The low host inflammatory response in HGL-2 infections correlated with a delay in apoptosis of hepatic cells, whereas apoptosis of endothelial cells was not detected. Triggering of apoptosis in both host cell types most likely has a central role in modulating inflammation, a major landmark in hepatic amoebiasis. These data highlight the key role of the Gal/GalNAc lectin in initiation of E. histolytica hepatic infection.  相似文献   

2.
3.
Entamoeba histolytica is the protozoan parasite responsible for human amoebiasis. During invasive amoebiasis, migration is an essential process and it has previously been shown that the pro-inflammatory compound tumour necrosis factor (TNF) is produced and that it has a migratory effect on E. histolytica . This paper focuses on the analysis of parasite signalling and cytoskeleton changes leading to directional motility. TNF-induced signalling was PI3K-dependent and could lead to modifications in the polarization of certain cytoskeleton-related proteins. To analyse the effect of TNF signalling on gene expression, we used microarray analysis to screen for genes encoding proteins that were potentially important during chemotaxis towards TNF. Interestingly, we found that elements of the galactose/N-acetylgalactosamine lectin (Gal/GalNAc lectin) were upregulated during chemotaxis as well as genes encoding proteins involved in cytoskeleton dynamics. The α-actinin protein appeared to be an important candidate to link the Gal/GalNAc lectin to the cytoskeleton during chemotaxis signalling. Dominant negative parasites blocked for Gal/GalNAc lectin signalling were no longer able to chemotax towards TNF. These results have given us an insight on how E. histolytica changes its cytoskeleton dynamics during chemotaxis and revealed the capital role of PI3K and Gal/GalNAc lectin signalling in chemotaxis.  相似文献   

4.
Contact-dependent cytolysis of host cells by Entamoeba histolytica is an important hallmark of amoebiasis that points out the importance of molecules involved in the interaction between the parasite and the human cells. To decipher the molecular and cellular mechanisms supporting the invasion of the intestinal epithelium by E. histolytica, we analysed proteins involved in the interaction of the parasite with enterocytes. Affinity chromatography revealed several amoebic proteins interacting with purified brush border of differentiated Caco2 cells. Among them were found the intermediate subunit of the Gal/GalNAc lectin, an alpha-actinin-like protein and two new proteins KERP1 and KERP2 rich in lysine and glutamic acid. In silico analysis revealed the presence of KERP2 in the closely related non-pathogenic amoeba species Entamoeba dispar but not of KERP1. In additon, polymerase chain reaction analysis allowed to suggest the absence of kerp1 homologous gene in E. dispar. Therefore, we concentrated on the cellular analysis of KERP1. Cloning of the KERP1-encoding gene, production of a recombinant protein in Escherichia coli and production of a specific antibody allowed us to show the following properties: (i) purified KERP1 binds to epithelial cell surface, (ii) KERP1 is located on the plasma membrane and in vesicles of trophozoites and (iii) KERP1 is delivered in the interstitial area between the trophozoites and the intestinal cells.  相似文献   

5.
Virulence factors of Entamoeba histolytica.   总被引:1,自引:0,他引:1  
Recent studies have increased our knowledge of Entamoeba histolytica cell biology and gene regulation. In the ameba, dominant-negative mutations in the Gal/GalNAc lectin affect adhesion and cytolysis, whereas mutations in meromyosin affect cytoskeletal function. Studying these mutant proteins has improved our understanding of the role of these proteins in E. histolytica virulence. The characterization of the CP5 cysteine protease and the induction of apoptosis in host target cells has led to a better comprehension of the mechanisms by which trophozoites can lyse target cells.  相似文献   

6.
Entamoeba histolytica is an intestinal parasite that causes dysentery and liver abscess. Parasite cell surface receptors, such as the Gal/GalNAc lectin, facilitate attachment to host cells and extracellular matrix. The Gal/GalNAc lectin binds to galactose or N-acetylgalactosamine residues on host components and is composed of heavy (Hgl), intermediate (Igl), and light (Lgl) subunits. Although Igl is constitutively localized to lipid rafts (cholesterol-rich membrane domains), Hgl and Lgl transiently associate with this compartment in a cholesterol-dependent fashion. In this study, trophozoites were exposed to biologically relevant ligands to determine if ligand binding influences the submembrane distribution of the subunits. Exposure to human red blood cells (hRBCs) or collagen, which are bona fide Gal/GalNAc lectin ligands, was correlated with enrichment of Hgl and Lgl in rafts. This enrichment was abrogated in the presence of galactose, suggesting that direct lectin-ligand interactions are necessary to influence subunit location. Using a cell line that is able to attach to, but not phagocytose, hRBCs, it was shown that physical attachment to ligands was not sufficient to induce the enrichment of lectin subunits in rafts. Additionally, the mutant had lower levels of phosphatidylinositol (4,5)-bisphosphate (PIP(2)); PIP(2) loading restored the ability of this mutant to respond to ligands with enrichment of subunits in rafts. Finally, intracellular calcium levels increased upon attachment to collagen; this increase was essential for the enrichment of lectin subunits in rafts. Together, these data provide evidence that ligand-induced enrichment of lectin subunits in rafts may be the first step in a signaling pathway that involves both PIP(2) and calcium signaling.  相似文献   

7.
Contact-dependent killing and phagocytosis of target cells by Entamoeba histolytica trophozoites is mediated by the galactose (Gal) and N-acetyl-d-galactosamine (GalNAc)-inhibitable lectin. Previous work has suggested that this lectin functions as part of a signal transduction complex. To identify proteins that might be part of this complex, amebic trophozoites were bound to GalNAc-BSA-labeled magnetic beads and lysed. Bound proteins were eluted from the beads and analyzed by tandem mass spectrometry. Along with the Gal/GalNAc lectin subunits, several cytoskeletal proteins, potential signaling proteins, and a novel transmembrane protein, consistently purified with the GalNAc-BSA beads.  相似文献   

8.
We have purified Gal/GalNAc lectin from Entamoeba histolytica by electroelution. The purified protein was used to immunize rabbits and obtain polyclonal IgG’s anti-lectin. These antibodies were used as tools to analyze the expression and localization of the amoebic lectin in both virulent (vEh) and non-virulent (nvEh) variants of axenically cultured HM1:IMSS strain. vEh is able to induce liver abscesses in hamsters, whereas nvEh has lost this ability. In vitro, amoebic trophozoites from both variants equally express this protein as shown by densitometric analysis of the corresponding band in Western blots from lysates. In both types of trophozoites, the pattern of distribution of the lectin was mainly on the surface. We have also compared by immunohistochemistry the presence and distribution of lectin in the in vivo liver lesions produced in hamsters. In order to prolong the survival of nvEh to analyze both variants in an in vivo model, hamsters inoculated with nvEh were treated with methyl prednisolone. Our results suggest that the Gal/GalNAc lectin is equally expressed in both nvEh and vEh.  相似文献   

9.
Entamoeba histolytica is the human parasite responsible of amoebiasis, during which highly motile trophozoites invade the intestinal epithelium leading to amoebic colitis, and disseminate via the blood circulation causing liver abscesses. The invasive process, central to the pathogenesis, is known to be driven by parasites motility. To investigate molecules responsible for in vivo motion, we performed a high resolution dynamic imaging analysis using two-photon laser scanning microscopy. Image analysis of the parasites during invasion of Caco-2 cell monolayers, an enterocyte-like model, and hamster liver shows that E. histolytica undergoes non-Brownian motion. However, studies of movements of parasite strains dominant negative for myosin II, a central component of the cytoskeleton, and for Gal-GalNAc lectin, a major adhesion molecule, indicate that myosin II is essential for E. histolytica intercellular motility through intestinal cell monolayers and for its motility in liver. In contrast, the Gal-GalNAc lectin exclusively triggers invasion of the liver. These observations are in agreement with emerging studies that highlight marked differences in the way that cells migrate in vitro in two dimensions versus in vivo in three dimensions. The approach that we have developed should be powerful to identify adhesive complexes required for in vivo cell migration in normal and pathogenic situations and may, thereby, lead to new therapeutic drug, for pathologies based on cell motility and adhesion.  相似文献   

10.

Background

Entamoeba histolytica is an intestinal protozoan parasite that causes amoebiasis, including amebic dysentery and liver abscesses. E. histolytica invades host tissues by adhering onto cells and phagocytosing them depending on the adaptation and expression of pathogenic factors, including Gal/GalNAc lectin. We have previously reported that E. histolytica possesses multiple CXXC sequence motifs, with the intermediate subunit of Gal/GalNAc lectin (i.e., Igl) as a key factor affecting the amoeba''s pathogenicity. The present work showed the effect of immunization with recombinant Igl on amebic liver abscess formation and the corresponding immunological properties.

Methodology/Principal Findings

A prokaryotic expression system was used to prepare the full-length Igl and the N-terminal, middle, and C-terminal fragments (C-Igl) of Igl. Vaccine efficacy was assessed by challenging hamsters with an intrahepatic injection of E. histolytica trophozoites. Hamsters intramuscularly immunized with full-length Igl and C-Igl were found to be 92% and 96% immune to liver abscess formation, respectively. Immune-response evaluation revealed that C-Igl can generate significant humoral immune responses, with high levels of antibodies in sera from immunized hamsters inhibiting 80% of trophozoites adherence to mammalian cells and inducing 80% more complement-mediated lysis of trophozoites compared with the control. C-Igl was further assessed for its cellular response by cytokine-gene qPCR analysis. The productions of IL-4 (8.4-fold) and IL-10 (2-fold) in the spleen cells of immunized hamsters were enhanced after in vitro stimulation. IL-4 expression was also supported by increased programmed cell death 1 ligand 1 gene.

Conclusions/Significance

Immunobiochemical characterization strongly suggests the potential of recombinant Igl, especially the C-terminal fragment, as a vaccine candidate against amoebiasis. Moreover, protection through Th2-cell participation enabled effective humoral immunity against amebic liver abscesses.  相似文献   

11.
Amoebiasis is responsible for 50000-100000 deaths annually. Invasive amoebic disease begins with the attachment of Entamoeba histolytica trophozoites to colonic mucin, a process mediated by the amoebic Gal/GalNAc lectin. The non-pathogenic counterpart, E. dispar, is morphologically identical but genetically distinct. Investigations comparing the Gal/GalNac lectin from these two organisms are under way.  相似文献   

12.
Entamoeba histolytica infection causes dysentery, intestinal colitis, and hepatic abscess in an estimated 50 million people worldwide. Attachment of E. histolytica trophozoites to intestinal epithelium and vascular endothelium during liver metastasis results in an inflammatory process. We report the identification of a distinct amebic beta2 integrin (CD18)-like molecule which affords adherence to TNF-alpha-activated endothelial cells. Data from flow cytometry and indirect immunofluorescence assays suggest the amebic beta2 integrin was localized to focal adhesion plates and was present in both E. histolytica and Entamoeba dispar. The amebic beta2 integrin appeared to be distinct from the amebic Gal/GalNAc lectin based on recombinant expression, amebic colocalization, and ELISA studies. Trophozoite adherence to endothelial cells expressing ICAM-1 (CD54) following activation with TNF-alpha or ICAM-1-transfected CHO cells was specifically inhibited with anti-CD18 or anti-CD54 MAbs. In summary, evidence in support of a distinct beta2 integrin-like molecule participating in amebic adherence to TNF-alpha-activated endothelial cells expressing ICAM-1 is presented. The presence of integrin-dependent binding may allow trophozoites to opportunistically adhere to activated intestinal epithelium or vascular endothelium expressing ICAM-1 during amebic colitis or hepatic abscess.  相似文献   

13.
The Gal/GalNAc lectin gene of Entamoeba histolytica is a major amebic virulence protein responsible for interaction with host tissues. We investigated sequence differences in the Gal/GalNAc lectin heavy subunit in three isolates from Bangladesh and one isolate from Georgia, each of which was determined to be genetically distinct by SREHP AluI digestion. Interestingly, we observed only slight genetic diversity in the lectin gene as compared with the HM1:IMSS laboratory strain, originally a clinical isolate from Mexico. Genetic conservation of the Gal/GalNAc lectin between isolates may reflect that the lectin is under strong functional selection or possibly, that E. histolytica is a clonal population. Sequence conservation of the lectin indicates that immune responses against it should be cross-protective.  相似文献   

14.
Adherence and cytotoxicity of Entamoeba histolytica require the function of a heterodimeric galactose and N-acetylgalactosamine (Gal/GalNAc)-specific lectin. The lectin heavy subunit (Hgl) contains a carbohydrate recognition domain and mediates inside-out cell signaling via its cytoplasmic tail. The function of the lectin light subunit (Lgl) is unknown. The lectin has a unique mechanism of membrane association: Hgl is transmembrane but Lgl is glycosylphosphatidylinositol (GPI) anchored. The role of the GPI anchor signal sequence in heterodimer assembly was tested. Epitope-tagged Lgl with or without the GPI anchor addition signal was expressed in E. histolytica trophozoites. Tagged Lgl did not assemble with Hgl into a lectin heterodimer in the absence of the GPI addition signal. Consistent with previous results that only the Hgl subunit mediates adherence, the monomeric Lgl without the GPI anchor signal lacked Gal/GalNAc-binding activity.  相似文献   

15.
Frederick JR  Petri WA 《Glycobiology》2005,15(12):53R-59R
Entamoeba histolytica, an intestinal protozoan parasite, is a major cause of morbidity and mortality in developing countries. The pathology of the disease is caused by the colonization of the large intestine by the amoebic trophozoites and the invasion of the intestinal epithelium. Some of the trophozoites will eventually differentiate into the infectious cyst form, allowing them to be transmitted out of the bowel and into water supplies to be passed from person to person. Both the virulence of the organism and the differentiation process relies on a galactose-/N-acetylgalactosamine (GalNAc)-binding lectin that is expressed on the surface of trophozoites. The functional activity of this lectin has been shown to be involved in host cell binding, cytotoxicity, complement resistance, induction of encystation, and generation of the cyst wall. The role of the lectin in both differentiation and virulence suggests that it may be a pivotal molecule that determines the severity of the infection from a commensal state resulting from increased encystation to an invasive state. The lectin-glycan interactions that initiate these diverse processes are discussed with emphasis on comparing the binding of host ligands and the interactions involved in encystation.  相似文献   

16.
The galactose and N-acetyl-D-galactosamine-inhibitable adherence lectin of Entamoeba histolytica is a cell surface protein which mediates parasite adherence to human colonic mucus, colonic epithelial cells, and other target cells. The amebic lectin was purified in 100-micrograms quantities from detergent-solubilized trophozoites by monoclonal antibody affinity chromatography. The adherence lectin was purified 500-fold as judged by radioimmunoassay. The nonreduced lectin had a molecular mass of 260 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an isoelectric point of pH 6.2. The amebic lectin reduced with beta-mercaptoethanol consisted of 170- and 35-kDa subunits. Both subunits could be labeled on the cell surface with 125I, and both were metabolically labeled with [3H]glucosamine. The amino termini of the subunits had unique amino acid sequences, and polyclonal antisera to the heavy subunit did not cross-react with the light subunit. The yield of phenylthiohydantoin derivatives from the second and third positions in the sequence of the heavy and light subunits gave a molar ratio of one 170- to one 35-kDa subunit. Antibodies directed to the heavy subunit inhibited amebic adherence to Chinese hamster ovary cells by 100%, suggesting that the heavy subunit is predominantly responsible for mediating amebic adherence.  相似文献   

17.
A simple, sensitive and stable ELISA (enzyme linked immunosorbent assay) was developed using rabbit antibody to fractionated Entamoeba histolytica antigen for the detection of copro antigen in the faeces of individuals with intestinal amoebiasis. In this test none of the healthy individuals, all trophozoite positive, 40% cyst passers and 6% individuals living in endemic area showed the presence of copro antigen. ELISA using polyclonal rabbit antibody could detect 1-5 trophozoites/well and 20-50 ng protein per well of NIH-200 strain of E. histolytica and the sensitivity of the test was comparable with that using monoclonal antibody. Cross reaction was observed only with E. invadens when faeces having other parasites were screened. The reagents of ELISA were stabilized and found to be stable for more than 6 months when stored at 4 degrees C.  相似文献   

18.
Adherence of pathogenic Entamoeba histolytica trophozoites mediated by Gal/GalNAc lectin is a prerequisite for killing na?ve T cells and monocytes but the activated T cells and monocyte derived macrophages (MDMs) not only resist the attack but can kill the parasite. In the present study, we have analysed the adherence and cytotoxicity of the immunecompetent cells from patients of amoebic liver abscess at the time of their diagnosis and after 3 months to elucidate the development of cell mediated cytotoxicity, a major mechanism of resistance to amoebic infection. The results show that CD3+ cells from amoebic liver abscess cases, when stimulated, in vitro, bound E. histolytica trophozoites with increased intensity and their viability was also increased. The activated lymphocytes (taken at 3 months post treatment) were also able to kill amoebae. MDMs bound amoebae with greater intensity than lymphocytes, until 3 months post infection. These MDMs were effective in killing approximately 40% amoebae which was significantly less than at the time of diagnosis but was very significant as compared to the controls. The data suggest that cell mediated cytotoxic responses are maximum until 1 month post treatment and are significantly reduced thereafter.  相似文献   

19.
The human gut parasite Entamoeba histolytica, uses a lectin complex on its cell surface to bind to mucin and to ligands on the intestinal epithelia. Binding to mucin is necessary for colonisation and binding to intestinal epithelia for invasion, therefore blocking this binding may protect against amoebiasis. Acquired protective immunity raised against the lectin complex should create a selection pressure to change the amino acid sequence of lectin genes in order to avoid future detection. We present evidence that gene conversion has occurred in lineages leading to E. histolytica strain HM1:IMSS and E. dispar strain SAW760. This evolutionary mechanism generates diversity and could contribute to immune evasion by the parasites.  相似文献   

20.
Entamoeba histolytica killing of host cells is contact dependent and mediated by a Gal/GalNAc lectin. Upon contact with amoeba a rapid and extensive dephosphorylation of tyrosine phosphorylated host cell proteins is observed. This effect is mediated by the Gal/GalNAc lectin. However, it requires intact cells, as purified lectin failed to induce dephosphorylation in Jurkat cells. The nonpathogenic, but morphologically identical amoeba,Entamoeba moshkovskii also did not induce dephosphorylation in target cells. Treatment of Jurkat cells with phosphotyrosine phosphatase inhibitors has shown that a host phosphatase is responsible for dephosphorylation. However, it was found that the CD45 phosphotase was not necessary for dephosphorylation of host cell proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号